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The vacuum of QCD has a non-trivial topological structure.

The cluster property and the gauge invariance require that
the ground state must be the θ vacuum, a superposition of
gauge configurations in different topological sectors.

The topological structure is also essential for the resolution of the
U(1) problem, i.e., the flavor singlet pseudo-scalar meson knows
the presence of non-trivial topological charge in the QCD vacuum.

Therefore, the topological excitations, such as the instantons,
plays a central role in understanding the vacuum of QCD.

Since the topological excitations do not occur in the perturbation
theory, theoretical calculations starting from the QCD Lagrangian
necessarily involves non-perturbative methods, such as lattice QCD.
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The main difficulties in lattice QCD are:

(i) Definition of the topological charge density using the gauge links
causes bad ultraviolet divergences. (the cooling methods devised to tame the short

distance fluctuations introduce sizable systematic uncertainties.)

(ii) Unquenched simulations with Wilson/staggered fermion do not
respect correct chiral or flavor symmetry at finite lattice spacing, and
the definition of the topological charge through the Atiyah-Singer
index theorem is ambiguous.

(iii) With the HMC algorithm which is based on a continuous evolution
of the gauge links, the system is trapped in a fixed topological sector
as the continuum limit is approached. Therefore, a proper sampling
of different topological sectors cannot be achieved. (Approaching the chiral

limit, the suppression of the fermion determinant for Q 6= 0 also makes the tunneling a rare event.)
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During the last decade, (i) and (ii) have been solved by the realization
of exact chiral symmetry on the lattice, with which the topological
charge is uniquely defined at any finite lattice spacing by counting the
number of fermionic zero-modes.
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During the last decade, (i) and (ii) have been solved by the realization
of exact chiral symmetry on the lattice, with which the topological
charge is uniquely defined at any finite lattice spacing by counting the
number of fermionic zero-modes.

However, (iii) remains insurmountable, since the correct sampling of
topology becomes increasingly more difficult towards realistic
simulation with lighter quarks and finer lattices.

A plausible solution is to perform QCD simulations in a fixed
topological sector and to extract topological susceptibility from local
topological fluctuations. Then any observable measured at a fixed
topological charge can be transcribed to its value in the θ vacuum.
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lattice using the overlap-Dirac operator which possesses exact chiral
symmetry.
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The topological charge density is unambiguously defined on the
lattice using the overlap-Dirac operator which possesses exact chiral
symmetry.

Simulations are performed on a 163 × 32 lattice at lattice spacing ∼

0.12 fm at six sea quark masses mq ranging in ms/6–ms.

The χt (topological susceptibility) is extracted from the constant
behavior of the time-correlation of flavor-singlet pseudo-scalar meson
two-point function at large distances, which arises from the finite size
effect due to the fixed topology.

In the small mq regime, our result of χt is proportional to mq as
expected from chiral effective theory. Using the formula χt = mqΣ/Nf

by Leutwyler-Smilga, we obtain ΣMS(2 GeV) = [252(5)(10)MeV]3
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Introduction

Theoretically, topological susceptibility is defined as

χt =

∫

d4x 〈ρ(x)ρ(0)〉

where

ρ(x) =
1

32π2
εµνλσtr[Fµν(x)Fλσ(x)]
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d4x 〈ρ(x)ρ(0)〉

where

ρ(x) =
1

32π2
εµνλσtr[Fµν(x)Fλσ(x)]

Veneziano-Witten relation

χt(quenched) =
f 2

πm2
η′

4Nf

Leutwyler-Smilga relation

χt =
mqΣ

Nf

+ O(m2
q) (in the chiral limit)
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Introduction (cont)

For lattice QCD with fixed topology in a finite volume,
χt is the most crucial quantity which is used to relate any
observable measured in the fixed topology to its physical
value.
Brower, Chandrasekaran, Negele, Wiese, PLB 560 (2003) 64

Aoki, Fukaya, Hashimoto, Onogi, PRD 76 (2007) 054508
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Introduction (cont)
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observable measured in the fixed topology to its physical
value.
Brower, Chandrasekaran, Negele, Wiese, PLB 560 (2003) 64

Aoki, Fukaya, Hashimoto, Onogi, PRD 76 (2007) 054508

In other words, the artifacts due to fixed topology can be
removed, provided that χt has been determined.
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Introduction (cont)

Since

χt =

∫

d4x 〈ρ(x)ρ(0)〉 =
1

Ω

〈

Q2
t

〉

, Ω = volume

where

Qt =

∫

d4x
1

32π2
εµνλσtr[Fµν(x)Fλσ(x)] = integer

one can obtain χt by counting the number of gauge
configurations for each topological sector.

T.W. Chiu, National Tsing-Hua Univ, June 5, 2008 – p.9/34



Introduction (cont)

Since

χt =

∫

d4x 〈ρ(x)ρ(0)〉 =
1

Ω

〈

Q2
t

〉

, Ω = volume

where

Qt =

∫

d4x
1

32π2
εµνλσtr[Fµν(x)Fλσ(x)] = integer

one can obtain χt by counting the number of gauge
configurations for each topological sector.

However, for a set of gauge configurations in the
topologically-trivial sector, Qt = 0, it gives χt = 0
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Introduction (cont)

Even for a topologically-trivial gauge configuration, it may
possess near-zero modes due to excitation of instanton
and anti-instanton pairs, which are the origin of
spontaneous chiral symmetry breaking in the infinite
volume limit.
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Introduction (cont)

Even for a topologically-trivial gauge configuration, it may
possess near-zero modes due to excitation of instanton
and anti-instanton pairs, which are the origin of
spontaneous chiral symmetry breaking in the infinite
volume limit.

Thus, one can investigate whether there are topological
excitations within any sub-volumes, and to measure the
topological susceptibility using the correlation of the
topological charges of two sub-volumes.
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Introduction (cont)

For any topological sector with Qt, using χPT, it can be
shown that

lim
|x−y|→∞

〈ρ(x)ρ(y)〉 =
1

Ω

(

Q2
t

Ω
− χt −

c4

2χtΩ

)

+ O(Ω−3)

Aoki, Fukaya, Hashimoto, Onogi, PRD 76 (2007) 054508
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shown that

lim
|x−y|→∞

〈ρ(x)ρ(y)〉 =
1

Ω

(

Q2
t

Ω
− χt −

c4

2χtΩ

)

+ O(Ω−3)

Aoki, Fukaya, Hashimoto, Onogi, PRD 76 (2007) 054508

Thus, in the trivial sector with Qt = 0, for any two widely
separated sub-volumes Ω1 and Ω2, the correlation of their
topological charges would behave as

〈Q1Q2〉 ' −
Ω1Ω2

Ω

(

χt +
c4

2χtΩ

)

Qi =

∫

Ωi

d4x ρ(x)
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Introduction (cont)

On a finite lattice, consider two spatial sub-volumes at
time slices t1 and t2, measure the time-correlation function

C(t1 − t2) = 〈Q(t1)Q(t2)〉 =
∑

~x1, ~x2

〈ρ(x1)ρ(x2)〉
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C(t1 − t2) = 〈Q(t1)Q(t2)〉 =
∑

~x1, ~x2

〈ρ(x1)ρ(x2)〉

Then its plateau at large |t1 − t2| can be used to extract χt,
provided that

|c4| � 2χ2
tΩ, c4 = −

1

Ω

[

〈Q4
t 〉θ=0 − 3〈Q2

t 〉
2
θ=0

]
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Introduction (cont)

On a finite lattice, consider two spatial sub-volumes at
time slices t1 and t2, measure the time-correlation function

C(t1 − t2) = 〈Q(t1)Q(t2)〉 =
∑

~x1, ~x2

〈ρ(x1)ρ(x2)〉

Then its plateau at large |t1 − t2| can be used to extract χt,
provided that

|c4| � 2χ2
tΩ, c4 = −

1

Ω

[

〈Q4
t 〉θ=0 − 3〈Q2

t 〉
2
θ=0

]

However, on a lattice, it is difficult to extract ρ(x)
unambiguously from the link variables !
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Topology with Overlap Dirac Operator

It is well known that the topological charge density can be
defined via the overlap Dirac operator as

ρ(x) = tr[γ5(1 − rD)x,x], r =
1

2m0

where D is the overlap Dirac operator

D = m0(1 + V ), V = γ5

Hw
√

H2
w

,

Hw = γ5(−m0 + γµtµ + W )
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Topology with Overlap Dirac Operator (cont)

Here ρ(x) = tr[γ5(1 − rD)x,x] is justified to be a definition
of topological charge density since it has been asserted
(Kikukawa & Yamada, 1998)

ρ(x)
a→0
−→

1

32π2
εµνλσtr[Fµν(x)Fλσ(x)]
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Topology with Overlap Dirac Operator (cont)

Here ρ(x) = tr[γ5(1 − rD)x,x] is justified to be a definition
of topological charge density since it has been asserted
(Kikukawa & Yamada, 1998)

ρ(x)
a→0
−→

1

32π2
εµνλσtr[Fµν(x)Fλσ(x)]

Note that the index theorem on the lattice

index(D) = n+ − n− =
∑

x

ρ(x) = Qt

had been observed by Narayanan and Neuberger in
1995, using the spectral flow of Hw(m0), before the
Ginsparg-Wilson relation was rejuvenated in 1998.
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Topology with Overlap Dirac Operator (cont)

It seems natural to use ρ(x) = tr[γ5(1 − rD)x,x] to compute the
topological susceptibility

χt =
1

Ω
〈Q2

t 〉 =
1

Ω

∑

x,y

〈ρ(x)ρ(y)〉 =
∑

x

〈ρ(x)ρ(0)〉
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Topology with Overlap Dirac Operator (cont)

It seems natural to use ρ(x) = tr[γ5(1 − rD)x,x] to compute the
topological susceptibility

χt =
1

Ω
〈Q2

t 〉 =
1

Ω

∑

x,y

〈ρ(x)ρ(y)〉 =
∑

x

〈ρ(x)ρ(0)〉

On the other hand, one can derive the relation

index(D) = m
∑

x

tr[γ5(Dc + m)−1
x,x] = m Tr[γ5(Dc + m)−1]

where

Dc = D(1 − rD)−1 = 2m0(1 + V )(1 − V )−1

is chirally symmetric but non-local (Chiu & Zenkin, 1998). Note that
for the topologically-trivial configurations , Dc is well-defined (without
any poles).
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Topology with Overlap Dirac Operator (cont)

Thus one can regard

ρ1(x) = m tr[γ5(Dc + m)−1
x,x]

as a definition of topological charge density, for any valence quark
mass m.
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Topology with Overlap Dirac Operator (cont)

Thus one can regard

ρ1(x) = m tr[γ5(Dc + m)−1
x,x]

as a definition of topological charge density, for any valence quark
mass m.

Obviously, the identity index(D) = m Tr[γ5(Dc + m)−1] can be
generalized to

index(D) = m1m2 · · ·mkTr[γ5(Dc + m1)
−1(Dc + m2)

−1 · · · (Dc + mk)
−1]

with the generalized topological charge density

ρk(x) = m1m2 · · ·mktr[γ5(Dc + m1)
−1(Dc + m2)

−1 · · · (Dc + mk)
−1]x,x
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Topology with Overlap Dirac Operator (cont)

Presumably, any ρk can be used to compute χt.

In general,

χt =
m1 · · ·mkmk+1 · · ·ml

Ω
〈Tr[γ5(Dc + m1)

−1 · · · (Dc + mk)
−1] ×

Tr[γ5(Dc + mk+1)
−1 · · · (Dc + ml)

−1]〉
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Topology with Overlap Dirac Operator (cont)

Presumably, any ρk can be used to compute χt.

In general,

χt =
m1 · · ·mkmk+1 · · ·ml

Ω
〈Tr[γ5(Dc + m1)

−1 · · · (Dc + mk)
−1] ×

Tr[γ5(Dc + mk+1)
−1 · · · (Dc + ml)

−1]〉

It has been pointed out by Lüscher, for k ≥ 2 and l ≥ 5,
χt avoids the short-distance singularities in the continuum
limit.
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Topology with Overlap Dirac Operator (cont)

However, on a finite lattice,

lim
|x−y|�1

〈ρ1(x)ρ1(y)〉 '
1

Ω

(

Q2
t

Ω
− χt −

c4

2χtΩ

)

+ O(e−mπ |x−y|)

+O(e−m
η′
|x−y|) + O(Ω−3) + · · ·

is contaminated by mπ, mη′, · · · , which can couple to 〈ρ1(x)ρ1(y)〉.
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Topology with Overlap Dirac Operator (cont)

However, on a finite lattice,

lim
|x−y|�1

〈ρ1(x)ρ1(y)〉 '
1

Ω

(

Q2
t

Ω
− χt −

c4

2χtΩ

)

+ O(e−mπ |x−y|)

+O(e−m
η′
|x−y|) + O(Ω−3) + · · ·

is contaminated by mπ, mη′, · · · , which can couple to 〈ρ1(x)ρ1(y)〉.

A better alternative is to compute the correlator of flavor-singlet η′,
which behaves as

lim
|x−y|�1

m2
q 〈η

′(x)η′(y)〉 '
1

Ω

(

Q2
t

Ω
− χt −

c4

2χtΩ

)

+ O(e−m
η′
|x−y|)

+O(Ω−3) + · · ·

Aoki, Fukaya, Hashimoto, Onogi, PRD 76 (2007) 054508
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Lattice Setup

� Lattice size: 163 × 32

� Gluons: Iwasaki gauge action at β = 2.30

� Quarks (Nf = 2): overlap Dirac operator with m0 = 1.6

� Add extra Wilson fermions and pseudofermions

det(H2
ov) −→ det(H2

ov)
det(H2

w)

det(H2
w + µ2)

, µ = 0.2

to forbid λ(Hw) crossing zero, thus Qt is invariant.

� Quark masses: msea = 0.015, 0.025, 0.035, 0.050, 0.070, 0.100,
each of 500 confs with Qt = 0. For msea = 0.05, 250 confs with
Qt = −2,−4 respectively.

� For each configuration, 50 conjugate pairs of low-lying
eigenmodes of overlap Dirac operator are projected.
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Saturation of η′ by low-lying eigenmodes
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Realization of Leutwyler-Smilga relation

ChPT   χt = mΣ/nf    

mq

0.00 0.02 0.04 0.06 0.08 0.10

a4
χt

0.0

5.0e-5

1.0e-4

1.5e-4

2.0e-4

  Σ
MS(2 GeV) = [252(5)(6) MeV]3
_

In the limit m → 0, χt → mΣ/Nf , in agreement with ChPT.
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Determination of Σ

From the slope of the linear fit of χt vs. mq for
mqa = 0.015, 0.025, and 0.035, it gives

a3Σ = 0.00257(10)

With a−1 = 1670(20)(20) MeV, and
ZMS

m (2 GeV) = 0.742(12), the value of a3Σ is transcribed to

ΣMS(2 GeV) = (252 ± 5 ± 10 MeV)3

in good agreement with our previous result
251(7)(11) MeV obtained in the ε-regime.
H. Fukaya et al. (JLQCD-TWQCD) PRL 98 (2007) 172001; PRD 76 (2007) 054503
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Universality of χt for different Topological Sectors

163x32, β=2.30, msea=mval=0.050

Qtop
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Qt = 0,  500 confs.
Qt =-2,  250 confs.
Qt =-4,  250 confs.
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Conclusion and Outlook

� For the topologically-trivial gauge configurations generated with
Nf = 2 dynamical overlap quarks constrainted by extra Wilson
and pseudofermions, they possess topologically non-trivial
excitations (e.g., instanton and anti-instanton pairs) in
sub-volumes.
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excitations (e.g., instanton and anti-instanton pairs) in
sub-volumes.

� These near-zero modes allow us to determine χt and Σ.

� In the chiral limit, χt = mΣ/Nf is realized, with ΣMS(2 GeV) =
252(5)(10) MeV, in good agreement with our result in ε-regime.

� For msea = 0.05, χt extracted from different topological sectors
(Qt = 0,−2,−4) are consistent with each other.

� It remains to obtain an upper bound of c4 (from 2-pt and 4-pt
correl. fn.) to see whether |c4| � 2χ2

t Ω is satisfied.
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