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Dynamics of Mode Competition in the Gyrotron Backward-Wave Oscillator
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The axial modes of the gyrotron backward-wave oscillator (gyro-BWO) each exhibit a distinctive
asymmetry in axial field profile. As a result, and in sharp contrast to the behavior of the familiar resonator-
based gyrotron oscillator, particle simulations of the gyro-BWO reveal a radically different pattern of
mode competition in which a fast-growing and well-established mode is subsequently suppressed by a
later-starting mode with a more favorable field profile. This is verified in a Ka-band experiment and the
interaction dynamics are elucidated with a time-frequency analysis.
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(b) l = 1, Ist = 3.41 A, f  = 32.59 GHz, Θ ≅ 1.44 π

(c) l = 2, Ist = 2.77 A, f  = 33.79 GHz, Θ ≅ 3.5 π

(d) l = 3, Ist = 1.5 A, f  = 34.52 GHz, Θ ≅ 5.94 π
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(a) interaction structure

TE11 mode

FIG. 1. (a) Shape and dimensions of the interaction structure.
(b)–(d) Field amplitude (lines) and beam-energy deposition rate
(dots) vs z for the first three axial modes at their respective Ist

values. Vb�95 kV, v?=vz�1:1, rc�guiding center position� �
0:09 cm, �vz=vz�axial velocity spread� � 5%, and B0 �
14:8 kG. (�1:32 times the left-end grazing field and 1.11 times
the right-end grazing field).
The gyrotron backward-wave oscillator (gyro-BWO) is
a continuously tunable source of coherent millimeter-wave
radiation based on the electron cyclotron maser (ECM)
interaction [1,2]. Oscillations build up in an internal feed-
back loop comprised of a forward moving electron beam
and a backward propagating wave. The principle of the
ECM was first demonstrated in backward-wave interac-
tions [3]. Theoretical studies of the gyro-BWO first ap-
peared in the mid-1960’s in the Soviet literature (reviewed
in Ref. [4]). Start-oscillation conditions and subsequent
nonlinear behavior have been investigated in linear theo-
ries [5,6], orbit tracing calculations [7–16], and particle
simulations [17]. Experimental gyro-BWO research [18–
21] only began in earnest in the earlier 1990s and has
generally been hampered by erratic behavior in frequency
tuning. This, in large measure, accounts for the gyro-
BWO’s relatively unexploited status despite numerous
applications which require continuously tunable sources.

The gyro-BWO interaction processes are distinctively
different from those in the resonator-based gyrotron oscil-
lator (gyromonotron). As illustrated later, the identities of
the axial modes are determined by the electron dynamics
[16] rather than by the interaction structure. In the non-
linear regime, the rf fields contract because of early deple-
tion of the electron beam energy [12]. As a result, single-
mode oscillations may remain stationary at beam currents
(Ib) hundreds of times above the value at which the oscil-
lation starts (Ist) [13–15]. However, the high threshold for
single-mode nonstationary behavior does not preclude
multimode competition at a much lower Ib when Ib ex-
ceeds the thresholds of two or more axial modes. This has
been a concern not yet fully investigated, but is of critical
importance to the stable operation of the gyro-BWO.

Axial modes and oscillation thresholds.—A weakly
down-tapered waveguide interaction structure at the up-
stream end can more than double the interaction effi-
ciency because of less abrupt electron bunching [11].
This is the practical configuration we have adopted for
the present study of a 32–36 GHz, TE11-mode gyro-
BWO [Fig. 1(a)]. Because of the absence of cold resonant
05=95(18)=185101(4)$23.00 18510
modes, field-shaping processes and the resultant axial field
profile in a gyro-BWO depend entirely upon the beam-
wave interaction. It was shown that the (hot) axial modes
are characterized by a discrete set of optimum (linear)
transit angles � separated by �2� [16], where � is the
total wave phase variation observed by the electron in
1-1 © 2005 The American Physical Society
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traversing the interaction space. This is borne out in
Figs. 1(b)–1(d) which display the field amplitude and
beam-energy deposition profiles for the first three axial
modes (l � 1–3) at their respective Ist values. The results
are based on a single-mode, steady-state code [22] and
relevant parameters are given in the figure and figure
caption. Regions to the right of the vertical dashed lines
are cut off from the oscillation frequency; hence, the transit
angle is defined with respect to the effective interaction
length (Leff);, namely, the length to the left of the dashed
line. The field amplitude always begins with an initial
absorption dip [1]. Each increase in the mode index is
accompanied by a step increase in �, which results in
one more region of negative energy deposition and an
additional trough of the field amplitude. The energy dep-
osition profiles thus give each axial mode a distinctive
asymmetry in field distribution.

There are two opposing factors which influence the Ist

value for the tapered interaction structure under study.
Higher-order modes have a higher frequency and hence a
longer Leff , which lowers Ist. On the other hand, they also
have a larger � and hence weaker interaction strength,
which raises Ist. At B0 � 14:8 kG, the former factor plays
the major role for the l � 1–3 modes. Thus, as shown in
Fig. 1, the Ist value decreases with l. However, the latter
factor dominates for the l > 3 modes, resulting in Ist values
greater than those of the l � 1–3 modes.

Dynamics of axial mode competition and physical inter-
pretation.—The existence of multiple axial modes (in par-
ticular, a higher-order mode with a lower Ist) raises the
important question as to how they interact when two or
more modes are excited. Here, we attempt to resolve this
issue both theoretically and experimentally. A time-
dependent, particle-in-cell code is employed to follow
the evolution of the axial modes. A time-frequency analy-
sis [23,24] is then performed on the ac output signal. For
later comparison with the experiment, we use the experi-
mental beam voltage/current pulse shapes and the corre-
sponding v?=vz (Fig. 2).

A two-mode competition process is illustrated in Fig. 3
for Ib�peak� � 4:2 A and a fixed magnetic field of 14.8 kG,
0 1 2 3

Time (µs)

-1.2

-0.8

-0.4

0

V
b 

(r
el

at
iv

e 
sc

al
e)

0

0.5

1

1.5

2

2.5

α 
(a

bs
ol

ut
e 

sc
al

e)
I b

 (
re

la
tiv

e 
sc

al
e)

Vb

Ib

α

FIG. 2. Experimental voltage and current traces (thin lines)
and their polynomial fits (dashed curves) used for the simulation.
The � curve is based on electron gun simulations.

18510
for which Ist � 3:36, 2.72, and 1.46 A for l � 1, 2, and 3,
respectively, (see Fig. 1). A brief stage of mode competi-
tion is seen early in the beam pulse [Fig. 3(a)], the details
of which are evident from the time-dependent spectrum
[Fig. 3(b)] of the output signal. In spite of a lower growth
rate, the lower-order l � 2 mode rapidly suppresses the
higher-order l � 3 mode and it persists till the end of the
beam pulse where the l � 3 mode interaction, with a
comparable Ist, becomes too weak to be reexcited. In this
and the following figures, the frequency of a given mode
varies during the rise and fall of the beam pulse so that
the transit angle remains at the optimum value for the
mode. A three-mode competition sequence takes place at
an increased Ib, as is illustrated in Fig. 4 for Ib�peak� �
4:8 A. During the rise time of the beam pulse (cf. Figure 2),
the l � 3 mode first emerges [Fig. 4(b)] and is immediately
suppressed by the l � 2 mode, which in turn is suppressed
by the lowest-order and latest-start l � 1 mode as the beam
pulse flattens. The l � 1 mode remains dominant over the
flat portion of the pulse until Ib falls below its threshold.
Then, the competition between the l � 2 and 3 modes
resumes in the same manner as during the rise time,
thereby exhibiting a hysteresis effect. Hysteresis effects
have also been observed in the BWO under different con-
ditions [25].

These sequences of mode competition exhibit a consis-
tent pattern in which a fast-growing and well-established
mode is subsequently suppressed by a later-starting, lower-
order mode. This can be explained by the intrinsic asym-
metry of the axial mode profiles. As shown in Fig. 1, a
lower-order mode has a field peak closer to the beam
l = 3

l = 2
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FIG. 3 (color). (a) Simulated output power (Pout) vs time.
(b) Time-dependent frequency spectrum of the output signal
(amplitude in color code). Vb, Ib, and � profiles are shown in
Fig. 2. Ib�peak� � 4:2 A and other parameters are the same as in
Fig. 1.

1-2



0

40

80

120

160

P
ou

t (
kW

)

0 1 2 3

Time (µs)

l = 3

l = 2

(a)

(b)

F
re

qu
en

cy
 (

G
H

z) 36

35

34

33

32 Time (µs)
0

1

2
3

l = 1

FIG. 6 (color). Same plots as in Fig. 5 for an increased beam
current of Ib�peak� � 4:88 A.
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FIG. 5 (color). (a) Measured Pout vs time. (b) Time-dependent
frequency spectrum of the output signal. Ib�peak� � 4:18 A (see
Fig. 2) and other parameters are the same as in Fig. 1.
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FIG. 4 (color). Same plots as in Fig. 3 for an increased beam
current of Ib�peak� � 4:8 A.
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entrance and hence the advantage of early interaction with
the beam. As the lower-order mode grows to a significant
amplitude, the self-consistent beam perturbations associ-
ated with this mode would appear as deleterious
momentum-energy spreads to the other modes and conse-
quently result in their suppression. This also explains why
the l � 1 mode, with the lowest Ist, will always be the
dominant mode in a uniform waveguide. We note that,
although Figs. 3 and 4 were obtained for a pulsed beam
(Fig. 2), the same effects have been observed in constant
Vb and Ib simulations.

Experimental verification.—The basic experimental
setup was described in Ref. [13]. At the upstream end,
the ac output signal was mixed with a 32 GHz local
oscillator signal for the time-dependent spectral analysis,
while the output power was measured with a calibrated
crystal detector with an estimated accuracy of �5% at the
frequency of the dominant mode.

Except for minor quantitative differences, the experi-
ments at Ib�peak� � 4:18 A and 4.88 A yielded the same
results as shown in Figs. 3 and 4, respectively. The tempo-
ral traces of the output power [Figs. 5(a) and 6(a)] and the
time-dependent frequency spectrum [Figs. 5(b) and 6(b)]
reproduce the essential features of the simulated behavior
in Figs. 3 and 4, including the time duration of mode
competition and the order of mode transition.

Further examination at different beam currents.—As
shown in Figs. 3–6, axial mode competition is character-
ized by the eventual dominance of the lowest-order com-
peting mode. Figure 7 shows the simulated (lines) and
observed (circles) dominant mode as a function of the
peak Ib. The dominant mode is seen to always transition
down to a lower-order mode at a sufficiently high Ib value.
In the simulation, the l � 3 mode appears first as Ib rises.
18510
Its efficiency increases with Ib to the value of �21:9% in
single-mode operation until Ib � 3:7 A (1.36 times Ist of
the l � 2 mode), beyond which it transitions to the l � 2
mode, which subsequently transitions to the l � 1 mode at
Ib � 4:4 A (1.31 times Ist of the l � 1 mode). The experi-
mental data show a consistent trend, but the transition
occurs at a somewhat different current. Each transition in
Fig. 7 is preceded by a narrow range in Ib (�0:2 A in
simulation and significantly narrower in experiment) in
which mode competition persists throughout the beam
pulse.
1-3



0

5

10

15

20

25

E
ff

ic
ie

nc
y 

 (
%

)

0 1 2 3 4 5 6

Ib (A)

32

33

34

35

F
re

qu
en

cy
  

(G
H

z) l = 3

l = 2

l = 1

l = 2

l = 3

l = 1

(a)

(b)

FIG. 7. Simulated (lines) and measured (circles) interaction
efficiency and oscillation frequency of the dominant mode vs
Ib for the parameters given in Fig. 1.
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In summary, theoretical and experimental investigations
have elucidated the governing mechanisms of axial mode
competition in the gyro-BWO. Results indicate that the
asymmetry of the axial field profile, rather than the growth
rate or the start-oscillation current, determines the com-
petitiveness of a specific mode. At a beam current suffi-
ciently above its threshold, a lower-order mode with a more
favorable field profile will suppress a faster-growing and
well-established higher-order mode. This is a scenario
fundamentally different from that of the gyromonotron,
where the first excited mode tends to suppress all other
modes [26,27]. Also, in contrast to the persistent nature of
the single-mode nonstationary behavior in the gyromono-
tron and gyro-BWO [14–16], the multimode nonstationary
behavior is generally characterized by a brief stage of
mode competition, followed by the stationary oscillation
of the lowest-order mode in the competition. These in-
sights are expected to provide a new perspective for the
understanding of the diverse nonstationary behavior in
gyro-devices.
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