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Abstract 

The gyrotron traveling-wave amplifier employing the distributed-loss scheme is capable of very 

high gain and effective in suppressing the global absolute instabilities. This study systematically 

characterizes the local absolute instabilities and their transitional behavior. The local absolute 

instabilities are analyzed using a model that incorporates the penetration of the field from the 

copper section into the lossy section. The axial modes were characterized from the perspective of 

beam-wave interaction and were found to share many characteristics with the global modes. The 

transition from global modes to local modes as the distributed loss increases was demonstrated. The 

electron transit angle in the copper section, which determines the feedback criterion, governs the 

survivability of an oscillation. In addition, the oscillation thresholds predicted using this model are 

more accurate than those obtained using a simplified model. 

PACS number: 84.40.Ik, 84.40.Fe 
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I. INTRODUCTION 

The gyrotron traveling-wave tube (gyro-TWT) amplifier featuring high power and broad 

bandwidth is an ideal source for advanced radar and communication applications, but the parasitic 

oscillations have for a long time hindered its realization [1-6]. Of these, oscillations associate with 

absolute instability are considered to be the most difficult [4,6,7]. As an example, Fig. 1 plots the 

zk−ω  diagram of a Ka-band gyro-TWT (whose parameters are listed in Table 1). The two 

parabolas represent the first two waveguide modes, and the two straight lines are the beam-wave 

synchronism lines of the first two cyclotron harmonics. Point 1 is the operating point of the 

gyro-TWT. Point 2, the intersection between the TE21 mode curve and second synchronism line 

(s=2), locates potential self-oscillations. The intersection close to the cutoff frequency of the TE21 

mode has a small negative kz. This backward-wave nature of the oscillation facilitates the field 

profile to be contracted at the beam entrance, which spoils the beam quality and destroys the 

amplification.  

Among the several methods for effectively suppressing the absolute instabilities include the 

use of a drive signal [7,8], the use of sever/mode-selective circuit [9-14], and distributed-loss 

scheme [15-24]. The distributed-loss scheme has been studied for years and was demonstrated by 

the group at National Tsing Hua University (NTHU) in Taiwan [16,18,19]. They reported a 

zero-drive stability with a saturated power of 93 kW corresponding to an efficiency of 26.5% and 

an ultra-high gain of 70 dB [18,19]. In their experiment except for the distributed loss, a sufficiently 
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short copper section was required to suppress some oscillation formed in the copper section 

[18-20,22,23]. The oscillation thresholds are estimated using an effective length of the copper 

section [25-28]. However, such a simplified model fails to account for the penetration of the field 

into the lossy section, and so inaccurately predicts the starting current of the oscillation.  

By using a complete distributed loss configuration, this study theoretically confirms the 

existence of the absolute instability, which is localized in the copper section. The axial modes of the 

local absolute instability are characterized in terms of the field profile, the energy deposition rate, 

and the electron transit angle. The effect of localization is illustrated. In addition, the transitions 

from global to local modes are demonstrated and discussed.  

 

II. CHARACTERIZING LOCAL ABSOLUTE INSTABILITY 

The following calculation employs a verified, single-mode, particle tracing code [18,19]. The 

simulation parameters, listed in Table I, are basically the same as those of the NTHU’s gyro-TWT. 

The interaction circuit consists of a lossy section of length L1 and resistivity ρ , followed by a 

copper section of length L2. A 2-cm loss taper is adopted at the interface between the lossy and the 

copper sections. Both sections are assumed to have a constant radius of 0.266 cm. The interaction 

structure is immersed in a uniform magnetic field. The variables L1, L2, and ρ  are changed one at 

a time to study the localization property.  

A. Localization of fields 
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Figure 2 shows the field profiles (solid curves) and energy deposition rates (dashed curves) of 

the first four local axial modes at their respective starting currents. The length of the lossy section 

L1 is 15 cm and the length of the copper section L2 is 10 cm. The resistivity of the lossy section is 

50000 times that of the copper section ( ρ =50000 cuρ ). As shown in Fig. 2, the bulk field and 

energy deposition rate are located at the copper section. A recent investigation [29] showed that the 

number of the positive energy deposition regions determines the index of the global axial mode. 

The fundamental axial mode has only one positive energy deposition region and the second axial 

mode has two, and so on. The rule for the global modes seems to be applicable to the local modes 

and is used to identify the axial modes of the local absolute instability.  

The field cannot be immediately damped to zero at the interface between the lossy section and 

the copper section. Hence, the field still penetrates the lossy section, slightly deforming field 

profiles. In addition, the reflective wave caused by circuit mismatch is responsible for the 

fluctuation in the field profile. The lower order mode generally corresponds to a higher reflection 

because the oscillation frequency is close to the waveguide cutoff. As shown in Fig. 2, the field and 

the energy deposition profiles of the fundamental mode fluctuate much greater than those of the 

other high-order modes.  

B. Effective electron transit angle 

Figure 3 plots the effective electron transit angle versus the copper section length L2 for the 

first four local axial modes, where L1=15 cm and ρ =50000 cuρ . The effective electron transit 
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angle effΘ  is defined as 

 eff ( )z z ck vω τΘ ≡ − − Ω , (1) 

where ω  is the wave frequency; zk  is the wave propagation constant, and cΩ  is the relativistic 

electron cyclotron frequency. Notably, )/( 02 zvL=τ  is the time that the electron transits the copper 

section L2 at the initial velocity 0zv . effΘ  is the total wave phase variation observed by the 

electron in traversing the interaction space. Figure 3 shows that effΘ  of the first four local axial 

modes remain in their respective optimum conditions, each separated by 2π, 

 eff, (2 1) ,    1, 2,3,...πΘ ≈ − = , (2) 

where  is the index of the local axial mode. 

Interestingly, the bulk field gradually moves to the copper section as L2 increases. Thus the 

effective electron transit angle effΘ  approaches the optimum condition. The field profile, the 

energy deposition rate, and the electron transit angle manifest that the definition of the local axial 

modes is similar to that of the global axial modes. Although the local and global modes share 

many characteristics, they exhibit dramatically different properties as the distributed loss 

increases.  

C. Oscillation thresholds insensitive to the loss properties 

Figures 4(a) and 4(b) plot the start-oscillation currents against the applied loss ρ  and the 

lossy section length L1, respectively. Figure 4(a) shows Ist versus ρ  for the first four local axial 

modes with L1=15 cm and L2=10 cm. As the applied loss increases, the starting currents increase as 
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expected. However, unlike the global absolute instabilities, the starting current does not increase 

monotonously with the applied loss. The starting current of each local axial mode gradually 

converges to a specific value. This is situation differs fundamentally from that of the global axial 

modes [18,19]. At sufficiently high resistivity the starting currents are insensitive to the applied loss, 

implying that the oscillations are localized in the copper section.  

Figure 4(a) reveals that a higher axial mode corresponds to a better suppression ratio R, which 

is defined as  

 st cu

st cu

( 50000 )
( )

IR
I
ρ ρ

ρ ρ
=

≡
=

. (3) 

The suppression ratios R for the first four axial modes are 2.05, 3.33, 4.26, and 6.17, respectively. 

The ratios increase with the index of the local axial modes. A higher axial mode corresponds to a 

greater propagation constant zk , indicating that a greater field will penetrate the lossy section. In 

that case, the distributed loss absorbs the backward propagating wave and cuts off the feedback 

mechanism, leading to the increase of the starting current. This property, first discovered in the 

transverse modes of absolute instabilities [23], is now applicable to the local axial modes. 

Figure 4(b) plots the start oscillation current Ist versus the length of the lossy section L1 with 

L2=10 cm and ρ =50000 cuρ . The starting current of each local axial mode is almost independent 

of the length of the lossy section. When a mode is fully localized at sufficient loss, it is insensitive 

to the lossy properties as verified in Figs. 4(a) and 4(b).  
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III. TRANSITION FROM GLOBAL MODE TO LOCAL MODE 

The absolute instabilities are classified into global mode and local mode. The field profile of 

global absolute instability covers the entire interaction structure, whereas that of the local absolute 

instability is localized in the copper section. The similar characteristics of global and local modes 

enable us to examine how the global modes and local modes are related. 

A. Criterion of the global-local mode transition 

Figure 5(a) plots the starting currents of the first four axial modes as a function of the wall 

resistivity ρ  with L1=15 cm and L2=4.5 cm. When the wall resistivity equals the resistivity of 

copper ( cuρρ = ), four global axial modes are well defined. As ρ  is increased, all the 

start-oscillation currents raise – especially those of the fundamental, second, and fourth axial modes. 

A higher wall resistivity results in a higher oscillation threshold, as is already known. Surprisingly 

however, the loss cannot suppress the third global axial mode in this configuration. The starting 

current of the third axial mode increases gently, unlike those of the other three axial modes. The 

axial modes, which can be suppressed by the loss are global oscillations in nature, whereas the 

oscillations that are insensitive to the loss turn into the local modes.  

The bulk fields of the local axial modes are concentrated in the copper section. It is therefore 

insensitive to the distributed loss. However, the start-oscillation currents of the local axial modes 

still rise slightly with the wall resistivity, because of the residue field in the lossy section. 

Increasing the wall resistivity shortens the effective copper length and the shortest length is equal to 
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L2. Hence the starting current slowly approaches the starting current of L2 (8.84 A).  

The effective electron transit angle effΘ  characterizing the local axial modes could be used to 

determine the criterion of the global-local mode transition. Figure 5(b) plots the effective electron 

transit angle effΘ  versus the wall resistivity ρ . The effective electron transit angle is the transit 

angle in the copper section (L2) as defined in Eq. (1). It is expected that when an oscillation is fully 

localized in L2, effΘ  should approach the optimal transit angle of π  as defined in Eq. (2). It is 

interesting to note that the third global mode (at cuρρ = ) has a effΘ  close to π . Therefore, this 

mode always maintains an optimal feedback condition during the transitional process. This explains 

why the third global mode survives the heavy loss and transforms into the fundamental local mode. 

Based on the observation and a reasonable inference, the criterion of the global-local mode 

transition is  

 eff ( ) (2 1) ,    1, 2,3,...n πΘ → ≈ − = , (4) 

where n  is the index of the global axial mode and  is the index of the local axial mode. 

Equation (4) is an empirical equation. It helps us to predict which global mode turns into a 

fully localized mode, but the extent of localization varies with the applied loss and oscillation 

frequency. For example, the second local mode is difficult to be fully localized due to higher zk . 

The field penetrates into the lossy section resulting in slightly different optimal electron transit 

angle. However, for all practical purposes, the fundamental local mode is the principal concern, so 

Eq. (4) serves as a criterion of the global-local transition. 
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B. Transitional process 

Figure 6 shows the transition from the third global mode to the fundamental local mode. The 

field profiles and energy deposition rates for four wall resistivities are display in Figs 6(a) and 6(b), 

respectively. Increasing the wall resistivity strongly dampens the field within the lossy section such 

that eventually only the field at the copper section remains. The energy deposition rates (Fig. 6(b)) 

provide an insight into the beam-wave interaction. The profiles of the energy deposition rates 

slightly change, but the amplitude decreases as the applied loss increases. At up to ρ =50000 cuρ , 

the first two crests and troughs approach zero indicating that the beam-wave interaction in the lossy 

section is very small. The remaining field is fully located in the copper section. 

Although the bulk fields of the third and fourth global axial modes are located in the copper 

section, only the field of the third axial mode in the copper section meets the optimal electron 

transit angle and survives the heavy losses. This implies, when dealing with a mode transition, the 

electron transit angle in the copper section is more essential than the field profile.  

Figure 7 shows the transition of the second local mode from the sixth global mode. The field 

profiles and energy deposition rates for four resistivities are displayed in Figs 7(a) and 7(b), 

respectively. Increasing the wall resistivity dampens the field within the lossy section, but it is not 

as effective as the loss to the fundamental local mode. The bulk fields of the third, fourth, fifth, and 

sixth global axial modes are located in the copper sections, but only the third and sixth global 

modes turn into fundamental and second local modes. This suggests that the configuration plays a 
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role and will be discussed in the following section. 

C. Role of configuration 

Figure 8 shows transitions from the third, fourth, and fifth global modes to the fundamental 

local mode. The lossy section lengths L1 are 16, 22, and 28 cm and L2 is fixed at 4.5 cm. When the 

whole interaction section (L1+L2) is of copper, the global modes are well-defined (gray curves). 

With a loss of 50000 cuρ , the global mode in each configuration transitions into the fundamental 

local modes (black curves). One might expect that with another 6 cm, i.e. L1=34 cm, the next 

transition occurs, but in fact it is still the fifth global mode that transits to the fundamental local 

mode. Such incorrect inference is because the field penetrating ability zk  and the guide 

wavelength gλ  are varied with the oscillation frequency.  

The behavior of an oscillation fully localized in the copper section is not correlated with the 

properties of the lossy section. Increasing the length of the lossy section just pushes the field profile 

downstream without changing its oscillation properties. This means no matter how we change L1 it 

will transition to the fundamental local mode at sufficient loss. The configuration just provides a 

rough estimate of what transition will occur.  

Figure 9(a) plots the starting currents Ist versus the copper section length L2 for the first two 

local modes. The solid lines are obtained using a complete model (this work) and the dashed lines 

are obtained using a simplified model. The simplified model uses an effective length. Here we 

assume it equals L2. Both simulations employ a fixed L1 of 15 cm. Regardless of the change in the 
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configuration L2, the starting currents can always be obtained, which fact again verifies that the 

length ratio between L2 and L1 is not critical in determining the survivability of an oscillation.  

Figure 9(b) plots the effective electron transit angle effΘ  versus the copper section length L2. 

The effΘ  approaches the optimal values of π  and 3π  as mentioned in Eq. (2). The solid lines 

and the dashed lines represent the results of the complete model and those of the simplified model, 

respectively. As L2 is shortened, the starting currents significantly increase, so is the oscillation 

frequencies. This explains why the simplified mode predicts a slightly higher electron transit angle. 

In the meantime, the complete model shows an opposite trend. Shorter L2 corresponds to a higher kz, 

which means the field will penetrate into the lossy section resulting in a decrease of the effective 

electron transit angle.  

Figures 9(a) and 9(b) show that the two models are almost equivalent at long L2. However, at 

short L2, which is of practical interest, the predicted values differ greatly. For example, at L2=4.5, 

the simplified model predicts a starting current of 8.84 A, while the present model predicts a value 

of 5.08 A. Obtaining an appropriate critical length for the simplified model is difficult since the 

field penetration effect varies with the oscillation frequency. Therefore, the simplified model cannot 

accurately determine the oscillation threshold, but this model can provide a more realistic result.  

 

IV. CONCLUSION 

This work presented a complete characterization of the local absolute instabilities and 
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discussed the transitions from global to local modes. The bulk field of the localized oscillation 

resides in the downstream copper section. Thus these local modes are virtually insensitive to the 

distributed loss, in sharp contrast to the global modes. The transitions from global to local modes 

reveal that the oscillation with an appropriate electron transit angle survives when a heavy loss is 

applied. The electron transit angle governs the survivability of the oscillation, rather than the field 

profile or the configuration.  

At a large drive power, the amplifying wave suppresses the downstream local oscillation. 

Hence at saturated and low-gain operation, such a localized oscillation might not be detected. 

However, when a high-gain gyro-TWT is operated, the existence of such a localized oscillation 

spoils the linear region. Therefore, the complete model is needed to accurately evaluate the 

oscillation threshold in a zero-drive stable, high-gain gyro-TWT.  
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TABLE I. Simulation parameters. 

======================================= 

Amplification mode  TE11(s=1) 
Oscillation mode TE21(s=2) 
Cyclotron harmonic  Fundamental 
Waveguide radius (rw) 0.266 cm 
Cutoff frequency 33.0 GHz 
Beam voltage (Vb) 100 kV 
Beam current (Ib) 3 A 
Velocity ratio ( zvv⊥ ) 0.85 
Velocity spread ( zz vv∆ ) 0% 
Guiding center position (rc) 0.35 rw 
Applied magnetic field (B0) 12.54 kG  
Lossy section length (L1) 12-22 cm 
Copper section length (L2) 4.5-20 cm  
Wall resistivity ( ρ ) 1-50000 cuρ  

======================================== 
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FIG.1 zk−ω  diagrams of the waveguide modes and the beam wave synchronism lines for a TE11 

mode, 34-GHz gyro-TWT, operating at the fundamental cyclotron harmonic.  

FIG. 2 Field profile (solid lines) and energy deposition rate (dashed lines) of first four local axial 

modes with L1=15 cm, L2=10 cm, and ρ =50000 cuρ .  

FIG. 3 Effective electron transit angle effΘ  versus copper section length L2 for the first four local 

axial modes with L1 and ρ  as in Fig. 2. 

FIG. 4 Start-oscillation current Ist versus (a) wall resistivity ρ  and (b) lossy section length L1 for 

first four local axial modes with L2 and ρ  as in Fig. 2. 

FIG. 5 (a) Start-oscillation currents Ist and (b) effective electron transit angle effΘ  of the first four 

modes versus the wall resistivity ρ  with L1=15 cm and L2=4.5 cm. The starting currents 

increase with ρ , but the behavior of the third global axial mode differs greatly from those 

of the other modes. 

FIG. 6 The third global mode transforms into the fundamental local mode as the wall resistivity 

increases. (a) Normalized field profile and (b) normalized energy deposition rate for 

different wall resistivities ρ  with L1 and L2 as in Fig. 5. 

FIG. 7 The sixth global mode is transformed into the second local mode as the wall resistivity 

increases. (a) Normalized field profile and (b) normalized energy deposition rate for 

different wall resistivities ρ  with L1 and L2 as in Fig. 5. 

FIG. 8 The third, fourth, and fifth global modes are transformed into the fundamental local mode 
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for three configurations. The lengths of the lossy section lengths L1 are 16, 22, and 28 cm 

and L2 is fixed at 4.5 cm. The gray curves are the field profiles with bare waveguide 

( cuρ ρ= ) and the black lines are the field profiles obtained using heavy loss scheme 

( cu50000ρ ρ= ). 

FIG. 9 (a) Starting current Ist and (b) effective electron transit angle effΘ  versus the length of the 

copper section L2 for the first two local modes. The solid lines and the dashed lines are 

obtained using the complete model and the simplified model, respectively. 
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