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Superconductor under magnetic fieldSuperconductor under magnetic field

Magnetic flux is expelled from a Type I superconductor

H

However the situation in the Type II superconductors (including all 
the high Tc) is much more complex and interesting: magnetic field 
penetrated as an array of vortices.
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Electron tomography
Tonomura’s group
PRL66,2519 (1993)
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Vortex line repel each other forming highly ordered 
structures like flux line lattice (as seen by STM and neutron 
scattering)

Pan et al 
(2002)

S.R.Park et al
(2000)



Increased role of thermal fluctuations 
in high Tc

1. Ginzburg number is much larger
2

2 3

1
2 (0)

TcGi
Hc ξ

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
610Gi −≈

2. Magnetic field effectively 
reduces dimensionality of 
fluctuations from D to D-2
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1. Ginzburg –Landau theory of vortex matter.

2. ”Supersoft” Goldstone modes in FLL

3. IR problems with thermal fluctuations of vortex lattice and 
their solution. 

4. Quasi long range order in 2D XY model.

5. Why restoration of symmetry does not invalidates 
perturbative expansion starting with (quasi) ordered state?

6. Results for magnetization, specific heat, structure function, 
melting line....

Plan



Near Hc2 neglecting fluctuations 
Abrikosov found a hexagonal lattice 
solution

Ginzburg – Landau energy and the 
Abrikosov solution
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Second order transition



There are two major modes in expansion around Abrikosov solution:

Supersoft phonons in vortex solid
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Diagonalizing quadratic part of free energy one obtains:

Where the only parameter of the LLL model is scaled temperature:
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Naively higher order contributions to energy are hopelessly 

IR divergencies

divergent:

2log L→ 4L→

Is there a thermodynamic solid state for T>0 or experimentally 
observed vortex lattice is just a finite size effect or a quasi-long 
range solid?

A question of principle

Since experimentally the corrections are small one can speculate
that it is not analytic. The perturbation theory was abandoned. 
Is this correct?



The most divergent two loop diagram, the “setting sun”

The first surprise

Is in fact convergent! Careful evaluation shows that vertices are 
also supersoft and all the divergences cancel. 

B.R. PRB60, 4268 (1999)

I will show in some detail what happens in D=2  O(2) symmetric  
model (which we completely understand) and then return to GL. 

Other two loop diagrams are IR divergent, but only 
logarithmically divergent. Moreover the divergences look similar
to “spurious divergences” in critical phenomena of models with 
broken continuous symmetry .  It turns out indeed that all the 
divergences cancel. It is more instructive to consider a simple 
model.



A simple U(1) symmetric model A simple U(1) symmetric model 
without magnetic fieldwithout magnetic field

To organize the pert. Theory 
around the ordered vacuum of 
“shifts” the field:
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The energy in terms of two real fields O and A becomes:
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CorrelatorCorrelator of the fieldof the field

The  massless propagator of the A mode is:
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The  field A itself is not the order parameter.  The order 
parameter               transforms linearly under the symmetry 
transformation. The phase of        is:
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The order parameter correlator

). Fluctuations due to Goldstone bosons 
“destroy” perfect order. Such a phase is called the quasi – long 
range order phase (or the Berezinski-Kosterlitz-Thouless phase).

We started from the assumption of nonzero VEV. It seems that 
fluctuations destroy this assumption!
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The 2D correlator in the “ordered” phase decays albeit slowly 
(as a power rather than exponential in the disordered phase



Destructions caused by IR divergences 
and MWC theorem.

The energy to the one loop level is:
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The corrected value of v is found by minimizing it perturbatively
in “loops”: 
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one obtains a logarithmically divergent correction to VEV:

To higher orders the logs can be resummed:
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The VEV decays – do not diverges, indicating that order is 
“slowly” restored. This is Hohenberg-Mermin-Wagner-Coleman
theorem: in 2D continuous symmetry is not broken. More 
importantly this does not mean the perturbation theory is 
useless.



For such quantities the “collective coordinates” method simplifies 
into perturbation theory around “broken” vacuum. All the IR 
divergencies cancel. Let us see this for the energy to two loops 
order ( Jevicki, PLB, 1987)

O(2) invariant  quantities

There are also there is correction due to change in v:
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The leading                   IR divergences are easy to evaluate:

Subleading divergences also cancel although it is much 
less obvious. Cancellations occur to all orders ( F.David, CMP, 
1990) in loop expansion.

What is the mechanism behind this cancellation of “spurious 
divergences? 
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It is hard to say generally, but at least in extreme case of 1D the 
answer is clear.



For D=1 the model is equivalent to QM of particle on a plane with 
the “Mexican hat” potential 

Physics below lower critical dimensionPhysics below lower critical dimension

Ground state is O(2) invariant but is very far from the origin (0,0): 
pert. ground state is bad, but theory “corrects” it using IR 
divergent matrix elements Kao,B.R.,Lee PRB61, 12652 (2000)
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Back to Ginzburg – Landau theory

Analogous events take place in GL up to two loops.  Since the 
correction to the order parameter VEV
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is divergent, which means after resummation that it slowly 
vanishes. Therefore translation noninvariant solid is 
“destroyed” by thermal fluctuations and becomes a “quasi –
solid” with quasi long rage order. 

However the perturbation theory for translation invariant 
quantities remains valid: no nonanalyticity.  B.R. PRB60, 4268 (1999)
I believe cancellations occur beyond two loops, but mathematical
proof is not available up to now.



Free energy 
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Even at melt (                        ) the precision is 0.1%. From this one 
calculates magnetization, specific heat. Structure function

and other physical quantities are also calculated perturbatively.

B.R. PRB60,4268 (1999),
D.P. Li and B.R. 
PRB65,024514(2001)

For energy, which is invariant under translation, we get to the 
two loop order:
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Bragg peaks

Kim et.al. 
PRB60, R12589 

(1999)
Sasik, Stroud

PRL75,2582 (1995)

Li, B.R. 
PRB60,9704 (1999)



Standard high temperature pert. theory works only for

Theory of vortex liquid: a tougher 
challenge

2Ta > 2Ta >

2Ta > −



1. We constructed the Optimized gaussian series which are    
convergent rather than asymptotic.

Recent improvements

Radius of convergence was found to be                      still a 
bit short. 

2.   However it allowed us to check the validity of Borel-Pade
method which provided a convergent scheme everywhere 
down to T=0.

Precision was finally good enough (0.1%) to study melting       
quantitatively

4.5Ta

Li, B.R. PRL86,3618 (2001)

= −



First order melting of the Abrikosov
lattice into a “vortex liquid”.

Gammel et al
PRL80,833 (1998)

Schilling et al
Nature 382,791 (1996)

Welp et al
PRL76,4809 (1996)



The melting point is:

Melting line and discontinuities at 
melting

The magnetization jump:

Specific heat jump:
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Comparison with experiments

Xiao et al PRL92, 227004 
(04)

The 
magnetization 
jump:
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Conclusions

1. Due to the “supersoft” Goldstone mode vortex lattice 
in 3D exhibits quasi-long range order only.

2. Nevertheless all the IR divergencies in perturbation 
theory cancel enabling precise calculation of 
magnetization, structure functions and other 
quantities.

3. Results for melting temperature, magnetization, 
specific heat… are in good agreement with 
experiments



Open questions

1. What is the symmetry reason for supersoft
Goldstone bosons. Can Goldstone theorem and “soft 
pion” theorems be generalized? Some nontrivial 
group theory involved.

2. Is there an order parameter for the transition of the 
BKT type? Obviously the usual field is not 
(quasilong order).
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