

Chuan-Hung Chen

Department of Physics, National Cheng-Kung U., Tainan, Taiwan

seminar@nthu.11.23.06.tw

Introduction & Motivation

Higgs-mediated LFV

• Implications of LFV in tau decays

Speculation of Higgs-mediated effects

Introduction & Motivation

What we can learn from B factories:

• CP violations: time-dependence CP asymmetry & direct CP violation ICHEP2006: ϕ_1 with $b \rightarrow s$ Penguins

	$\sin(2\beta^{en}) \equiv$	≡ sin(20	¢ ⁿ ↓	HFAG ICHEP 2006 PRELIMINARY
b→ccs	World Average			0.68 ± 0.03
φ K ⁰	Average	⊢★-1		0.39 ± 0.18
η΄ Κ ^ο	Average	I.★		0.59 ± 0.08
K _s K _s K _s	Average	⊢ ★	-1	0.51 ± 0.21
$\pi^0 K_S$	Average	⊢ ★ →I		0.33 ± 0.21
$\rho^0 K_S$	Average	*	-	0.17 ± 0.58
ωK _s	Average	⊢ ★	4	0.48 ± 0.24
f _o K ^o	Average	⊢★ →		0.42 ± 0.17
π ⁰ π ^ρ K _S	Average			-0.84 ± 0.71
K ⁺ K ⁻ K ⁰	Average	₩ ★	••	$0.58 \pm 0.13^{+0.12}_{-0.09}$
1.8 -1.6 -1.4	-1.2 -1 -0.8 -0.6 -0.4 -0.2	0 0.2 0.4 0.6	0.8	1 1.2 1.4 1.6

	sin(2	β ^{eff}) ≡	≡ sin((2 \$	eff 1 ICHEP 2006 PRELIMINARY
b→ccs [±]	World Average	Э			0.68 ± 0.03
0	BaBar		<mark>- ★ <mark>(5 -</mark> 🏹</mark>		$0.12 \pm 0.31 \pm 0.10$
Ϋ́Υ	Belle				$0.50 \pm 0.21 \pm 0.06$
4	Average				0.39 ± 0.18
Q,	BaBar		- 📩		$0.55 \pm 0.11 \pm 0.02$
×	Belle		1	•	$0.64 \pm 0.10 \pm 0.04$
<u>ج</u>	Average		*		0.59 ± 0.08
×°	BaBar		ত র	-	$0.66 \pm 0.26 \pm 0.08$
× °	Belle				$0.30 \pm 0.32 \pm 0.08$
х°	Average				0.51 ± 0.21
So	BaBar		1 Ct		$0.33 \pm 0.26 \pm 0.04$
<u>×</u>	Belle				$0.33 \pm 0.35 \pm 0.08$
R	Average				0.33 ± 0.21
× °	BaBar	- A			$0.17 \pm 0.52 \pm 0.26$
പ്	Average		<u>★</u> <u>⊞</u> g	.	0.17 ± 0.58
ပ္	BaBar		ए र े	-	$0.62^{+0.25}_{-0.30} \pm 0.02$
а Х	Belle		* -		$0.11 \pm 0.46 \pm 0.07$
	Average				0.48 ± 0.24
<u>ې</u>	BaBar		ত ন		0.62 ± 0.23
o	Belle	•	★ <mark>☆</mark> 입		$0.18 \pm 0.23 \pm 0.11$
<u> </u>	Average				0.42 ± 0.17
<u>م</u>	Babar 🗧 🛧				$-0.84 \pm 0.71 \pm 0.08$
م	Ave rage 🔒 				-0.84 ± 0.71
Γ,Υ	BaBar Q2B			0.	$41 \pm 0.18 \pm 0.07 \pm 0.11$
Y	Belle				$0.68 \pm 0.15 \pm 0.03 \begin{array}{c} +0.21 \\ -0.13 \end{array}$
, ₹	Average		-*		$0.58 \pm 0.13 \begin{array}{c} +0.12 \\ -0.09 \end{array}$
2	1		n	1	2

	Η	Belle		
	$BR \times 10^{-6}$	A_{cp}	$BR \times 10^{-6}$	A_{cp}
$B^+ \to \pi^+ \pi^0$	$5.12 \pm 0.47 \pm 0.29$	$-0.019 \pm 0.088 \pm 0.014$	$6.6 \pm 0.4^{+0.4}_{-0.5}$	$+0.07 \pm 0.06 \pm 0.01$
$B^0 \rightarrow \pi^+ \pi^-$	$5.8 \pm 0.4 \pm 0.3$	$+0.16 \pm 0.11 \pm 0.03$	$5.1 \pm 0.2 \pm 0.2$	$+0.55 \pm 0.08 \pm 0.05$
$B^0 \to \pi^0 \pi^0$	$1.48 \pm 0.26 \pm 0.12$	$+0.33 \pm 0.36 \pm 0.08$	$1.1\pm0.3\pm0.1$	$+0.44^{+0.73}_{-0.62}^{+0.04}_{-0.06}$
$B^0 \rightarrow K^+ \pi^-$	$19.7 \pm 0.6 \pm 0.6$	$-0.108 \pm 0.024 \pm 0.007$	$20.0 \pm 0.4^{+0.9}_{-0.8}$	$-0.093 \pm 0.018 \pm 0.008$
$B^0 \to K^0 \pi^0$	$10.5 \pm 0.7 \pm 0.5$	$-0.20~\pm~0.16~\pm~0.03$	$9.2^{+0.7+0.6}_{-0.6-0.7}$	$-0.05 \pm 0.14 \pm 0.05$
$B^+ \to K^+ \pi^0$	$13.3 \pm 0.56 \pm 0.64$	$+0.016\pm0.041\pm0.010$	$12.4 \pm 0.5^{+0.7}_{-0.6}$	$+0.07 \pm 0.03 \pm 0.01$
$B^+ \to K^0 \pi^+$	$23.9 \pm 1.1 \pm 1.0$	$-0.029 \pm 0.039 \pm 0.010$	$22.9^{+0.8}_{-0.7} \pm 1.3$	$+0.03 \pm 0.03 \pm 0.01$
$B^0 \to K^0 \overline{K^0}$	$1.08 \pm 0.28 \pm 0.11$	$0.40~\pm~0.41~\pm~0.06$	$0.86^{+0.24}_{-0.21} \pm 0.09$	$-0.57^{+0.72}_{-0.65} \pm 0.13$
$B^0 \to K^+ K^-$	< 0.40		< 0.25	0.00
$B^+ \to \overline{K^0} K^+$	$1.61 \pm 0.44 \pm 0.09$	$0.10~\pm~0.26~\pm~0.03$	$1.22^{+0.33+0.13}_{-0.28-0.16}$	$+0.13^{+0.23}_{-0.24} \pm 0.02$

• Test QCD theories: PQCD, QCDF, final state interactions etc.

	I	Belle			
	$BR \times 10^{-6}$	A_{cp}	$BR \times 10^{-6}$ A_{cp}		
$B^+ \to \pi^+ \pi^0$	$5.12 \pm 0.47 \pm 0.29$	$-0.019 \pm 0.088 \pm 0.014$	$6.6 \pm 0.4^{+0.4}_{-0.5}$	$+0.07 \pm 0.06 \pm 0.01$	
$B^0 \to \pi^+\pi^-$	$5.8 \pm 0.4 \pm 0.3$	$+0.16 \pm 0.11 \pm 0.03$	$5.1 \pm 0.2 \pm 0.2$	$+0.55 \pm 0.08 \pm 0.05$	
$B^0 \to \pi^0 \pi^0$	$1.48 \pm 0.26 \pm 0.12$	$+0.33 \pm 0.36 \pm 0.08$	$1.1\pm0.3\pm0.1$	$+0.44^{+0.73}_{-0.62}^{+0.04}_{-0.06}$	
$B^0 \to K^+ \pi^-$	$19.7 \pm 0.6 \pm 0.6$	$-0.108 \pm 0.024 \pm 0.007$	$20.0 \pm 0.4^{+0.9}_{-0.8}$	$-0.093 \pm 0.018 \pm 0.008$	
$B^0 \to K^0 \pi^0$	$10.5 \pm 0.7 \pm 0.5$	$-0.20 \pm 0.16 \pm 0.03$	$9.2^{+0.7+0.6}_{-0.6-0.7}$	$-0.05 \pm 0.14 \pm 0.05$	
$B^+ \to K^+ \pi^0$	$13.3 \pm 0.56 \pm 0.64$	$+0.016 \pm 0.041 \pm 0.010$	$12.4 \pm 0.5^{+0.7}_{-0.6}$	$+0.07 \pm 0.03 \pm 0.01$	
$B^+ \to K^0 \pi^+$	$23.9 \pm 1.1 \pm 1.0$	$-0.029 \pm 0.039 \pm 0.010$	$22.9^{+0.8}_{-0.7} \pm 1.3$	$+0.03 \pm 0.03 \pm 0.01$	
$B^0 \to K^0 \overline{K^0}$	$1.08 \pm 0.28 \pm 0.11$	$0.40~\pm~0.41~\pm~0.06$	$0.86^{+0.24}_{-0.21} \pm 0.09$	$-0.57^{+0.72}_{-0.65} \pm 0.13$	
$B^0 \to K^+ K^-$	< 0.40		< 0.25		
$B^+ \to \overline{K^0} K^+$	$1.61 \pm 0.44 \pm 0.09$	$0.10~\pm~0.26~\pm~0.03$	$1.22^{+0.33+0.13}_{-0.28-0.16}$	$+0.13^{+0.23}_{-0.24} \pm 0.02$	

• Determine the parameters of CKM matrix elements, or f_B

$$V_{cb} \Longrightarrow B \to X_c | v_1$$

$$V_{ub} \Longrightarrow B \to X_u | v_1$$

$$V_{td} / V_{ts} \Longrightarrow B_d - \overline{B}_d / B_s - \overline{B}_s$$

$$V_{ub}f_B \Longrightarrow B \to \tau v_{\tau}$$

• Probe flavor structures:

1. $B \to K^* \gamma, B \to K^{(*)} | ^+ | ^- 2. B \to | ^+ | ^-, | ^+ | ^- \gamma$

Super B/Flavor Factories >10¹⁰ B's/year

≻LHCB @ L_{int} >10³² (~10¹⁰ B's/year)

➤Super-Flavor Factories

➤e+e- superB: KEKB @ L_{int} =2x10³⁵ /cm²/s (N. Katayama's talk this session)

>linear Super-B factory @ L_{int} >10³⁶/cm²/s(J. Seeman)

CPV in Rare	e ⁺ e ⁻ Precision			
Measurement	3/ab	10/ab	50/ab	
$S(B^{U} \rightarrow \phi K_{S}^{U})$	≈ 5%	16%	8.7%	3.9%
$S(B^0 \rightarrow \eta' K_s^0)$	≈ 5%	5.7%	3%	1%
$S(B^0 \rightarrow K_s^0 \pi^0)$		8.2%	5%	4%
$S(B^0 \rightarrow K_s^0 \pi^0 \gamma)$	SM: ≈ 2%	11%	6%	4%
$A_{CP}(b \rightarrow s\gamma)$	SM: $\approx 0.5\%$	1.0%	0.5%	0.5%
$A_{CP}(B \rightarrow K^*\gamma)$	SM: $\approx 0.5\%$	0.6%	0.3%	0.3%

Future tau (τ) physics

e

• results up to 2005

mode		x10-7	mode		x10-7
τ→μγ	BaBar	0.68	τ→III		1.1-3.5
τ→eγ	Belle	3.1	τ ⁻ →μ+e-e-	BaBar	1.1
τ→μη	Belle	1.5	τ ⁻ →μ ⁻ e ⁻ e ⁺	Belle	1.9
τ→eη	Belle	2.4	τ→lhh	BaBar	0.7-4.8
τ→μη'	Belle	10	τ ⁻ →μ ⁺ π ⁻ π ⁻	BaBar	0.7
τ→eη'	Belle	4.7	$\tau \rightarrow I V^0$	CLEO	20-75
$\tau \rightarrow \mu \pi^0$	Belle	4.1	$\tau \rightarrow e \rho^0$	CLEO	20
$\tau \rightarrow e \pi^0$	Belle	1.9			
τ→μKs	CLEO	9.5	$\tau^{-} \rightarrow \Lambda \pi^{-}$	Belle	1.4
τ→eKs	CLEO	9.1	$\tau^- \rightarrow \overline{\Lambda} \pi^-$	Belle	0.72

mode		x10-7	mode		x10-7
τ→μγ	Belle	0.45	τ→lll		1.1-3.5
τ→eγ	BaBar	1.1	τ−→μ +e − e −	BaBar	1.1
τ→μη	Belle	0.65	τ−→μ− e−e +	Belle	1.9
τ→eη	Belle	0.92	τ→lhh	BaBar	0.7-4.8
τ→μη '	Belle	1.3	τ ⁻ →μ ⁺ π ⁻ π ⁻	BaBar	0.7
τ → eη'	Belle	1.6	τ→IV ⁰	Belle	2.0-7.7
$\tau \rightarrow \mu \pi^0$	Belle	1.2	τ→μρ ⁰	Belle	2.0
$\tau \rightarrow e\pi^0$	Belle	0.80	$\tau^- \rightarrow \Lambda \pi^-$	BaBar	0.59
τ→μ Ks	Belle	0.52	$\tau^- \rightarrow \Lambda \pi^-$	BaBar	0.58
τ→eKs	Belle	0.60	$\tau^{-} \rightarrow \Lambda K^{-}$	BaBar	0.72
			$\tau^{-} \rightarrow \Lambda K^{-}$	BaBar	1.5

Possible sensitivity with Super B-factory Red band for 5000~10,000fb⁻¹ PDG2005 V Belle V BaBar

Lepton flavor violation (LFV)

> quark flavor changing via charged current; charged weak current is written as

$$J_{\mu} = \left(\overline{u}, \overline{c}, \overline{t}\right) \gamma_{\mu} P_{L} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \overline{U}_{i} \gamma_{\mu} P_{L} D_{j} \qquad P_{L} = \frac{1 - \gamma_{5}}{2}$$

In terms of physical eigenstates

$$J_{\mu} = \overline{u}_{p} \gamma_{\mu} P_{L} \bigvee_{555}^{U_{L}} V_{55} \stackrel{h}{\Rightarrow} d_{p} \qquad u_{p} = V^{U_{L}} U_{w}, d_{p} = V^{D_{L}} D_{w}$$
$$= V_{CKM}$$

By Wolfenstein parametrization

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

 $A \approx 0.82, \quad \lambda \approx 0.224$

QCTS

- \triangleright Rare decays induced from loop will be sensitive to new physics.
- In the SM, since neutrinos are massless, there are no flavor violations in lepton sector

$$J^{1}_{\mu} = \overline{\nu} \gamma_{\mu} P_{L} \underbrace{U^{\nu_{L}}}_{=1} U^{1^{\dagger}_{L}} P_{\mu} = \overline{\nu} \gamma_{\mu} P_{L} P_{\mu} P_$$

According to observed neutrino oscillations. we know that neutrinos have masses so that $|\nu_i\rangle = \sum U_{\alpha i} |\nu_{\alpha}\rangle$

$$\begin{array}{cccc} \text{Atmospheric} & \text{Cross-Mixing} & \text{Solar} & & \begin{array}{c} \text{Majorana} & \text{CP-} \\ \text{violating phases} \end{array} \\ U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \times \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix} .$$

Maki-Nakagawa-Suzuki-Pontecorvo (MNSP)

Higgs-mediated LFV

- Nonzero neutrino masses are definite.
- It is found that *seesaw mechanism*, by introducing singlet right-handed Majorana neutrinos, is one of natural ways to solve the tiny neutrino masses which are less than eV.
- In non-SUSY models, the effects of LFV are suppressed by $1/M_{R}$ which is around GUTs scale 10^{15} GeV.

• However, in models with SUSY, due to the right-handed Majorana introduced, the flavor conservation in the slepton sector at unified Borzumati. scale will be violated at the M_R scale via renormalization. Masiero. PRL57.

lda,

$$\frac{d}{d \log Q} (m_{\tilde{L}}^2)_{ij} = \left(\frac{d}{d \log Q} (m_{\tilde{L}}^2)_{ij}\right)_{\text{MSSM}} + \frac{1}{16\pi^2} \left[m_{\tilde{L}}^2 Y_{\nu}^{\dagger} Y_{\nu} + Y_{\nu}^{\dagger} Y_{\nu} m_{\tilde{L}}^2 + 2(Y_{\nu}^{\dagger} m_{\tilde{\nu}_R}^2 Y_{\nu} + m_{H_u}^2 Y_{\nu}^{\dagger} Y_{\nu} + A_{\nu}^{\dagger} A_{\nu})\right]_{ij} - \mathcal{L} = \overline{E}_R Y_E L_L H_d + \overline{\nu}_R Y_{\nu} L_L + \frac{1}{2} \nu_R^{\top} M_R \nu_R$$

Babu & Kolda's mechanism for lepton flavor violation

$$f_2(a,b,c,d) \equiv \frac{a\log(a)}{(a-b)(a-c)(a-d)} + \frac{b\log(b)}{(b-a)(b-c)(b-d)} + (a \leftrightarrow c, b \leftrightarrow d).$$

$$\epsilon_{1} = \frac{\alpha'}{8\pi} \mu M_{1} \left[2f_{1} \left(M_{1}^{2}, m_{\tilde{\ell}_{L}}^{2}, m_{\tilde{\ell}_{R}}^{2} \right) - f_{1} \left(M_{1}^{2}, \mu^{2}, m_{\tilde{\ell}_{L}}^{2} \right) + 2f_{1} \left(M_{1}^{2}, \mu^{2}, m_{\tilde{\ell}_{R}}^{2} \right) \right] \\ + \frac{\alpha_{2}}{8\pi} \mu M_{2} \left[f_{1} \left(\mu^{2}, m_{\tilde{\ell}_{L}}^{2}, M_{2}^{2} \right) + 2f_{1} \left(\mu^{2}, m_{\tilde{\nu}}^{2}, M_{2}^{2} \right) \right]$$

$$-\mathcal{L} \simeq (2G_F^2)^{1/4} \frac{m_\tau \kappa_{32}}{\cos^2 \beta} \left(\overline{\tau}_R \,\mu_L\right) \left[\cos(\beta - \alpha)h^0 - \sin(\beta - \alpha)H^0 - iA^0\right] + h.c.$$

$$\kappa_{ij} = -\frac{\epsilon_2}{\left[1 + (\epsilon_1 + \epsilon_2 (Y_{\nu}^{\dagger} Y_{\nu})_{33}) \tan\beta\right]^2} \left(Y_{\nu}^{\dagger} Y_{\nu}\right)_{ij}.$$

• At large $\tan\beta \sim \text{mt/mb}$, or $\cos\beta \ll 1$, the Higgs-mediated LFV will be enhanced

Implications of LFV in \tau decays

• $\tau \rightarrow \mu (\gamma, 3\mu, \phi, KK)$ induced by slepton mixings with large tan β

Due to slepton mixings

$$\left(\Delta m_{\tilde{L}}^2\right)_{ij} \approx -\frac{1}{(4\pi)^2} \left(6m_0^2 Y_\nu^\dagger Y_\nu + 2A^\dagger A\right)_{ij} \ln\left(\frac{M_U}{M_R}\right)$$

$$\begin{split} T &= \sqrt{2}G_F \, e \, m_\tau \epsilon^{\mu *}(k) \bar{\ell}(p-k) i \sigma_{\mu\nu} k^{\nu} A_R P_R \tau(p) \,, \\ A_R &= \frac{M_2 \mu}{(4\pi)^2} \frac{m_W^2}{M_2^2} \tan \beta (\Delta m_{\tilde{L}}^2)_{\tau \ell} \sum_{S = \tilde{\ell}, \tilde{\nu}_{\ell}} G_S \,, \\ \Gamma(\tau \to \ell\gamma) &= \frac{\alpha_{em}}{2} G_F^2 m_{\tau}^5 |A_R|^2 \,. \end{split} \qquad \begin{aligned} G_{\tilde{\ell}} &= -\frac{1 - \tan^2 \theta_W}{m_{\tilde{\ell}_L}^2 - m_{\tilde{\tau}_L}^2} \left[\frac{f_n(x_{\tilde{\ell}_L})}{m_{\tilde{\ell}_L}^2} - \frac{f_n(x_{\tilde{\tau}_L})}{m_{\tilde{\tau}_L}^2} \right] \,, \\ G_{\tilde{\nu}_\ell} &= \frac{4}{m_{\tilde{\nu}_\ell}^2 - m_{\tilde{\nu}_\ell}^2} \left[\frac{f_c(x_{\tilde{\nu}_\ell})}{m_{\tilde{\nu}_\ell}^2} - \frac{f_c(x_{\tilde{\nu}_\tau})}{m_{\tilde{\nu}_\tau}^2} \right] \,, \\ f_n(x) &= \frac{1}{(1 - x)^3} \left(1 - x^2 + 2x \ln x \right) \,, \\ f_c(x) &= -\frac{1}{2(1 - x)^3} \left(3 - 4x + x^2 + 2\ln x \right) \,, \end{aligned}$$

Dipole operators

$$\begin{split} R_{\mu} &= \frac{\mathrm{BR}(\tau \to 3\mu)}{\mathrm{BR}(\tau \to \mu\gamma)} \simeq \frac{\alpha_{em}}{3\pi} \left(2\ln\frac{m_{\tau}}{2m_{\mu}} - \frac{7}{12} \right) \,. \\ R_{e} &= \frac{\mathrm{BR}(\tau \to e\mu^{+}\mu^{-})}{\mathrm{BR}(\tau \to e\gamma)} \simeq \frac{\alpha_{em}}{3\pi} \left(2\ln\frac{m_{\tau}}{2m_{\mu}} - \frac{4}{3} \right) \,. \\ R_{\mu} \sim R_{e} \sim O(10^{-3}) \end{split}$$

 $\langle 0|\bar{q}\gamma^{\mu}q|\phi\rangle = im_{\phi}f_{\phi}\epsilon_{\phi}^{*}(k)$

$$\Gamma(\tau \to \ell\phi) \simeq 2\pi m_{\tau}^{5} \alpha_{em}^{2} G_{F}^{2} Q_{s}^{2} \frac{f_{\phi}^{2}}{m_{\phi}^{2}} |A_{R}|^{2} \left(1 - \frac{m_{\phi}^{2}}{m_{\tau}^{2}}\right)^{2} \left(1 + \frac{m_{\phi}^{2}}{2m_{\tau}^{2}}\right)$$

$$= 4\pi \alpha_{em} Q_{s}^{2} \frac{f_{\phi}^{2}}{m_{\phi}^{2}} \left(1 - \frac{m_{\phi}^{2}}{m_{\tau}^{2}}\right)^{2} \left(1 + \frac{m_{\phi}^{2}}{2m_{\tau}^{2}}\right) \Gamma(\tau \to \ell\gamma) ,$$

$$\frac{d\Gamma(\tau \to \ell K^{+} K^{-})}{\Gamma(\tau \to \ell\gamma) dQ^{2}} \simeq \frac{\alpha_{em}}{6\pi} \frac{|F_{1}^{KK}(Q^{2})|^{2}}{Q^{2}} \left(1 - \frac{Q^{2}}{m_{\tau}^{2}}\right)^{2} \left(1 + \frac{Q^{2}}{2m_{\tau}^{2}}\right) \left(1 - \frac{4m_{K}^{2}}{Q^{2}}\right)^{1/2}$$

$$\langle 0|\bar{q}\gamma^{\mu}q|\phi\rangle = im_{\phi}f_{\phi}\epsilon_{\phi}^{*}(k)$$

$$\frac{\Gamma(\tau \to 1\phi)}{\Gamma(\tau \to 1\gamma)} \sim \frac{\Gamma(\tau \to 1 KK)}{\Gamma(\tau \to 1\gamma)} \sim O(10^{-3})$$

• LFV with Higgs-mediated

$$-\mathcal{L}_{\text{eff}} = \bar{E}_{Ri}Y_i \left[\delta_{ij}H_d^0 + (\epsilon_1\delta_{ij} + \epsilon_2 I_{ij})H_u^{0*}\right]E_{Lj} + h.c.,$$

= $\bar{E}_R M_\ell^0 E_L + h.c.,$ nonholomophic terms

- Y: diagonalized Yukawa matrix of leptons $I_{ij} = (\Delta m_{\tilde{L}}^2)_{ij}/m_0^2$
 - \succ Due to nonholomophic effects, M_1^0 is not diagonal matrix
 - Since M_2 are loop effects, they are much less than 1, the LFV can be regarded as a leading expansion of M_2I_{ii}

$$\begin{split} UM_{\ell}^{0}U^{\dagger} &\approx (1+\Delta)M_{\ell}^{0}(1-\Delta) = M_{\ell}^{dia}, \qquad U_{L(R)} \approx 1+\Delta_{L(R)} \\ &\left(M_{\ell}^{0}\right)_{ii} \approx \left(M_{\ell}^{dia}\right)_{ii}, \ \Delta_{ij} \approx \frac{(M_{\ell}^{0})_{ij}}{(M_{\ell}^{0})_{ii} - (M_{\ell}^{0})_{jj}} \quad (\mathbf{i} \neq \mathbf{j}). \end{split}$$

Employ the physical mass eigenstates of the Higgses

$$\begin{split} H_d = \begin{pmatrix} H_d^+ \\ H_d^0 \end{pmatrix}, & ReH_d^0 = v_d + \frac{1}{\sqrt{2}} \left[\cos \alpha H^0 - \sin \alpha h^0 \right] , \\ ReH_u^0 = v_u + \frac{1}{\sqrt{2}} \left[\sin \alpha H^0 + \cos \alpha h^0 \right] , \\ H_u = \begin{pmatrix} H_u^{0^*} \\ -H_u^- \end{pmatrix} & ImH_d^0 = \frac{1}{\sqrt{2}} \left[\cos \beta G^0 - \sin \beta A^0 \right] , \\ ImH_u^0 = \frac{1}{\sqrt{2}} \left[\sin \beta G^0 + \cos \beta A^0 \right] , \end{split}$$

The interactions for the LFV via the Higgs-mediated mechanism are expressed by

$$\mathcal{H}_{\text{eff}}^{i \neq j} = (\sqrt{2}G_F)^{1/2} \frac{m_{\ell i} C_{ij}}{\cos^2 \beta} \bar{\ell}_{Ri} \ell_{Lj} \left[\sin(\alpha - \beta) H^0 + \cos(\alpha - \beta) h^0 - iA^0 \right] + h.c.$$

 $C_{ij} = \epsilon_2 I_{ij} / (1 + (\epsilon_1 + \epsilon_2 I_{ii}) \tan \beta)^2$. $I_{ij} = (\Delta m_{\tilde{L}}^2)_{ij} / m_0^2$

$\bullet \underline{\tau \rightarrow \mu \gamma}$

Since the LFVs in $\tau \to \gamma$ and $\tau \to X(X = 1^{+1^{-}}, \eta^{(0)}, f_0(980), KK)$ decay are driving by the same mechanism, to simplify the discussions, we take $M_1 \sim M_2 \sim m_0 \sim \mu \sim m_{\gamma_0}$

$$\begin{split} A_R &\approx \frac{1}{6(4\pi)^2} \frac{m_W^2}{m_{\tilde{\tau}}^2} \frac{(\Delta m_{\tilde{L}}^2)_{\tau\ell}}{m_0^2} \tan\beta (1 + \tan^2 \theta_W), \\ \epsilon_1 &\approx \frac{3\alpha_{em}}{4\pi \sin^2(2\theta_W)}, \quad \epsilon_2 \approx \frac{\alpha_{em}}{16\pi} \left(\frac{1}{3\cos^2 \theta_W} + \frac{1}{\sin^2 \theta_W} \right), \end{split}$$

$$\left(\Delta m_{\tilde{L}}^2\right)_{ij} \approx -\frac{1}{(4\pi)^2} \left(6m_0^2 Y_{\nu}^{\dagger} Y_{\nu} + 2A^{\dagger}A\right)_{ij} \ln\left(\frac{M_U}{M_R}\right)$$

> $M_{\rm U} \sim 10^{19} \,\text{GeV}$, $M_{\rm R} \sim 10^{14} \,\text{GeV}$ > $\tan\beta=60$

$$\blacktriangleright$$
 BR_{exp} < (0.45, 0.68) × 10⁻⁷

$$\begin{aligned} \mathbf{\tau} & \xrightarrow{\mathbf{\tau}} \mathbf{1} \left(f_0(980), \sigma(600) \right) \\ \mathbf{\tau} & \xrightarrow{\mathbf{h}, \mathbf{H}} \\ |f_0(980)\rangle &= \cos \theta |s\bar{s}\rangle + \sin \theta |n\bar{n}\rangle, \\ |\sigma(600)\rangle &= -\sin \theta |s\bar{s}\rangle + \cos \theta |n\bar{n}\rangle, \\ |\sigma(600)\rangle &= -\sin \theta |s\bar{s}\rangle + \cos \theta |n\bar{n}\rangle, \end{aligned} \qquad n\bar{n} = (u\bar{u} + d\bar{d})/\sqrt{2} \\ \langle f_0^s |\bar{s}s|0\rangle &= m_{f_0} \tilde{f}_{f_0}^s, \quad \langle \sigma^s |\bar{s}s|0\rangle = m_{\sigma} \tilde{f}_{\sigma}^s, \\ \mathbf{\Gamma}(\tau \to \ell f_0(980)) \simeq \frac{G_F^2 m_{\tau}^3 |C_{\tau\ell}|^2}{16\pi \cos^6 \beta} \left(m_s m_{f_0} \tilde{f}_{f_0}^s \cos \theta \right)^2 \left(\frac{cs}{m_h^2} - \frac{sc}{m_H^2} \right)^2 \left(1 - \frac{m_{f_0}^2}{m_{\tau}^2} \right)^2. \end{aligned}$$

• cs: $\cos(\alpha - \beta)\sin \alpha$; sc= $\sin(\alpha - \beta)\cos \alpha$

$$\frac{\Gamma(\tau \to \ell \sigma(600))}{\Gamma(\tau \to \ell f_0(980))} \simeq \left(\frac{m_\sigma \tilde{f}^s_\sigma \tan \theta}{m_{f_0} \tilde{f}^s_{f_0}}\right)^2 \left(\frac{1 - m_\sigma^2 / m_\tau^2}{1 - m_{f_0}^2 / m_\tau^2}\right)^2$$

• decoupling limit: $\alpha \rightarrow \beta - \pi/2$

•
$$\theta = 30^{\circ}$$
,
• $m = 0.15 \text{ G}$

- $m_s = 0.15 \text{ GeV},$ $f_{\sigma}^{\ell_0} \sim f_{f_0}^{\ell_0} = 0.33 \text{GeV}$

• decoupling limit: $\alpha \rightarrow \beta - \pi/2$

 $\Gamma(\tau \to \ell f_0(980)) : \Gamma(\tau \to \ell \mu^+ \mu^-) : \Gamma(\tau \to \ell \eta) \approx 1.3 : 0.36c_\ell : 1.$

$$\begin{split} \bullet \underline{\tau \to | K^{+}K^{-}} & \qquad 1 & \qquad K \\ \tau & \qquad 1 & \qquad K \\ \kappa^{+}(p_{1})K^{-}(p_{2})|\bar{s}s|0\rangle \equiv f_{s}^{K^{+}K^{-}}(Q^{2}) = \sum_{s} \frac{m_{s}\tilde{f}_{s}^{s}g^{S \to KK}}{m_{s}^{2} - Q^{2} - im_{s}\Gamma_{s}} + f_{s}^{NR} \\ f_{s}^{NR} = \frac{v}{3} \left(3F_{NR}^{1} + 2F_{NR}^{2}\right) + v\frac{\kappa}{Q^{2}} \left[\ln \frac{Q^{2}}{\Lambda^{2}}\right]^{-1} \\ f_{s}^{NR} = \frac{v}{3} \left(3F_{NR}^{1} + 2F_{NR}^{2}\right) + v\frac{\kappa}{Q^{2}} \left[\ln \frac{Q^{2}}{\Lambda^{2}}\right]^{-1} \\ \frac{d\Gamma(\tau \to \ell K^{+}K^{-})}{dQ^{2}} \simeq \frac{G_{F}^{2}m_{\tau}^{3}|C_{\tau}\ell|^{2}}{2^{8}\pi^{3}\cos^{6}\beta} \left(m_{s}f_{s}^{K^{+}K^{-}}\right)^{2} \left(\frac{cs}{m_{h}^{2}} - \frac{sc}{m_{H}^{2}}\right)^{2} \\ \times \left(1 - \frac{Q^{2}}{m_{\tau}^{2}}\right)^{2} \left(1 - \frac{4m_{K}^{2}}{Q^{2}}\right)^{1/2} \\ \cdot \\ \cdot v = 2.87 \text{ GeV}, \ \kappa = -10.4 \text{ GeV}^{4} \\ \cdot f_{f_{0}}^{F_{0}}(1530) \to KK} = 1.50, \ g^{f_{0}}^{(1530) \to KK} = 3.18 \text{ GeV} \end{split}$$

Speculation of Higgs-mediated effects

• In terms of squark mixings,

Babu,Kolda, PRL84,228(00)

 $-\mathcal{L}_{eff} = \overline{D}_R \mathbf{Y}_{\mathbf{D}} Q_L H_d + \overline{D}_R \mathbf{Y}_{\mathbf{D}} \left[\epsilon_g + \epsilon_u \mathbf{Y}_{\mathbf{U}}^{\dagger} \mathbf{Y}_{\mathbf{U}} \right] Q_L H_u^* + h.c.$

$$\mathcal{L}_{FCNC} = \frac{\overline{y}_b V_{tb}^*}{\sin\beta} \chi_{FC} \left[V_{td} \overline{b}_R d_L + V_{ts} \overline{b}_R s_L \right] \left(\cos\beta H_u^{0*} - \sin\beta H_d^0 \right) + h.c.$$

• It is interesting to examine the effects on B decays

$$-\mathcal{L}_{D}^{qq} = \left(\sqrt{2}G_{F}\right)^{1/2} \frac{m_{q}}{\cos\beta\left(1+\tan\beta\epsilon_{0}\right)} \left\{ \left[\left(-\sin\alpha+\cos\alpha\epsilon_{0}\right)h^{0}\right. \\ \left.+\left(\cos\alpha+\sin\alpha\epsilon_{0}\right)H^{0}\right]\bar{q}\,q-i\sin\beta A^{0}\bar{q}\gamma_{5}q \right\} , \\ \left.-\mathcal{L}_{D}^{b\to q} = \left(\sqrt{2}G_{F}\right)^{1/2} V_{tb}V_{tq}^{*} \frac{m_{b}C_{3}}{\cos^{2}\beta}\bar{q}_{L}b_{R}\left[\cos(\alpha-\beta)h^{0}+\sin(\alpha-\beta)H^{0}+iA^{0}\right] . \right\}$$

$$C_j = \epsilon_Y y_t^2 / (1 + \tan \beta \epsilon_j) / (1 + \tan \beta \epsilon_0)$$

 \succ Charged Higgs on $B \rightarrow \tau v$

- > Higgs-mediated on $B_q \overline{B}_q$
- > Higgs-mediated on $B_q \rightarrow 1^{+}1^{-}, B \rightarrow K^{(*)}1^{+}1^{-}$
- → Higgs-mediated on $B \rightarrow K(\eta', \eta)$