HEP Seminar @ NTHU November 16, 2006

Determining the Unitarity Triangle from Two-Body Charmless Hadronic B Decays

Cheng-Wei Chiang National Central University & Academia Sinica

-== in collaboration with Yu-Feng Zhou @ KEK ==-

Outline

- Unitarity triangle
- \succ Flavor diagram approach to rare *B* decays
- > Global χ^2 fits with different SU(3)_F breaking schemes
- > Fitting results and predictions (particularly B_s)
- Summary

Talk primarily based upon the following works:

CWC, Gronau, Luo, Rosner, and Suprun, PRD **69**, 034001 (2004);
CWC, Gronau, Rosner, and Suprun, PRD **70**, 034020 (2004);
CWC and Zhou, hep-ph/0609128, to appear in JHEP.

More References

Seneral references on $SU(3)_F$ to meson decays:

Zeppenfeld, Z. Phys. C **8**, 77 (1981); Savage and Wise, PRD **39**, 3346 (1989); Erratum-ibid. **40**, 3127 (1989); Chau et. al., PRD **43**, 2176 (1991); Erratum-ibid. **58**, 019902 (1998); Gronau et. al., PRD **50**, 4529 (1994); *ibid*. **52**, 6374 (1995).

> Other works related to $SU(3)_F$ fitting:

Zhou et. al., PRD 63, 054011 (2001);
He et. al., PRD 64, 034002 (2001); Fu et. al., Nucl. Phys. Proc. Suppl. 115, 279 (2003);
Fu, He and Hsiao, PRD 69, 074002 (2004);
Wu and Zhou, EPJC 5, 014 (2003);
Malcles, arXiv:hep-ph/0606083.

> Other works about new physics in $K \pi$ and related decays:

Yoshikawa,PRD **68**, 054023 (2003); Mishima and Yoshikawa, PRD **70**, 094024 (2004); Buras et. al., EPJC **32**, 45 (2003); PRL **92**, 101804 (2004); EPJC **45**, 701 (2006); Baek et. al., PRD **71**, 057502 (2005); Hou, Nagashima and Soddu, hep-ph/0605080.

KM Mechanism

The couplings between the up-type and down-type quarks are described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix within the SM.

$$V_{\mathsf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A \lambda^3 (\rho - i \eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A \lambda^2 \\ A \lambda^3 \left[(1 - \bar{\rho}) - i \bar{\eta} \right] & -A \lambda^2 & 1 \end{pmatrix}$$

Using the Wolfenstein parameterization, CP violation is encoded by the parameter <u>n</u>.

 \succ V_{ub} and V_{td} carry the largest weak phases, but are the least known elements due to their smallness.

UT from Rare B Decays

C.W. Chiang

Unitarity Triangle

 \succ Unitarity relation for V_{ub} and V_{td} : $V_{\rm ud}V_{\rm ub}^{*} + V_{\rm cd}V_{\rm cb}^{*} + V_{\rm td}V_{\rm tb}^{*} = 0$. It can be visualized as a triangle on a complex plane whose area characterizes CPV. $(\bar{\rho},\bar{\eta})$ $\begin{aligned} \varepsilon_{K}, A_{CP}[\rho\pi, \pi\pi, \pi\eta...] & \alpha \\ BR(B \to X_{c,u} l \nu) & (\phi_{2}) \end{aligned}$ $\Delta M_{B_{\rm d}}$ and $\Delta M_{B_{\rm s}}$ $-\frac{V_{ud}V^*_{ub}}{V_{cd}V^*_{cb}} = \bar{\rho} + i\,\bar{\eta}$ $-rac{V_{td}V^*_{tb}}{V_{cd}V^*_{cb}}=1-ar
ho-i\,ar\eta$ (0,0) $\gamma(\phi_3)$ $\beta(\phi_1)$ (1.0) $A_{\rm CP}[D_{\rm CP}K^{\pm}, K\pi, \ldots]$ $A_{\rm CP}(t)[(c\underline{c})K_{\rm LS}, \eta'K_{\rm S}, \phi K_{\rm S},...]$

CKMfitter Results

FPCP06 update:

[CKMfitter: http://ckmfitter.in2p3.fr/]

6

UTFit's Results

[UTFit: http://utfit.roma1.infn.it/]

7

J > FPCP06 Updates: $\lambda = 0.2258 \pm 0.0014$ 0.5 $\rho = 0.198 \pm 0.030$ $\underline{\eta} = 0.364 \pm 0.019$ 0 $\alpha = (94.6 \pm 4.6)^{\circ}$ -0.5 $\beta = (23.9 \pm 1.0)^{\circ}$ $\gamma = (61.3 \pm 4.5)^{\circ}$

Questions

- Can we extract useful information for the UT from purely charmless *B* decays (even though each of them individually may not be theoretically clean)?
- > Will they provide results consistent with other methods?
- Can the predictions of our theory (perturbative / nonperturbative) for the rare decays agree with data? [e.g., Beneke and Neubert, 2003]
- > Can we get any hint of new physics from the analysis?

Why Charmless?

- ➤ Charmless two-body hadronic *B* decay modes are often sensitive to V_{td} and/or V_{ub} . Thus, they are actually charmful and can play a more important role in the determination of the unitarity triangle.
- ➤ With increasing precision on the BRs and CPAs, it is possible to provide an additional constraint on the (<u>ρ, η</u>) vertex and/or some hints for new physics via a global fit.
- ➤ We relate two types of rare decays using flavor SU(3) symmetry: strangeness-conserving ($\Delta S = 0, b \rightarrow q q d$); and strangeness-changing ($|\Delta S| = 1, b \rightarrow q q s$).
- The former type is dominated by the color-allowed tree amplitude; whereas the latter type is dominated by the QCD penguin amplitudes.

Flavor Diagram Approach

[Zeppenfeld (1981); Chau + Cheng (1986, 1987, 1991); Savage + Wise (1989); Grinstein + Lebed (1996); Gronau et. al. (1994, 1995, 1995)]

- This approach is intended to rely, to the greatest extent, on model independent flavor SU(3) symmetry arguments, rather than on specific model calculations of amplitudes.
- > The three light quarks $(u, d, s) \sim 3$ under SU(3)_F.
- > The flavor diagram approach:
 - only concerns with the *flavor flow* (nonperturbative in strong interactions);
 - has a clearer *weak phase structure* (unlike isospin analysis where different weak phases usually mix).

Tree-Level Diagrams

> All these tree-level diagrams involve the same CKM factor.

Loop-Level (Penguin) Diagrams

- All these loop-level diagrams also have the same CKM factors, with u-, c-, and t-quark running in the loop.
- Will use the unitarity condition to remove the top-mediated loop diagrams.

C.W. Chiang

Next-to-Leading-Order Flavor Diagrams

Nothing forbids one from drawing one of the following diagrams whenever you see T, C, or P in your amplitude list.

> They are higher order in weak interactions.

13

A Hierarchical Structure

Without factoring out CKM factors, we have for the flavor diagrams:

π+π-

As an example, the decay of $B_d \rightarrow \pi^+\pi^-$ can be decomposed as -(T + P), where the minus sign comes from our convention for the meson wave functions.

Examples of Rescattering

> Significant strong phases can result from final-state rescattering effects, in contrast to BSS-(a) d d type perturbative phases. b u [Bander et. al., PRL 43, 242 (1979)] U \mathbf{S} В**0** u Rescattering contributions to d $B^0 \rightarrow KK$ from the $\pi^+\pi^$ intermediate state: (a) an initial T amplitude d (b) turns into a *P* (u-penguin) u b amplitude; U d \mathbf{S} (b) an initial T amplitude

UT from Rare B Decays

turns into an E amplitude.

K

u

What's So Cool About Strong Phases?

- Strong interactions contribute additional phases to decay amplitudes in a way that is *flavor-blind*.
 A
- Consider rate CP asymmetry of modes with the amplitudes: $A(B \to f) = A_1 e^{i(\phi_1 + \delta_1)} + A_2 e^{i(\phi_2 + \delta_2)}$ $A(\overline{B} \to \overline{f}) = A_1 e^{i(-\phi_1 + \delta_1)} + A_2 e^{i(-\phi_2 + \delta_2)}$

 $A_1 = \overline{A}_1$

 $\square a_{CP} = \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)} = \frac{2A_1A_2\sin(\phi_1 - \phi_2)\sin(\delta_1 - \delta_2)}{A_1^2 + A_2^2 + 2A_1A_2\cos(\phi_1 - \phi_2)\cos(\delta_1 - \delta_2)}$

The observation of CPAs needs at least *two* amplitudes with *distinct* strong and weak phases.

χ^2 Fits

We constrain theory parameters by minimizing

$$\chi^2 \equiv \sum_{\text{all obs.}} \left(\frac{X_{\text{th}} - X_{\text{data}}}{\Delta X_{\text{data}}} \right)^2$$

> Advantages:

(1) it is less sensitive to statistical fluctuations of individual observables (particularly for rare processes);
(2) it helps finding out which observable deviates from theory and how serious that is (leading to new physics); and
(3) one may conveniently find errors associated with theory parameters and thus make predictions.

Old Results of Global $SU(3)_F$ Fits

[CWC, Gronau, Luo, Rosner, and Suprun, PRD 69, 034001 (2004); PRD 70, 034020 (2004)]
 Charmless V P modes, γ = 57° ~ 69°; charmless P P modes, γ = 54° ~ 66°; both 1 σ ranges and consistent with other constraints.

Flavor Amplitudes

> We use the following notation:

$$t \equiv Y_{db}^{u}T - (Y_{db}^{u} + Y_{db}^{c})P_{EW}^{C} , \qquad t' \equiv Y_{sb}^{u}\xi_{t}T - (Y_{sb}^{u} + Y_{sb}^{c})P_{EW}^{C} , \\ c \equiv Y_{db}^{u}C - (Y_{db}^{u} + Y_{db}^{c})P_{EW} , \qquad c' \equiv Y_{sb}^{u}\xi_{c}C - (Y_{sb}^{u} + Y_{sb}^{c})P_{EW} , \\ p \equiv -(Y_{db}^{u} + Y_{db}^{c})\left(P - \frac{1}{3}P_{EW}^{C}\right) , \qquad p' \equiv -(Y_{sb}^{u} + Y_{sb}^{c})\left(\xi_{p}P - \frac{1}{3}P_{EW}^{C}\right) \\ s \equiv -(Y_{db}^{u} + Y_{db}^{c})\left(S - \frac{1}{3}P_{EW}\right) , \qquad s' \equiv -(Y_{sb}^{u} + Y_{sb}^{c})\left(\xi_{s}S - \frac{1}{3}P_{EW}\right)$$

where $Y_{qb}{}^{q}{}^{0} = V_{q} o_{q} V_{q} o_{b}^{*}$, and each amplitude has its strong phase.

- \succ We assume that the top-penguin dominates.
- > The CKM factors have been explicitly pulled out.
- → Unprimed amplitudes are used for $\Delta S = 0$ transitions and primed amplitudes for $|\Delta S| = 1$ ones.

C.W. Chiang

UT from Rare B Decays

Amplitude Decomposition

M	ode	Flavor Amplitude	BR	\mathcal{A}_{CP}	M	ode	Flavor Amplitude	BR	\mathcal{A}_{CP}
$B^- \rightarrow$	$\pi^{-}\pi^{0}$	$-\frac{1}{\sqrt{2}}(t+c)$	5.7 ± 0.5	0.04 ± 0.05	$B^- \rightarrow$	$\pi^- \bar{K}^0$	p'	23.1 ± 1.0	0.01 ± 0.02
	$K^{-}\overline{K}^{0}$	p	1.4 ± 0.3	0.12 ± 0.18		$\pi^0 K^-$	$-\frac{1}{\sqrt{2}}(p'+t'+c')$	12.8 ± 0.6	0.05 ± 0.03
	$\pi^-\eta$	$-\frac{1}{\sqrt{2}}(t+c+2p+s)$	4.4 ± 0.4	-0.19 ± 0.07		$K^-\eta$	$-\frac{1}{\sqrt{3}}(s'+t'+c')$	2.2 ± 0.4	-0.29 ± 0.11
	$\pi^-\eta'$	$\frac{1}{\sqrt{6}}(t+c+2p+4s)$	2.6 ± 0.8	0.15 ± 0.15		$K^-\eta'$	$\frac{1}{\sqrt{6}}(3p'+4s'+t'+c')$	69.7 ± 2.8	0.03 ± 0.02
$\bar{B}^0 \rightarrow$	K^+K^-	-(e + pa)	0.07 ± 0.11	-	$B^0 \rightarrow$	π^+K^-	-(p' + t')	19.7 ± 0.6	-0.098 ± 0.015
_	$K^0 \overline{K}^0$	(- · <i>r</i> /	1.0 ± 0.2	-		$\pi^0 \bar{K}^0$	$\frac{1}{\sqrt{2}}(p' - c')$	10.0 ± 0.6	-0.12 ± 0.11
	<u> </u>	P	1.0 ± 0.2	0.00 0.10					0.33 ± 0.21
	π ' π	-(t+p)	5.2 ± 0.2	0.39 ± 0.19		K^0n	$-\frac{1}{(s'+c')}$	12 ± 03	-
				-0.58 ± 0.09		TZO /	$\sqrt{3}(0,1,0)$	1.2 1 0.0	
	$\pi^0\pi^0$	$\frac{1}{\sqrt{2}}(-c+p)$	1.3 ± 0.2	0.36 ± 0.32		$K^{0}\eta'$	$\frac{1}{\sqrt{6}}(3p'+4s'+c')$	64.9 ± 4.4	-0.09 ± 0.06
	$\pi^0 n$	$\sqrt{2}$ $(2n \pm s)$	0.60 ± 0.46	_					0.60 ± 0.08
	<i>" '1</i>	$-\frac{1}{\sqrt{6}}(2p+3)$	0.00 ± 0.40	_	$\bar{B}^0_s \rightarrow$	K^+K^-	-(p'+t')	34 ± 9	-
	$\pi^{0}\eta'$	$\frac{1}{\sqrt{3}}(p+2s)$	1.2 ± 0.7	-	5	$K^0 \overline{K}^0$	n'	_	_
	$\eta\eta$	$\frac{1}{3\sqrt{2}}(2c+2p+2s)$	< 1.2	-		$\pi^+\pi^-$	-(e'+na')	< 1.7	_
	$\eta\eta'$	$-\frac{1}{3\sqrt{2}}(2c+2p+5s)$	< 1.7	-		$\pi^{0}\pi^{0}$	$\frac{1}{1}(e' + pa')$	< 2.1	-
	$\eta'\eta'$	$\frac{1}{3\sqrt{2}}(c+p+4s)$	< 10	-		$\pi^0\eta$	$\sqrt{2} \left(-\frac{1}{\sqrt{2}} c' \right)$	-	-
$\bar{B}^0_s \rightarrow$	$K^+\pi^-$	-(t+p)	< 5.6	-		$\pi^0 \eta'$	$-\frac{\sqrt{6}}{\frac{1}{\sqrt{6}}}c'$	-	-
	$K^0\pi^0$	$-\frac{1}{\sqrt{2}}(-c+p)$	-	-		$\eta\eta$	$-\frac{1}{2\sqrt{2}}(2p'-2s'-2c')$	-	-
	$\bar{K}^0\eta$	$-\frac{1}{\sqrt{3}}(c+s)$	-	-		$\eta \eta'$	$\frac{1}{2\sqrt{2}}(4p'+2s'-c')$	-	-
	$\bar{K}^0 \eta'$	$\frac{1}{\sqrt{6}}(c+3p+4s)$	-	-		$\eta'\eta'$	$\frac{1}{3\sqrt{2}}(4p'+8s'+2c')$	-	-

ICHEP 06 w/ scale factors

SU(3)_F Breaking

► In general, one expects factorization (into the product of a decay constant and a weak transition form factor) to work in *T* and *C* amplitudes. Therefore, a dominant correction for the former two topologies is obviously $f_{\rm K} / f_{\pi}$.

- However, whether the penguin amplitude can be factorized is more questionable.
- ➤ Comparing |p| from $B^0 \rightarrow K^0 \underline{K}^0$ and $B^+ \rightarrow K^+ \underline{K}^0$ with |p'| from $B^+ \rightarrow K^0 \pi^+$, one gets $|p/p'| \cdot 0.23 \pm 0.02$ consistent with $|V_{cd}/V_{cs}|$.
- ► This partly justifies our use of $SU(3)_F$ as the working assumption and that f_K/f_π is not preferred when relating p to p⁰.

SU(3) Breaking

 \blacktriangleright We use ρ and η as our fitting parameters, instead of weak phases.

- We consider various SU(3) breaking schemes, and present the following four representatives:
 - 1. exact flavor SU(3) symmetry for all amplitudes;
 - 2. including the factor $f_{\rm K}/f_{\pi}$ for |T| only;
 - 3. including the factor $f_{\rm K}/f_{\pi}$ for both |T| and |C| only; and
 - 4. including a universal SU(3) breaking factor ξ for all amplitudes on top of Scheme 3.
- > Including the factor $f_{\rm K}/f_{\pi}$ for |P| does not improve $\chi^2_{\rm min}$.
- > Still keep exact SU(3) symmetry for the strong phases.

Partial Fits ($\pi \pi$, πK , and KK)

➤ There are 22 data points in this set, including the BRs and CPAs, along with $|V_{ub}| = (0.426 \pm 0.036) \pounds 10^{-4}$ and $|V_{cb}| = (41.63 \pm 0.65) \pounds 10^{-4}$ that help fixing A and $\sqrt{(\rho^2 + \eta^2)}$.
10 to 11 parameters

 Robust results against SU(3) breaking.

> Prefer $f_{\rm K}/f_{\pi}$ for *T* and *C*, factorizable to a good approximation.

≽ ξ' 1.04.

 More reliable because no uncertainties from η and η⁰.
 C.W. Chiang

Parameter	Scheme 1	Scheme 2	Scheme 3	Scheme 4
$\bar{\rho}$	$0.139^{+0.042}_{-0.037}$	$0.134_{-0.036}^{+0.041}$	$0.134^{+0.041}_{-0.036}$	$0.133^{+0.039}_{-0.035}$
$\overline{\eta}$	0.401 ± 0.030	0.403 ± 0.031	0.404 ± 0.031	0.399 ± 0.031
A	0.807 ± 0.013	0.807 ± 0.013	0.807 ± 0.013	0.807 ± 0.013
T	$0.573^{+0.055}_{-0.047}$	$0.575^{+0.055}_{-0.047}$	$0.574^{+0.055}_{-0.047}$	$0.582^{+0.056}_{-0.049}$
C	0.371 ± 0.050	0.364 ± 0.050	0.364 ± 0.049	0.372 ± 0.051
δ_C	-57.6 ± 10.3	-55.9 ± 10.7	-55.8 ± 10.2	-56.3 ± 10.1
P	0.121 ± 0.002	0.122 ± 0.002	0.122 ± 0.002	0.117 ± 0.008
δ_P	-22.7 ± 4.0	-18.8 ± 3.2	-19.3 ± 3.2	$-18.6^{+3.2}_{-3.5}$
$ P_{EW} $	$0.011^{+0.006}_{-0.003}$	$0.011^{+0.006}_{-0.003}$	$0.011^{+0.005}_{-0.003}$	$0.011^{+0.004}_{-0.003}$
$\delta_{P_{EW}}$	$-4.3^{+34.1}_{-50.6}$	$2.2^{+32.0}_{-49.3}$	$-10.0^{+37.2}_{-45.3}$	-15.1 ± 39.9
ξ	1(fixed)	1(fixed)	1(fixed)	$1.04^{+0.08}_{-0.07}$
δ_{EW}	0.013 ± 0.006	0.013 ± 0.006	0.013 ± 0.005	0.013 ± 0.004
$\chi^2_{\rm min}/dof$	18.9/12	18.0/12	16.4/12	16.1/11

UT from Rare B Deca amps. in units of 10⁴ eV

UT from $\pi \pi$, πK , and KK Only

Scheme 3 only (preferred and difference from others miniscule):

24

Large C Amplitude

➤ We observe a large *C*, with the ratio |C/T| being about 0.63 ± 0.08 and a sizeable strong phase of about $(-56 \pm 10)^{\circ}$ relative to *T*.

[In our old fits, the ratio and relative strong phase between *C* and *T* are ≥ 0.7 and $\sim -(110-130)^{\circ}$.]

► These are mainly driven by the facts that the $\pi^0 \pi^0$ mode has a large branching ratio and that $A_{CP}(K^+\pi^0)$ is very different from $A_{CP}(K^+\pi^-)$ [the new $K \pi$ problem].

$$A(B^{+} \to K^{0}\pi^{+}) = P'$$

$$\sqrt{2}A(B^{+} \to K^{+}\pi^{0}) = -(P' + T' + C' + P'_{EW})$$

$$A(B^{0} \to K^{+}\pi^{-}) = -(P' + T')$$

$$\sqrt{2}A(B^{0} \to K^{0}\pi^{0}) = P' - C' - P'_{EW}$$

Pictorially

The large |C| and strong phase may be explained within SM by including NLO vertex corrections.
[Li, Mishima, and Sanda, 2005]

 $T \exp(i\gamma)$ $(T+C) \exp(i\gamma)$ P

 $(T+C) \exp(-i\gamma)$

Br 1/4 Br

➢ However, it may as well be the EW penguin...

Electroweak Penguins

Within the SM, the color-allowed penguin can be related to the sum of color-allowed and -suppressed tree amplitudes via a Fierz transformation: [Neubert and Rosner, 1998; Gronau, Pirjol and Yan, 1999.]

$$P_{EW} = -\delta_{EW}|T+C|e^{i\delta_{PEW}}$$

where
$$\delta_{EW} \simeq -\frac{3}{2} \frac{C_9 + C_{10}}{C_1 + C_2} \simeq 0.0135 \pm 0.0012$$

- ➢ In our fits, we treat P_{EW} and the strong phase δ_{PEW} (~ −10° w.r.t.
 T) as free parameters; their values do not vary much in different schemes and agree with the SM expectation.
- We ignore the color-suppressed penguin amplitude because it will introduce one more free parameter but not improve the fitting confidence level.

Predictions for $B_{u,d}$ Decays

	Observable	Scheme 1	Scheme 2	Scheme 3	Scheme 4
	$Br(\pi^+\pi^-)$	5.4 ± 1.1	5.4 ± 1.0	5.3 ± 1.0	5.3 ± 1.1
$/n = 0.05 \text{ or } n^2 t + 1.45 \pm 0.20$	$Br(\pi^0\pi^0)$	1.6 ± 0.4	1.6 ± 0.4	1.6 ± 0.4	1.5 ± 0.4
7 p - c, cl. exp t. 1.45±0.29	$Br(\pi^-\pi^0)$	5.3 ± 1.2	5.4 ± 1.2	5.4 ± 1.2	5.4 ± 1.3
	$Br(\pi^+K^-)$	20.2 ± 1.0	20.1 ± 1.1	20.1 ± 1.1	20.3 ± 4.3
	$Br(\pi^0 \bar{K}^0)$	9.9 ± 1.0	9.9 ± 1.0	10.0 ± 0.9	10.1 ± 2.3
	$Br(\pi^-\bar{K}^0)$	23.0 ± 1.1	23.1 ± 1.1	23.1 ± 1.1	23.4 ± 4.8
	$Br(\pi^0 K^-)$	12.0 ± 1.2	12.1 ± 1.2	12.0 ± 1.1	12.2 ± 2.5
	$Br(K^+K^-)$	0	0	0	0
	$Br(K^0\bar{K}^0)$	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.2
	$Br(K^-\bar{K}^0)$	1.1 ± 0.1	1.1 ± 0.1	1.1 ± 0.1	1.0 ± 0.2
result of comparable amps	$\mathcal{A}(\pi^+\pi^-)$	0.32 ± 0.07	0.27 ± 0.06	0.28 ± 0.06	0.26 ± 0.06
	$\mathcal{A}(\pi^0\pi^0)$	0.47 ± 0.15	0.49 ± 0.15	0.49 ± 0.14	0.50 ± 0.14
	$A_{CP}(\pi^-\pi^0)$	-0.01 ± 0.04	-0.02 ± 0.03	-0.01 ± 0.03	-0.01 ± 0.03
$/ p^{0} + t^{0}$, cf. exp't: -0.098 ± 0.015	$A_{CP}(\pi^+K^-)$	-0.08 ± 0.02	-0.09 ± 0.02	-0.09 ± 0.02	-0.09 ± 0.02
	$\mathcal{A}(\pi^0 K_S)$	-0.07 ± 0.03	-0.08 ± 0.02	-0.09 ± 0.03	-0.10 ± 0.03
	$A_{CP}(\pi^-\bar{K}^0)$	0	0	0	0
$/ p^{0} + t^{0} + c^{0}$,	$\rightarrow A_{CP}(\pi^0 K^-)$	0.00 ± 0.03	0.00 ± 0.03	0.01 ± 0.04	0.02 ± 0.04
cf exp't: 0.05+0.03	$A_{CP}(K^+K^-)$	0	0	0	0
C1. CAP 1. 0.05±0.05	$\mathcal{A}(K^0\bar{K}^0)$	0	0	0	0
	$A_{CP}(K^-K^0)$	0	0	0	0
$/ p - c$, large S_{CP} predicted	$S(\pi^+\pi^-)$	-0.580 ± 0.130	-0.585 ± 0.130	-0.584 ± 0.130	-0.565 ± 0.141
	$\mathcal{S}(\pi^0\pi^0)$	0.814 ± 0.109	0.812 ± 0.108	0.810 ± 0.106	0.786 ± 0.113
	$S(\pi^0 K_S)$	0.851 ± 0.042	0.850 ± 0.041	0.861 ± 0.041	0.858 ± 0.042
$/ p^{0} - c^{0}$, cf. exp't: 0.33 \pm 0.21	$S(K^0K^0)$	-0.000 ± 0.014	-0.000 ± 0.014	-0.000 ± 0.014	-0.000 ± 0.015
				6406	00
C.w. Chiang	I from Rare E	B Decays B	R in units of	of 10 ⁻⁶	28

Predictions for B_s Decays

6 (2410) 0106	Observable	Scheme 1	Scheme 2	Scheme 3	Scheme 4
CI. (34 ± 9) £10 ⁻⁰	$Br(\pi^+\pi^-)$	0	0	0	0
by CDF 2005;	$Br(\pi^0\pi^0)$	0	0	0	0
fluctuation or big	$Br(\pi^+K^-)$	5.0 ± 1.0	5.0 ± 1.0	5.0 ± 1.0	5.0 ± 1.0
SU(3) breaking?	$Br(\pi^0 K^0)$	1.5 ± 0.3	1.5 ± 0.3	1.5 ± 0.3	1.4 ± 0.3
	$Br(K^+K^-)$	18.9 ± 1.0	18.8 ± 1.0	18.8 ± 1.0	19.0 ± 4.0
involve p^{0} , can	$Br(K^0\bar{K}^0)$	20.0 ± 1.0	20.2 ± 1.0	20.1 ± 1.0	20.4 ± 4.2
test SU(3)	$\mathcal{A}(\pi^+\pi^-)$	0	0	0	0
	$\mathcal{A}(\pi^0\pi^0)$	0	0	0	0
/t+p	$\rightarrow A_{CP}(\pi^+K^-)$	0.32 ± 0.07	0.27 ± 0.06	0.28 ± 0.06	0.26 ± 0.06
	$\mathcal{A}(\pi^0 K_S)$	0.47 ± 0.15	0.49 ± 0.15	0.49 ± 0.14	0.50 ± 0.14
/ $t^{0}+p^{0}$, related	$\mathcal{A}(K^+K^-)$	-0.08 ± 0.02	-0.09 ± 0.02	-0.09 ± 0.02	-0.09 ± 0.02
to $B \rightarrow \pi^+ K^-$	$\mathcal{A}(K^0\bar{K}^0)$	0	0 <i>New</i>	CDF result (9/21/2	2006) 0
	$\mathcal{S}(\pi^+\pi^-)$	0	0 BR =	$= (5.0 \pm 0.75 \pm 1.0)$	E10 ⁻⁶ 0
/ n a related to	$\mathcal{S}(\pi^0\pi^0)$	0	0 ACP	$P = 0.39 \pm 0.15 \pm 0.00$	0
T p = c, related to r	$\mathcal{S}(\pi^0 K_S)$	0.340 ± 0.202	0.365 ± 0.194	0.359 ± 0.193	0.308 ± 0.201
$B_{\rm d} \rightarrow \pi^{\circ} \pi^{\circ}$	$\mathcal{S}(K^+K^-)$	0.147 ± 0.022	0.199 ± 0.028	0.198 ± 0.028	0.211 ± 0.035
	$\mathcal{S}(K^0\bar{K}^0)$	-0.043 ± 0.004	-0.044 ± 0.004	-0.044 ± 0.004	-0.043 ± 0.004

UT from Rare B Decays BR in units of 10⁻⁶

29

Adding One New Amplitude

► If we add one new amplitude *N* with its own weak and strong phases, ϕ_N and δ_N , (3 more parameters) to the strangeness-changing amplitude c^0

$$V \to Y_{sb}^u \xi_c C - (Y_{sb}^u + Y_{sb}^c) P_{EW} + N .$$

with $N = |N| \exp [i(\phi_N + \delta_N)]$

while fixing the Neubert-Rosner relation $\delta_{\text{EW}} = 0.0135$, the value of χ^2_{min} reduces from ~16 down to ~4 in Scheme 3.

The new amplitude does not scale and appear like others in strangeness-conserving decays.

➤ We obtain |N| ' 18⁺³₋₄ eV (in comparison with |T| ' 0.55£10⁴ eV, |C| ' 0.32£10⁴ eV, and |P| ' 0.12£10⁴ eV that are not changed by much), ϕ_N ' (92±4)°, and δ_N ' (-14±5)°.

C.W. Chiang

Discussions

- ➤ It seems difficult to determine whether the new amplitude N is associated with C or $P_{\rm EW}$, since they always appear in pairs.
- ➤ Our results have $|N| / |V_{cb}V_{cs}| = 0.04 \pounds 10^4$ eV and $|N| / |V_{ub}V_{us}| = 2.2 \pounds 10^4$ eV, showing that |N| is unexpectedly large.
- Since N is assumed to enter only c' in the $K \pi$ modes but not c in the $\pi \pi$ modes, thus it behaves more like P_{EW} than C.
- The above finding may look contradictory to what we have found before, where |P_{EW}| is preferred by data to have the SM value. This is because in the previous fit, the weak phase of P_{EW} is fixed according to the SM. But here the electroweak penguin-like new amplitude N is allowed to have its own weak phase.

Global Fits

There are totally 34 data points to fit.

- > The singlet penguin S is required to explain large BRs of the $\eta^{0}K$ modes.
- ► Worse fitting quality, largely due to $S_{\eta 0_{K_s}}$, BR (ηK^+) and BR $(\pi^+\eta')$.
- May need of more theory parameters.

Parameter	Scheme 1	Scheme 2	Scheme 3	Scheme 4
$\bar{ ho}$	$0.089^{+0.031}_{-0.027}$	$0.087^{+0.029}_{-0.026}$	$0.087^{+0.029}_{-0.026}$	$0.096^{+0.029}_{-0.026}$
$ar\eta$	0.377 ± 0.027	0.378 ± 0.028	0.379 ± 0.027	0.370 ± 0.027
A	0.809 ± 0.012	0.809 ± 0.012	0.809 ± 0.012	0.809 ± 0.012
T	$0.641^{+0.056}_{-0.050}$	$0.642^{+0.056}_{-0.050}$	$0.640^{+0.056}_{-0.049}$	$0.649^{+0.056}_{-0.049}$
C	0.426 ± 0.048	0.418 ± 0.048	0.415 ± 0.047	0.436 ± 0.049
δ_C	-72.5 ± 7.3	-70.4 ± 7.5	-70.0 ± 7.3	-68.3 ± 7.2
P	0.121 ± 0.002	0.121 ± 0.002	0.121 ± 0.002	0.110 ± 0.008
δ_P	-17.8 ± 3.2	-16.0 ± 2.8	-16.4 ± 2.8	-15.9 ± 2.6
$ P_{EW} $	$0.012^{+0.006}_{-0.004}$	$0.011^{+0.005}_{-0.003}$	$0.012^{+0.006}_{-0.004}$	$0.013^{+0.006}_{-0.004}$
$\delta_{P_{EW}}$	$-58.8^{+39.8}_{-20.6}$	$-47.7^{+42.9}_{-24.9}$	$-58.1^{+35.9}_{-19.3}$	$-57.6^{+32.5}_{-18.2}$
S	$0.048^{+0.004}_{-0.003}$	$0.047^{+0.004}_{-0.003}$	$0.047^{+0.003}_{-0.003}$	0.042 ± 0.004
δ_S	-48.3 ± 10.6	-44.8 ± 10.2	-44.2 ± 9.8	-42.9 ± 9.3
ξ	1(fixed)	1(fixed)	1(fixed)	$1.10^{+0.09}_{-0.07}$
δ_{EW}	0.014 ± 0.006	0.013 ± 0.005	0.014 ± 0.006	0.015 ± 0.006
χ^2/dof	37.4/22	34.8/22	32.9/22	30.6/21

32

12 to 13 parameters

UT from Global Fits

Scheme 3 only (difference from others miniscule):

33

Comparison With Limited Fits

- The magnitudes of *P* and $P_{\rm EW}$ are about the same in both the limited and global fits.
- > |T| and |C| become slightly larger in the global fits, but the ratio |T/C| ' 0.65 remains about the same.
- The extra SU(3)-breaking parameter ξ increases from 1.04 to 1.10.
- > |S/ is about four times | $P_{\rm EW}$ |, proving its significance.
- The strong phase of S is close to that of $P_{\rm EW}$ and about -30° from *P*.

Predictions for $B_{u,d}$ Decays

	Observable	Scheme 1	Scheme 2	Scheme 3	Scheme 4
	$Br(\pi^+\pi^-)$	5.3 ± 1.0	5.3 ± 1.0	5.3 ± 1.0	5.3 ± 1.0
	$Br(\pi^0\pi^0)$	1.7 ± 0.3	1.7 ± 0.3	1.7 ± 0.3	1.6 ± 0.3
	$Br(\pi^-\pi^0)$	4.8 ± 1.0	4.9 ± 1.0	4.9 ± 1.0	5.1 ± 1.1
	$Br(\pi^+K^-)$	20.3 ± 1.0	20.2 ± 1.0	20.2 ± 1.0	20.4 ± 4.3
	$Br(\pi^0 K^0)$	9.6 ± 1.0	9.6 ± 0.9	9.6 ± 1.0	9.8 ± 2.3
	$Br(\pi^-\bar{K}^0)$	22.6 ± 1.1	22.7 ± 1.1	22.7 ± 1.1	23.1 ± 4.8
	$Br(\pi^0 K^-)$	12.3 ± 1.2	12.2 ± 1.1	12.3 ± 1.2	12.5 ± 2.7
	$Br(K^0\bar{K}^0)$	1.1 ± 0.1	1.1 ± 0.1	1.1 ± 0.1	0.9 ± 0.1
	$Br(K^-K^0)$	1.2 ± 0.1	1.2 ± 0.1	1.2 ± 0.1	1.0 ± 0.2
predicted to have same BR;	$Br(\pi^0\eta)$	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	0.8 ± 0.1
cf. exp't: 0.60±0.46 and 1.2±0.7.	$Br(\pi^0\eta')$	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	0.8 ± 0.1
	$Br(\pi^{-}\eta)$	4.6 ± 0.6	4.6 ± 0.6	4.6 ± 0.6	4.6 ± 0.7
	$Br(\pi^-\eta')$	3.2 ± 0.3	3.2 ± 0.3	3.2 ± 0.3	3.0 ± 0.4
	$Br(K^0\eta)$	1.4 ± 0.2	1.3 ± 0.2	1.4 ± 0.2	1.4 ± 0.3
	$Br(\bar{K}^0\eta')$	65.3 ± 5.2	65.7 ± 5.0	65.5 ± 4.8	66.4 ± 13.0
	$Br(K^-\eta)$	1.5 ± 0.3	1.5 ± 0.2	1.5 ± 0.3	1.5 ± 0.4
predict larger $A(\pi^0\pi^0) \sim 0.7$ but	$Br(K^-\eta')$	69.2 ± 5.5	69.5 ± 5.3	69.3 ± 5.1	70.1 ± 13.8
smaller $S(\pi^0 \pi^0) \sim 0.65$	$Br(\eta\eta)$	0.8 ± 0.1	0.8 ± 0.1	0.8 ± 0.1	0.8 ± 0.1
Sindifier $S(n, n) = 0.005$,	$Br(\eta'\eta')$	0.4 ± 0.0	0.4 ± 0.0	0.4 ± 0.0	0.4 ± 0.0
cf. exp't $A(\pi^0 \pi^0) = 0.36 \pm 0.32;$	$Br(\eta\eta')$	1.2 ± 0.1	1.2 ± 0.1	1.2 ± 0.1	1.1 ± 0.1
result of larger $ T $ and $ C $.	$CP(\pi^+\pi^-)$	0.27 ± 0.06	0.24 ± 0.05	0.25 ± 0.05	0.22 ± 0.04
	$CP(\pi^0\pi^0)$	0.71 ± 0.10	0.70 ± 0.10	0.70 ± 0.10	0.67 ± 0.09
	$CP(\pi^{-}\pi^{0})$	0.03 ± 0.03	0.02 ± 0.03	0.03 ± 0.03	0.04 ± 0.03
C.W. Chiang BR in units of 10 ⁻⁶	$CP(\pi^+K^-)$	-0.07 ± 0.02	-0.08 ± 0.02	-0.08 ± 0.02	-0.08 ± 0.02
Brenn and Brenn and Brenn	$CP(\pi^0 \bar{K}^0)$	-0.13 ± 0.02	-0.12 ± 0.02	-0.15 ± 0.03	-0.17 ± 0.03
	$CP(\pi^-\eta)$	-0.09 ± 0.10	-0.11 ± 0.09	-0.10 ± 0.09	-0.10 ± 0.09

Predictions for B_s Decays

	Observable	Scheme 1	Scheme 2	Scheme 3	Scheme 4
	$Br(\pi^+\pi^-)$	0	0	0	0
	$Br(\pi^0\pi^0)$	0	0	0	0
	$Br(\pi^+K^-)$	5.0 ± 0.9	5.0 ± 0.9	5.0 ± 0.9	5.0 ± 0.9
	$Br(\pi^0 K^0)$	1.6 ± 0.3	1.6 ± 0.3	1.6 ± 0.3	1.5 ± 0.3
	$Br(K^+K^-)$	18.9 ± 1.0	18.9 ± 1.0	18.9 ± 1.0	19.1 ± 4.0
	$Br(K^0K^0)$	19.7 ± 1.0	19.8 ± 1.0	19.8 ± 1.0	20.2 ± 4.2
	$Br(\pi^0\eta)$	0	0	0.1 ± 0.0	0.1 ± 0.0
Jacob and the second	$Br(\pi^0\eta')$	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.1
destructive	$Br(\bar{K}^0\eta)$	0.7 ± 0.2	0.7 ± 0.2	0.7 ± 0.2	0.7 ± 0.2
interference	$Br(K^0\eta')$	3.3 ± 0.3	3.4 ± 0.3	3.4 ± 0.3	2.8 ± 0.3
between p^0 and	\rightarrow $Br(\eta\eta)$	2.0 ± 0.4	2.0 ± 0.4	2.0 ± 0.4	2.0 ± 0.6
9 <mark>0</mark>	\rightarrow $Br(\eta'\eta')$	48.3 ± 4.4	48.6 ± 4.3	48.3 ± 4.1	48.9 ± 9.8
constructive -	\rightarrow $Br(\eta\eta')$	22.4 ± 1.5	22.6 ± 1.4	22.5 ± 1.4	22.9 ± 4.7
interference	$CP(\pi^{+}\pi^{-})$	0	0	0	0
between p^0 and	$CP(\pi^{0}\pi^{0})$	0	0	0	0
0 <mark>0</mark>	$CP(\pi^+K^-)$	0.27 ± 0.06	0.24 ± 0.05	0.25 ± 0.05	0.22 ± 0.04
	$CP(\pi^0 K^0)$	0.71 ± 0.10	0.70 ± 0.10	0.70 ± 0.10	0.67 ± 0.09
	$CP(K^+K^-)$	-0.07 ± 0.02	-0.08 ± 0.02	-0.08 ± 0.02	-0.08 ± 0.02
BR in units of 10-	$6 CP(K^0K^0)$	0	0	0	0
	$CP(\pi^0\eta)$	0.20 ± 0.47	0.32 ± 0.48	0.19 ± 0.46	0.18 ± 0.45
	$CP(\pi^0 n')$	0.20 ± 0.47	0.32 ± 0.48	0.19 ± 0.46	0.18 ± 0.45

Summary

- → We perform global χ^2 fits to charmless $B \rightarrow P P$ decays and determine theoretical parameters in various SU(3)-conserving and -breaking schemes (based on ICHEP06 data).
- The (ρ, η) vertex obtained from the partial fit is higher than but consistent with the CKMfitter/UTfit results; global fits shifts it to a smaller ρ value. These results are robust in all the schemes.
- ➤ We observe a large |C| with a nontrivial strong phase, and a $P_{\rm EW}$ about the right size as in the SM. However, the fitting results improve a lot with a new EWP-like amplitude having new strong and weak phases.
- We make predictions based upon the fitting results, particularly for the B_s system to be observed in the next few years.

Thank You for Your Attentions

Amplitude Decomposition Again

М	ode	Flavor Amplitude	BR	\mathcal{A}_{CP}	M	ode	Flavor Amplitude	BR	\mathcal{A}_{CP}
$B^- \rightarrow$	$\pi^{-}\pi^{0}$	$-\frac{1}{\sqrt{2}}(t+c)$	5.7 ± 0.5	0.04 ± 0.05	$B^- \rightarrow$	$\pi^- \bar{K}^0$	p'	23.1 ± 1.0	0.01 ± 0.02
	$K^{-}\overline{K}^{0}$	v2 v n	1.4 ± 0.3	0.12 ± 0.18		$\pi^0 K^-$	$-\frac{1}{\sqrt{2}}(p' + t' + c')$	12.8 ± 0.6	0.05 ± 0.03
	$\pi^- n$	$-\frac{1}{2}(t+c+2p+s)$	4.4 ± 0.4	-0.19 ± 0.07		$K^-\eta$	$-\frac{1}{\sqrt{3}}(s'+t'+c')$	2.2 ± 0.4	-0.29 ± 0.11
	$\pi^- n'$	$\frac{1}{\sqrt{3}}(t+c+2p+4s)$	2.6 ± 0.8	0.15 ± 0.15		$K^-\eta'$	$\frac{1}{\sqrt{6}}(3p'+4s'+t'+c')$	69.7 ± 2.8	0.03 ± 0.02
$\bar{B}^0 \rightarrow$	K^+K^-	-(e + na)	0.07 ± 0.11	-	$\bar{B}^0 \rightarrow$	π^+K^-	-(p'+t')	19.7 ± 0.6	-0.098 ± 0.015
D	$K^0 \overline{K}^0$	(c + pa)	10 ± 0.21			$\pi^0 \bar{K}^0$	$\frac{1}{\sqrt{2}}(p' - c')$	10.0 ± 0.6	-0.12 ± 0.11
	A A	p (t + m)	1.0 ± 0.2	-					0.33 ± 0.21
	π ' π	-(t + p)	5.2 ± 0.2	0.39 ± 0.19		$K^0\eta$	$-\frac{1}{c^{2}}(s'+c')$	1.2 ± 0.3	-
	0.0	1 /	10100	-0.58 ± 0.09		$\bar{K}^0 n'$	$\frac{1}{3p'} (3p' + 4s' + c')$	64.9 ± 4.4	-0.09 ± 0.06
	$\pi^0\pi^0$	$\frac{1}{\sqrt{2}}(-c+p)$	1.3 ± 0.2	0.36 ± 0.32		,	$\sqrt{6}$ (-1		0.60 ± 0.08
	$\pi^0\eta$	$-\frac{1}{\sqrt{6}}(2p+s)$	0.60 ± 0.46	-	\bar{B}^0	K^+K^-	$-(n' \pm t')$	34 ± 0	0.00 ± 0.00
	$\pi^0 \eta'$	$\frac{1}{\sqrt{3}}(p+2s)$	1.2 ± 0.7	-	$D_s \rightarrow$	$K^0 \overline{K}^0$	-(p+i)	54 ± 3	-
	$\eta\eta$	$\frac{1}{3\sqrt{2}}(2c+2p+2s)$	< 1.2	-		$\pi^+\pi^-$	$p = (e' \pm ne')$	- 17	-
	$\eta\eta'$	$-\frac{1}{2\sqrt{2}}(2c+2p+5s)$	< 1.7	-		$\pi^{0}\pi^{0}$	$\frac{1}{2}(e' + pa')$	< 2.1	_
	$\eta'\eta'$	$\frac{1}{3\sqrt{2}}(c+p+4s)$	< 10	-		$\pi^0 n$	$\sqrt{2}(c' + pu')$ $-\frac{1}{c'}c'$	-	-
$\bar{B}^0_s \rightarrow$	$K^+\pi^-$	-(t+p)	< 2.1	-		$\pi^0 n'$	$-\frac{\sqrt{6}}{1}c'$	_	
-	$K^0\pi^0$	$-\frac{1}{\sqrt{2}}(-c+p)$	-	-		nn	$-\frac{1}{2c}(2p'-2s'-2c')$	ICH	IFP 06
	$\bar{K}^0\eta$	$-\frac{1}{\sqrt{2}}(c+s)$	-	-		''''''''''''''''''''''''''''''''''''''	$\frac{3\sqrt{2}}{1}(4p'+2s'-c')$		
	$\bar{K}^0 \eta'$	$\frac{1}{\sqrt{6}}(c+3p+4s)$	-	-		$\eta'\eta'$	$\frac{3\sqrt{2}(4p'+2c')}{\frac{1}{3\sqrt{2}}(4p'+8s'+2c')}$	w/sca	le lactors

The singlet penguin amplitude plays an important role in modes with η and η^0 , where their wave functions are assumed to be: $\eta = (s\underline{s} - u\underline{u} - d\underline{d})/\sqrt{3}$ and $\eta^0 = (2s\underline{s} + u\underline{u} + d\underline{d})/\sqrt{6}$.

CKM Fitter Results

