Lattice Operator Product Expansion

and the Structure Functions

$$
\begin{aligned}
& \text { C.-J. David Lin } \\
& \text { CTS-NTU }
\end{aligned}
$$

NTHU, Hsinchu
21/09/06

Based on

W. Detmold and C-JDL, Phys Rev D73, 014501 (2006).

Outline

- Hadronic tensor and the OPE.
- The OPE on the lattice.
- Extracting moments from lattice data.
- Application to the pion distribution amplitude.
- Conclusion.

Deeply Inelastic

Lepton-Hadron Scattering, I

A good review: Aneesh Manohar, hep-ph/9204208.

Dimensionless hadronic tensor $W_{S}^{\mu \nu}(p, q)$
\rightarrow decomposed into the structure functions $F_{1,2}$ and $g_{1,2}$.

Dimensionless hadronic tensor $T_{S}^{\mu \nu}(p, q)$
\rightarrow decomposed into the structure functions $\tilde{F}_{1,2}$ and $\tilde{g}_{1,2}$.

- Optical theorem relates Imag of \tilde{F}, \tilde{g} to F, g.
- The structure functions are functions of $x=-q^{2} / 2 p \cdot q$ and $-q^{2} / p^{2}$.

Deeply Inelastic

Lepton-Hadron Scattering, II

- DIS is the study of the regime $-q^{2} / p^{2} \rightarrow \infty$ at fixed $x=-q^{2} / 2 p \cdot q$.
\rightarrow Asymptotic freedom of QCD.
\rightarrow The Bjorken scaling.
- Physical region is $0 \leq x \leq 1$.
- The DIS regime can be shown to be dominated by the structure of the hadron along the light-cone.
\rightarrow Difficult for field theory formulated in Euclidean space.
- Can perform an operator product expansion.
\rightarrow A short distance expansion, works at $x \rightarrow \infty$.
\rightarrow Extract information, i.e., moments of the structure functions, in this unphysical region.

Hadronic tensor and the OPE

$$
\begin{gathered}
T\left[J^{\mu}(z) J^{\nu}(0)\right]=\sum \mathcal{C}_{i}\left(z^{2}, \mu^{2}\right) z_{\mu_{1}} \ldots z_{\mu_{n}} \mathcal{O}_{i}^{\mu \nu \mu_{1} \ldots \mu_{n}}(\mu) \\
\text { twist }=\text { dimension - spin }
\end{gathered}
$$

Powers of $1 / x$ in the matrix elements.

Lattice calculations

- Analytic continuation
\rightarrow Difficult to obtain $T_{S}^{\mu \nu}$ directly.
- Operator mixing and renormalisation
\rightarrow Difficult for high-spin operators.

The OPE on the lattice General features

$$
\underbrace{\langle p, S| T\left[J^{\mu}(z) J^{\nu}(0)\right]|p, S\rangle}_{\text {Simulation }}=\underbrace{\sum \mathcal{C}_{i}\left(z^{2}, \mu^{2}\right) z_{\mu_{1}} \ldots z_{\mu_{n}}}_{\text {Analytical calculation }} \underbrace{\langle p, S| \mathcal{O}_{i}^{\mu \nu \mu_{1} \ldots \mu_{n}}(\mu)|p, S\rangle}_{\text {Fits }}
$$

- First investigated in kaon physics.
C. Dawson et al., 1998.

Our proposal

- Simulation of $\sum_{S} T_{S}^{\mu \nu} \rightarrow$ Continuum limit.
\rightarrow No power divergence.
- Perform the OPE in Euclidean space
- Fit the matrix elements.
\rightarrow No need for analytic continuation.
\rightarrow No need for operator matching.
- Not obtaining $T_{S}^{\mu \nu}$ in Minkowski space directly.

The OPE on the lattice Specific features

- A fictitious "valence" heavy quark Ψ and current

$$
J_{\Psi, \psi}^{\mu}(z)=\bar{\Psi}(z) \gamma^{\mu} \psi(z)+\bar{\psi}(z) \gamma^{\mu} \Psi(z)
$$

- Study the Euclidean Compton scattering tensor

$$
T_{\Psi, \psi}^{\mu \nu}=\sum_{S} \int d^{4} z \mathrm{e}^{i q \cdot z}\langle p, S| T\left[J_{\Psi, \psi}^{\mu}(z) J_{\Psi, \psi}^{\nu}(0)\right]|p, S\rangle
$$

- Sum the target-mass effects.
- Compute the twist-two matrix elements.

Why a "valence" heavy quark?

- Two large scales, q^{2} and m_{ψ}.

$$
\wedge_{\mathrm{QCD}} \ll m_{\Psi} \sim \sqrt{q^{2}} \ll \frac{1}{a}
$$

- Remove many higher-twist contributions.
- No all-to-all propagator in the simulation.
- The Fourier transform is practical $\rightarrow z_{4} \sim 1 / m_{\psi}$.

The OPE on the lattice Some details

Higher-twist components

$$
\begin{gathered}
\frac{i(i D D+q)+m_{\psi}}{(i D+q)^{2}+m_{\psi}^{2}}=-\frac{i(i D D+q)+m_{\Psi}}{Q^{2}+D^{2}-m_{\Psi}^{2}} \sum_{n=0}^{\infty}\left(\frac{-2 i q \cdot D}{Q^{2}+D^{2}-m_{\psi}^{2}}\right)^{n} \\
Q^{2}=-q^{2}, \quad M_{\Psi}=m_{\psi}+\alpha / 2 \\
Q^{2}+D^{2}-m_{\Psi}^{2}=\widetilde{Q}^{2}=Q^{2}-M_{\Psi}^{2}+\alpha M_{\Psi}+\beta
\end{gathered}
$$

No contribution in $T_{\Psi, u}^{\mu \nu}-T_{\Psi, d}^{\mu \nu}$.

Removed because Ψ is non-dynamical.

Extrating moments from data The Euclidean Compton tensor

$$
\begin{gathered}
\sum_{S}\langle p, S| \bar{\psi} \gamma^{\left\{\mu_{1}\right.}\left(i D^{\mu_{2}}\right) \ldots\left(i D^{\left.\mu_{n}\right\}}\right)-\operatorname{tr}|p, S\rangle=A_{\psi}^{n}\left(\mu^{2}\right)\left[p^{\mu_{1}} \ldots p^{\mu_{n}}-\operatorname{tr}\right] \\
\sum_{S}\langle p, S| \bar{\psi}\left(i D^{\left\{\mu_{1}\right.}\right) \ldots\left(i D^{\left.\mu_{n}\right\}}\right)-\operatorname{tr}|p, S\rangle=\widehat{A}_{\psi}^{n}\left(\mu^{2}\right)\left[p^{\mu_{1}} \ldots p^{\mu_{n}}-\operatorname{tr}\right] \\
T_{\psi, \psi}^{\{\mu \nu\}}(p, q)=i \sum_{\substack{n=2 \\
\text { even }}}^{\infty} A_{\psi}^{n}\left(\mu^{2}\right) \zeta^{n} \mathcal{F}\left[C_{n}^{(1)}(\eta), C_{n-1}^{(2)}(\eta), C_{n-2}^{(3)}(\eta), n, q^{2}, \widetilde{Q}^{2}, \mu^{2}\right] \\
-2 i \frac{M\left(m_{\Psi}-m\right)}{\widetilde{Q}^{2}} \delta^{\mu \nu} \sum_{\substack{n=0 \\
\text { even }}}^{\infty} \widehat{\mathcal{C}}_{n} \widehat{A}_{\psi}^{n}\left(\mu^{2}\right) \zeta^{n} C_{n}^{(1)}(\eta)
\end{gathered}
$$

- The Gegenbauer polynomial: target-mass effects.

$$
\eta=\frac{p \cdot q}{\sqrt{p^{2} q^{2}}}
$$

- $\widetilde{Q}^{2} \sim-q^{2}-M_{\psi}^{2}$ is the large scale for the OPE.

$$
\zeta=\frac{\sqrt{p^{2} q^{2}}}{\widetilde{Q}^{2}}
$$

- Remove \widehat{A}_{ψ}^{n} by choosing $\mu \neq \nu$.

Extracting moments from data Plots

$$
\begin{aligned}
& T_{\Psi, \psi}^{\{34\}}(p, q)=\sum_{n=2, \text { even }}^{\infty} A_{\psi}^{n}\left(\mu^{2}\right) f(n) \\
& p=(0,0,0, i M) \quad, \quad q=\left(0,0, \sqrt{q_{0}^{2}-Q^{2}}, i q_{0}\right)
\end{aligned}
$$

Extracting moments from data Correlators

No contribution for $T_{\Psi, u}^{\mu \nu}-T_{\Psi, d}^{\mu \nu}$

Additional contractions if light-light current is used.

Application to the Pion
 Distribution Amplitude

Related to the matrix element $\langle\pi| T\left[\bar{d}(z) \gamma_{\mu} \gamma_{5} u(0)\right]|0\rangle$.

- A crucial input in $B \rightarrow \pi \pi$ decays via QCD factorisation.
- The OPE leads to the need of the matrix elements

$$
\langle\pi(p)| \bar{\psi} \gamma^{\left\{\mu_{1}\right.} \gamma_{5}\left(i D^{\mu_{2}}\right) \ldots\left(i D^{\left.\mu_{n}\right\}}\right)|0\rangle .
$$

- These can be obtained by applying the OPE to the "unphysical" matrix element

$$
\langle\pi(p)| T\left[V_{\Psi, \psi}^{\mu}(z) A_{\Psi, \psi}^{\nu}(0)\right]|0\rangle
$$

Conclusion

- Extract moments via the OPE on the lattice.
- Can be applied to other nucleon structure functions.
- Can be applied to the pion distribution amplitude
- Numerical work is being carried out.

