Lattice Operator Product Expansion and the Structure Functions

C.-J. David Lin CTS-NTU

NTHU, Hsinchu 21/09/06

Based on

W. Detmold and C-JDL, Phys Rev D73, 014501 (2006).

Outline

- Hadronic tensor and the OPE.
- The OPE on the lattice.
- Extracting moments from lattice data.
- Application to the pion distribution amplitude.
- Conclusion.

Deeply Inelastic

Lepton-Hadron Scattering, I

A good review: Aneesh Manohar, hep-ph/9204208.

Dimensionless hadronic tensor $W_S^{\mu\nu}(p,q)$ \rightarrow decomposed into the structure functions $F_{1,2}$ and $g_{1,2}$.

Dimensionless hadronic tensor $T_S^{\mu\nu}(p,q)$ \rightarrow decomposed into the structure functions $\tilde{F}_{1,2}$ and $\tilde{g}_{1,2}$.

- Optical theorem relates Imag of \tilde{F}, \tilde{g} to F, g.
- The structure functions are functions of $x = -q^2/2p \cdot q$ and $-q^2/p^2$.

Deeply Inelastic

Lepton-Hadron Scattering, II

• DIS is the study of the regime $-q^2/p^2 \rightarrow \infty$ at fixed $x = -q^2/2p \cdot q$.

 \rightarrow Asymptotic freedom of QCD.

- \rightarrow The Bjorken scaling.
- Physical region is $0 \le x \le 1$.
- The DIS regime can be shown to be dominated by the structure of the hadron along the light-cone.
 - \rightarrow Difficult for field theory formulated in Euclidean space.
- Can perform an operator product expansion.
 - \rightarrow A short distance expansion, works at $x \rightarrow \infty$.
 - \rightarrow Extract information, *i.e.*, moments of the structure functions, in this unphysical region.

Hadronic tensor and the OPE

Lattice calculations

- Analytic continuation
 - \rightarrow Difficult to obtain $T_S^{\mu\nu}$ directly.
- Operator mixing and renormalisation
 - \rightarrow Difficult for high-spin operators.

The OPE on the lattice General features

 $\underbrace{\langle p, S | T [J^{\mu}(z) J^{\nu}(0)] | p, S \rangle}_{\mathcal{L}} = \underbrace{\sum \mathcal{C}_i(z^2, \mu^2) \ z_{\mu_1} \dots z_{\mu_n}}_{\mathcal{L}} \underbrace{\langle p, S | \mathcal{O}_i^{\mu \nu \mu_1 \dots \mu_n}(\mu) | p, S \rangle}_{\mathcal{L}}$

Simulation Analytical calculation Fits

• First investigated in kaon physics.

C. Dawson et al., 1998.

Our proposal

• Simulation of $\sum_{S} T_{S}^{\mu\nu} \rightarrow$ Continuum limit.

 \rightarrow No power divergence.

- Perform the OPE in Euclidean space
- Fit the matrix elements.
 - \rightarrow No need for analytic continuation.
 - \rightarrow No need for operator matching.
- Not obtaining $T_S^{\mu\nu}$ in Minkowski space directly.

The OPE on the lattice Specific features

• A fictitious "valence" heavy quark Ψ and current

 $J^{\mu}_{\Psi,\psi}(z) = \bar{\Psi}(z)\gamma^{\mu}\psi(z) + \bar{\psi}(z)\gamma^{\mu}\Psi(z).$

• Study the Euclidean Compton scattering tensor

$$T^{\mu\nu}_{\Psi,\psi} = \sum_{S} \int d^{4}z \ e^{iq \cdot z} \left\langle p, S \left| T \left[J^{\mu}_{\Psi,\psi}(z) J^{\nu}_{\Psi,\psi}(0) \right] \right| p, S \right\rangle$$

- Sum the target-mass effects.
- Compute the twist-two matrix elements.

Why a "valence" heavy quark?

• Two large scales, q^2 and m_{Ψ} .

 $\Lambda_{\rm QCD} \ll m_{\Psi} \sim \sqrt{q^2} \ll rac{1}{a}$

- Remove many higher-twist contributions.
- No all-to-all propagator in the simulation.
- The Fourier transform is practical $\rightarrow z_4 \sim 1/m_{\Psi}$.

Extrating moments from data *The Euclidean Compton tensor*

$$\sum_{S} \left\langle p, S \left| \bar{\psi} \gamma^{\{\mu_{1}} \left(i D^{\mu_{2}} \right) \dots \left(i D^{\mu_{n}} \right\} \right) - \operatorname{tr} \left| p, S \right\rangle = A_{\psi}^{n} (\mu^{2}) \left[p^{\mu_{1}} \dots p^{\mu_{n}} - \operatorname{tr} \right]$$
$$\sum_{S} \left\langle p, S \left| \bar{\psi} \left(i D^{\{\mu_{1}\}} \right) \dots \left(i D^{\mu_{n}} \right\} \right) - \operatorname{tr} \left| p, S \right\rangle = \widehat{A}_{\psi}^{n} (\mu^{2}) \left[p^{\mu_{1}} \dots p^{\mu_{n}} - \operatorname{tr} \right]$$

$$T_{\Psi,\psi}^{\{\mu\nu\}}(p,q) = i \sum_{\substack{n=2\\ \text{even}}}^{\infty} A_{\psi}^{n}(\mu^{2}) \zeta^{n} \mathcal{F} \left[C_{n}^{(1)}(\eta), C_{n-1}^{(2)}(\eta), C_{n-2}^{(3)}(\eta), n, q^{2}, \tilde{Q}^{2}, \mu^{2} \right] \\ -2i \frac{M(m_{\Psi}-m)}{\tilde{Q}^{2}} \delta^{\mu\nu} \sum_{\substack{n=0\\ \text{even}}}^{\infty} \hat{C}_{n} \hat{A}_{\psi}^{n}(\mu^{2}) \zeta^{n} C_{n}^{(1)}(\eta)$$

• The Gegenbauer polynomial: target-mass effects.

$$\eta = \frac{p \cdot q}{\sqrt{p^2 q^2}}$$

• $\tilde{Q}^2 \sim -q^2 - M_{\Psi}^2$ is the large scale for the OPE.

$$\zeta = \frac{\sqrt{p^2 q^2}}{\tilde{Q}^2}$$

• Remove \hat{A}^n_{ψ} by choosing $\mu \neq \nu$.

Extracting moments from data

Additional contractions if light-light current is used.

Application to the Pion

Distribution Amplitude

Related to the matrix element $\langle \pi | T \left[\overline{d}(z) \gamma_{\mu} \gamma_{5} u(0) \right] | 0 \rangle$.

- A crucial input in $B \to \pi\pi$ decays via QCD factorisation.
- The OPE leads to the need of the matrix elements

$$ig\langle \pi(p) \left| ar{\psi} \gamma^{\{\mu_1} \gamma_5 \left(i D^{\mu_2}
ight) \dots \left(i D^{\mu_n \}}
ight) \right| \mathsf{0} ig
angle.$$

• These can be obtained by applying the OPE to the "unphysical" matrix element

Conclusion

- Extract moments via the OPE on the lattice.
- Can be applied to other nucleon structure functions.
- Can be applied to the pion distribution amplitude
- Numerical work is being carried out.