Scalar Glueball, Scalar Quarkonia, and their Mixing

Hai-Yang Cheng Academia Sinica, Taipei

in collaboration with Chun-Khiang Chua & Keh-Fei Liu

NTHU, October 26, 2006

Each quark has one of three different color charges and antiquark carries an anti-color charge

Quarks exchange gluons and create a very strong color force

- Gluons carry a color and an anti-color and hence can have a self-coupling
- Single quark has not been observed yet. QCD tells it cannot be observed (quark confinement). All naturally occurring particles are colorless.

Glueball: color-singlet bound state of gluons as gluons have a self coupling

Y. Chen et al. hep-lat/0510074

- ι(1440) [now η(1405)] as 0⁻⁺ glueball
- Amsler & Close (1995) claimed $f_0(1500)$ discovered at LEAR as an evidence for a scalar glueball because its decay to $\pi\pi$,KK, $\eta\eta$, $\eta\eta'$ is not compatible with a simple qq picture.
- V.V. Anisovich et al. (2005) claimed evidence of a tensor glueball, namely, f₂(2000)

f₀(1500): dominant scalar glueball ~ 1550 MeV [Bali et al. '93, Amsler et al. '95]

 $K\underline{K}/\pi\pi \sim 0.25 \Rightarrow small s\underline{s}$ content

f₀(1710): ππ is suppressed relative to K<u>K</u> ⇒ primarily ss dominated f₀(1370): K<u>K</u> is suppressed relative to ππ ⇒ dominated by nn states $n\overline{n} = \frac{u\overline{u} + d\overline{d}}{\sqrt{2}}$

$$\begin{array}{cccc} \mathbf{G} & \mathbf{ss} & \mathbf{nn} \\ M_{G} & y & \sqrt{2}y \\ y & M_{S} & 0 \\ \sqrt{2}y & 0 & M_{N} \end{array} \end{array} & \left| f_{0}(1710) \right\rangle = 0.36 |G\rangle + 0.09 |N\rangle + 0.93 |S\rangle \\ \left| f_{0}(1500) \right\rangle = 0.84 |G\rangle - 0.41 |N\rangle + 0.35 |S\rangle \\ \left| f_{0}(1370) \right\rangle = 0.40 |G\rangle - 0.91 |N\rangle - 0.07 |S\rangle$$

Amsler, Close, Kirk, Zhao, He, Li...

 $M_{S}{>}M_{G}{>}M_{N} \qquad M_{G}{\sim} \ 1500 \ \text{MeV}, \qquad M_{S}{-}M_{N} \sim 200{-}300 \ \text{MeV}$

Further support:

- $f_0(1710)$ is not seen in $p\underline{p} \rightarrow \pi^0 f_0 \Rightarrow f_0(1710)$ dominated by ss
- While $f_0(1710)$ is observed in $\gamma\gamma \rightarrow KK$, $f_0(1500)$ has not been seen in

 $\gamma\gamma \rightarrow K\underline{K} \text{ or } \pi^+\pi^- \Rightarrow \text{ absence of } f_0(1500) \text{ coupling to } 2\gamma$

 \Rightarrow glueball structure of f₀(1500)

Other scenarios:

Lee, Weingarten (lattice): $f_0(1710)$ glueball ; $f_0(1500)$ n<u>n</u> ; $f_0(1370)$ s<u>s</u>

Giacosa et al. (χ Lagrangian): 4 allowed sloutions

PDG (2006): p.168

Experimental evidence is mounting that $f_0(1500)$ has considerable affinity for glue and that the $f_0(1370)$ and $f_0(1710)$ have large $u\underline{u}+d\underline{d}$ and ss components, respectively.

F.E. Close (Oxford): a leading figure in hadron spectroscopy

C. Amsler (Zurich): a dominant figure in searching for (exotic)

non-q<u>q</u> mesons

author of "Non-qq mesons", Particle Data Group

高能及中能原子核物春季學校 MAY 8-12 1990 TAINAN TAIWAN R.O.C. SPRING SCHOOL ON MEDIUM-AND-HIGH-ENERGY NUCLEAR PHYSICS

Problems:

- Near degeneracy of a₀(1450) and K₀^{*}(1430) cannot be explained due to the mass difference between M_s and M_n
- Improved LQCD ⇒ M_G ~ 1700 MeV rather than ~ 1500 MeV
- If $f_0(1710)$ is ss dominated, $J/\psi \rightarrow \phi f_0(1710) >> J/\psi \rightarrow \omega f_0(1710)$ BES $\Rightarrow \Gamma(J/\psi \rightarrow \omega f_0(1710)) = (6.6\pm 2.7) \Gamma(J/\psi \rightarrow \phi f_0(1710))$
- **J**/ $\psi \rightarrow \gamma$ gg and glueballs couple strongly to gluons
 - $\Rightarrow \qquad \text{If } f_0(1500) \text{ is primarily a glueball,} \\ I/m \rightarrow f_0(1500) \rightarrow I/m \rightarrow f_0(1710)$
 - $J/\psi \rightarrow \gamma f_0(1500) >> J/\psi \rightarrow \gamma f_0(1710)$
 - Expt $\Rightarrow \Gamma(J/\psi \rightarrow \gamma f_0(1710)) \sim 5 \Gamma(J/\psi \rightarrow \gamma f_0(1500))$

In this work we consider two recent lattice inputs for mass matrix:

- glueball spectrum from quenched LQCD
- approximate SU(3) symmetry in scalar meson sector (> 1GeV)

Y. Chen et al. hep-lat/0510074

- improved quenched LQCD calculations based on much larger & finer lattices
- infinite quark mass \Rightarrow no qq loops

 $M(0^{++}){=}1710\pm50\pm80~MeV$

 $\rm M_G$ before mixing should be close to 1700 MeV

1650 MeV by Lee, Weingarten

1550 Mev by Bali

 $a_0(980)$ is not seen \Rightarrow not a qq state !

 $a_0(1450)$ mass is independent of quark mass when $m_q \le m_s$

 \Rightarrow Flavor SU(3) is a good symmetry for scalar meson sector > 1 GeV

 \Rightarrow M_s should be close to M_N

- LQCD \Rightarrow K₀^{*}(1430)=1.41±0.12 GeV
 - \Rightarrow near degeneracy of K₀^{*}(1430) and a₀(1450)

This unusual behavior is not understood and it serves as a challenge to the existing QM

Near degeneracy also occurs in charm sector, $D_{s0}^{*}(2317)$ & $D_{0}^{*}(2308)$. This is the place where the conventional QM seems not to work.

Belle: 2308±17±32 MeV for D₀* FOCUS: 2407±21±35 MeV

Lattice calculations of a₀

Bardeen et al	Wilson fermion	m _{a0} =1.326±0.086 GeV
RBC	domain wall fermion	m _{a0} =1.43±0.10 GeV
		m _{a0} =1.58±0.34 GeV
SCALAR	dynamical fermion	m _{a0} ~ 1.8GeV
Kunihiro et al		for $m_{\pi}/m_{\rho} \sim 0.7$
UKQCD(03')	dynamical fermion	m _{a0} =1.0±0.2 GeV
UKQCD(06')		m _{a0} =1.01±0.04 GeV
BGR		m _{a0} ~ 1.45 GeV
MILC	stagged fermion	indication for a ₀
Alford & Jaffe		indication of bound qqqq states

Prelovsek, Dawson, Izubuchi, Orginos, Soni PR, D70, 094503 (2004); hep-ph/0511110: domain wall fermions

Mass for lightest nonsinglet two-quark $a_0 = 1.58 \pm 0.34$ GeV, which can be identified with $a_0(1450)$

In chiral limit, m_{σ} =540±170 MeV

Need to check the volume dependence of the observed states

Two lattice sizes : 12³x28, 16³x28

For two-particle state, $W_{12}/W_{16}=V_3(16)/V_3(12)=16^3/12^3=2.37$ For one-particle state, $W_{12}/W_{16}=1$

♦ Scalar qq meson has a unit of orbital angular momentum

) a higher mass above 1 GeV
 f₀(1370), a₀(1450), K*₀(1430) and f₀(1500)/f₀(1710) form a P-wave qq

 nonet with some possible mixing with glueballs, supported by lattice.

Four-quark qqqqq scalar meson can be lighter due to
(i) absence of the orbital angular momentum barrier in S-wave 4-quark state.
(ii) a strong attraction between (qq)₃ and (qq)₃
) a mass near or below 1 GeV

Light scalar mesons σ , κ , f₀(980), a₀(980), form an **S-wave** nonet

Scalar Mesons and Glueball

$$\mathbf{M} = \begin{pmatrix} M_U & 0 & 0 & 0 \\ 0 & M_D & 0 & 0 \\ 0 & 0 & M_S & 0 \\ 0 & 0 & 0 & M_G \end{pmatrix} + \begin{pmatrix} x & x & x_s & y \\ x & x & x_s & y \\ x_s & x_s & x_{ss} & y_s \\ y & y & y_s & 0 \end{pmatrix}$$

x: quark-antiquark annihilation y: glueball-quarkonia mixing

first order approximation: exact SU(3) \Rightarrow M_U=M_D=M_S=M, x=x_s=x_{ss}, y_s=y

$$\begin{array}{cccc} a_{0} \text{ octet singlet } \mathbf{G} \\ \begin{pmatrix} M & 0 & 0 & 0 \\ 0 & M & 0 & 0 \\ 0 & 0 & M + 3x & \sqrt{3}y \\ 0 & 0 & \sqrt{3}y & M_{G} \end{pmatrix} \\ \end{array} \Rightarrow \begin{cases} a_{0} = (u\overline{u} - d\overline{d})/\sqrt{2} = 1474, & M_{U} = M_{D} = 1474 \pm 19 \text{ MeV} \\ f_{0}(1500) = (u\overline{u} + d\overline{d} - 2s\overline{s})/\sqrt{6} = 1474 \\ f_{0}(1370) \text{ and glueball are slightly mixed} \end{cases}$$

■ y=0, $f_0(1710)$ is a pure glueball, $f_0(1370)$ is a pure SU(3) singlet with mass = M+3x \Rightarrow x = -33 MeV

■ y≠ 0, slight mixing between glueball & SU(3)-singlet qq. For lyl ~| xl, mass shift of $f_0(1370)$ & $f_0(1710)$ due to mixing is only ~ 10 MeV

 \Rightarrow In SU(3) limit, M_G is close to 1700 MeV

SU(3) Breaking

Need SU(3) breaking in mass matrix to lift degeneracy of $a_0(1450)$ and $f_0(1500)$

Need SU(3) breaking in decay amplitudes to accommodate observed strong decays

e.g.
$$f_0(1500) = \alpha(|u\bar{u}\rangle + |d\bar{d}\rangle) + \beta |s\bar{s}\rangle$$

 $R_1 = \frac{\Gamma(f_0(1500) \to K\bar{K})}{\Gamma(f_0(1500) \to \pi\pi)} = \frac{1}{3} \left(1 + \frac{\beta}{\alpha}\right)^2 \frac{p_K}{p_\pi}, \qquad R_2 = \frac{\Gamma(f_0(1500) \to \eta\eta)}{\Gamma(f_0(1500) \to \pi\pi)} = \frac{1}{27} \left(2 + \frac{\beta}{\alpha}\right)^2 \frac{p_\eta}{p_\pi}$

For SU(3) octet $f_0(1500)$, $\beta = -2\alpha \implies R_1=0.21$ vs. 0.246±0.026 (expt) $R_2=0$ vs. 0.145±0.027 (expt)

LQCD [Lee, Weingarten] \Rightarrow y= 43±31 MeV, y/y_s=1.198±0.072 y and x are of the same order of magnitude !

SU(3) breaking effect is treated perturbatively

Chiral suppression in scalar glueball decay

If f₀(1710) is primarily a glueball, how to understand its decay to PP ?

If G \rightarrow PP coupling is flavor blind, $\Gamma(G \rightarrow \pi\pi)/\Gamma(G \rightarrow K\overline{K}) = 0.91$

$$\frac{\Gamma(f_0(1710) \to \pi\pi)}{\Gamma(f_0(1710) \to K\overline{K})} = \begin{cases} 0.20 \pm 0.04 & \text{WA102} \\ < 0.13 & \text{BES from } J/\psi \to \omega(K\overline{K},\pi\pi) \\ 0.41^{+0.11}_{-0.17} & \text{BES from } J/\psi \to \gamma(K\overline{K},\pi\pi) \end{cases}$$

chiral suppression: $A(G \rightarrow q\underline{q}) \propto m_q/m_G$ in chiral limit

[Chanowitz]

$$\Gamma(G \to \pi\pi) / \Gamma(G \to K\overline{K}) \propto m_u^2 / m_s^2$$
?

Chiral suppression at hadron level is probably not so strong due to nonperturbative chiral symmetry breaking and hadronization

[Chao, He, Ma] : m_q is interpreted as chiral symmetry breaking scale [Zhang, Jin]: instanton effects may lift chiral suppression

LQCD [Sexton, Vaccarino, Weingarten] \Rightarrow

$$g^{\pi\pi}$$
: $g^{K\overline{K}}$: $g^{\eta\eta} = 0.834^{+0.603}_{-0.579}$: $2.654^{+0.372}_{-0.402}$: $3.099^{+0.364}_{-0.423}$

	Experiment	fit (i)	fit (ii)
$M_{f_0(1710)}({ m MeV})$	$1718 \pm 6 \ [18]$	1718	1718
$M_{f_0(1500)}({ m MeV})$	$1507 \pm 5 \ [18]$	1510	1504
$M_{f_0(1370)}(MeV)$	1350 ± 150	1348	1346
$\frac{\Gamma(f_0(1500) \rightarrow \eta \eta)}{\Gamma(f_0(1500) \rightarrow \pi \pi)}$	$0.145 \pm 0.027 \; [18]$	0.068	0.081
$\frac{\Gamma(f_0(1500) \rightarrow KK)}{\Gamma(f_0(1500) \rightarrow \pi\pi)}$	$0.246 \pm 0.026 \ [18]$	0.26	0.27
$\frac{\Gamma(f_0(1710) \rightarrow \pi\pi)}{\Gamma(f_0(1710) \rightarrow KK)}$	0.30 ± 0.20 (see text)	0.21	0.34
$\frac{\Gamma(f_0(1710) \rightarrow \eta \eta)}{\Gamma(f_0(1710) \rightarrow K\bar{K})}$	0.48 ± 0.15 [20]	0.26	0.51
$\frac{\Gamma(a_0(1450) \rightarrow K\bar{K})}{\Gamma(a_0(1450) \rightarrow \pi\eta)}$	0.88 ± 0.23 [18]	1.10	1.12
$\frac{\Gamma(a_2(1320) \rightarrow KK)}{\Gamma(a_2(1320) \rightarrow \pi\eta)}$	0.34 ± 0.06 [18]	0.45	0.46
$\frac{\Gamma(f_2(1270) \rightarrow KK)}{\Gamma(f_2(1270) \rightarrow \pi\pi)}$	$0.054^{+0.005}_{-0.006}$ [18]	0.056	0.057
χ^2 /d.o.f.		2.6	2.5

_	Experiment	fit (i)	fit (ii)
$\frac{\Gamma(f_0(1370) \to KK)}{\Gamma(f_0(1370) \to \pi\pi)}$	see text	1.27	0.79
$\frac{\Gamma(f_0(1370) \to \eta \eta)}{\Gamma(f_0(1370) \to K\bar{K})}$	$0.35 \pm 0.30 \ [18]$	0.21	0.12
$\frac{\Gamma(f_2(1270) \to \eta \eta)}{\Gamma(f_2(1270) \to \pi \pi)}$	$0.003 \pm 0.001 \; [27]$	0.005	0.005
$\frac{\Gamma(J/\psi \to \omega f_0(1710))}{\Gamma(J/\psi \to \phi f_0(1710))}$	$6.6 \pm 2.7 \ [21, \ 31, \ 32]$	3.8	4.1
$\frac{\Gamma(J/\psi \to \omega f_0(1500))}{\Gamma(J/\psi \to \phi f_0(1500))}$		0.44	0.47
$\frac{\Gamma(J/\psi \to \omega f_0(1370))}{\Gamma(J/\psi \to \phi f_0(1370))}$		2.85	2.56
$\Gamma_{f_0(1710) \to PP}(MeV)$	$< 137 \pm 8$ [18]	84	133
$\Gamma_{f_0(1370) \to PP}(MeV)$		404	146

In absence of chiral suppression (i.e. $g^{\pi\pi}=g^{KK}=g^{\eta\eta}$), the predicted $f_0(1710)$ width is too small (< 1 MeV) \Rightarrow importance of chiral suppression in G \rightarrow PP decay

Consider two different cases of chiral suppression in $G \rightarrow PP$:

(i)
$$g^{\pi\pi} : g^{K\overline{K}} : g^{\eta\eta} = 1:1.55:1.59$$

(ii) $g^{\pi\pi} : g^{K\overline{K}} : g^{\eta\eta} = 1:3.15:4.74$

Scenario (ii) with larger chiral suppression is preferred

$$|f_{0}(1710)\rangle = 0.93|G\rangle + 0.32|N\rangle + 0.17|S\rangle$$

$$|f_{0}(1500)\rangle = 0.03|G\rangle = 0.54|N\rangle + 0.84|S\rangle$$

$$|f_{0}(1370)\rangle = -0.36|G\rangle + 0.78|N\rangle + 0.52|S\rangle$$

Amseler-Close-Kirk

$$f_{0}(1710) \rangle = 0.36 |G\rangle + 0.09 |N\rangle + 0.93 |S\rangle$$

$$f_{0}(1500) \rangle = -0.84 |G\rangle - 0.41 |N\rangle + 0.35 |S\rangle$$

$$f_{0}(1370) \rangle = 0.40 |G\rangle - 0.91 |N\rangle - 0.07 |S\rangle$$

 M_{N} =1474 MeV, M_{S} =1498 MeV, M_{G} =1666 MeV, M_{G} > M_{S} > M_{N}

- **M**_S-M_N ~ 25 MeV is consistent with LQCD result
 - \Rightarrow near degeneracy of a₀(1450), K₀^{*}(1430), f₀(1500)
- Because nn content is more copious than ss in f₀(1710), $\Gamma(J/\psi \rightarrow \omega f_0(1710)) = 4.1 \Gamma(J/\psi \rightarrow \phi f_0(1710))$ versus 6.6±2.7 (expt) If f₀(1710)=ss, one needs large doubly OZI ~ 5 OZI [Close, Zhao]
- $\ \ \Gamma(J/\psi \rightarrow \gamma f_0(1710)) >> \Gamma(J/\psi \rightarrow \gamma f_0(1500))$

in good agreement with expt.

 $\Gamma(J/\psi \rightarrow \gamma f_0(1710)) \sim 5 \Gamma(J/\psi \rightarrow \gamma f_0(1500))$

- In f₀(1710) is not seen in pp→π⁰f₀ at LEAR (2002), but now observed in pp→π⁰ηη at Fermilab (2006)
- **2**γ-quarkonium coupling

 $f_0(1370): f_0(1500): f_0(1710) = 9.3 : 1.0 : 1.5$

 2γ coupling of f₀(1500) is weak even if it has no glue content

Conclusions

■ We use two recent lattice results to constrain mixing matrix of $f_0(1370)$, $f_0(1500)$ and $f_0(1710)$: (i) scalar glueball mass ~ 1700 MeV, (ii) SU(3) symmetry in scalar meson sector > 1 GeV

■ Exact SU(3) \Rightarrow f₀(1500) is an SU(3) octet, f₀(1370) is an SU(3) singlet with small mixing with glueball. This feature remains to be true even when SU(3) breaking is considered

■ Chiral suppression in G→PP decays is essential. Hadronic and radiative J/ ψ decays all indicate prominent glueball nature of f₀(1710)