QCD Corrections to Higgs Pair Production in Bottom Quark Fusion

Chung Kao [高 鐘] University of Oklahoma Norman Oklahoma USA

${ }^{\dagger}$ Presented at the National Tsing Hua University, May 31 (Thursday), 2007.

QCD Corrections to Higgs Pair Production in Bottom Quark Fusion

- Introduction: The Standard Higgs Model
- Leading-order cross section for $\mathrm{b} \overline{\mathrm{b}} \rightarrow \mathrm{hh}$
- NLO Corrections to $\mathrm{b} \overline{\mathrm{b}} \rightarrow \mathrm{hh}$
* the α_{s} corrections
* the $1 / \Lambda$ corrections ($b g \rightarrow b h h$), where $\Lambda \equiv \ln \left(\mathrm{M}_{\mathrm{h}} / \mathrm{m}_{\mathrm{b}}\right)$
- Two-cutoff phase space slicing method
- Results for Higgs pair production
- Conclusions

[^0]
The Standard Model Higgs Boson

- In the SM, there is one Higgs doublet and a spin-0 particle: the Higgs boson (H).

It can be produced at colliders:

Its decays are well known:

Why has't it been discovered yet?
We need higher energy and higher luminosity!

The Search for the SM Higgs boson

- Mass limit from LEP 2

With a CM energy up to $\sqrt{s}=209 \mathrm{GeV}$ and $L=100 \mathrm{pb}^{-1}$ per experiment, a stringent mass limit for the Higgs boson at 95% C.L. is $\mathrm{M}_{\mathrm{H}}>114 \mathrm{GeV} / \mathrm{c}^{2}$

Discovery potential of hadron colliders

- The Tevatron Run II will be able to discover a SM Higgs boson up to 190 GeV with $30 \mathrm{fb}^{-1}$, or it will exclude the Higgs boson at 95% C.L. with $10 \mathrm{fb}^{-1}$.
- The LHC will be able to observe a SM Higgs boson with a mass up to approximately 1 TeV .
Stange, Marciano, and Willenbrok (1994); Han and Zhang (1998).
CMS Technical Proposal (1994); ATLAS Technical Proposal (1994);
ATLAS Technical Design Report (1999).

Tevatron SM Higgs Combination

Note: the combined result is essentially equivalent to one experiment with $1.3 \mathrm{fb}^{-1}$, since both experiments have "complementary" statistics at low and high mass
\rightarrow we are indeed already close to the sensitivity required to exclude or "evidence" the higgs at the Tevatron

Gregorio Bernardi, ICHEP06, Moscow

Implications of Electroweak Precision Data for Higgs Mass with New m

M.W. Grunewald (2003); The D0 Collaboration (2004)

Top quark mass $=\mathbf{1 7 0 . 9} \boldsymbol{+ - 1 . 8} \mathbf{G e V} / \mathbf{c}^{2}$ $\mathrm{M}_{\mathrm{H}}<144 \mathrm{GeV}$ or $\mathrm{M}_{\mathrm{H}}<182 \mathrm{GeV} @ 95 \%$ C.L.

High Energy Frontier in HEP

Next projects on the HEP roadmap

- Large Hadron Collider LHC at CERN: pp @ 14 TeV
M. Lamont Tev4LHC meeting @ CERN (April)
- LHC will be closed and set up for beam on 1 July 2007
- First beam in machine: August 2007
- First collisions expected in November 2007
- Followed by a short pilot run
- First physics run in 2008 (starting April/May; a few fb^{-1} ?)
- Linear Collider (ILC) : e+e- @ 0.5-1 TeV
- Strong world-wide effort to start construction earliest around 2009/2010, if approved and budget established
- Turn on earliest 2015 (in the best of worlds)
- Study groups in Europe, Americas and Asia (\rightarrow World Wide Study)

Quest for the Higgs particle is a major motivation for these new machines

The Search for New Particles at Hadron Colliders

- We need accelerators: Fermilab Tevatron Collider near Chicago and CERN Large Hadron Collider (LHC) in Geneva.
- We need detectors: D0 and CDF (Tevatron), as well as ATLAS and CMS (LHC).
- We look for e, μ, γ (photon), jets, and hadrons (mesons or baryons).
- A jet $=\mathrm{a}$ quark, an anti-quark, or a gluon.

ATLAS
 A Toroidal LHC Apparatus

CMS Collaboration

36 Nations, 159 Institutions, 1940 Scientists (February 2003)

TRIGGER \& DATA ACQUISITION
Austia, Finiand, Fiance, Greace, Hungary, Italy, Korea, Poland. Portugal, Switzerland, UKC USA

RETURN YOKE
Barrel: Czech Rep, Estonia, Germany, Greece, Russia
Endcap: Japan*. USA Brazil
SUPERCONDUCTING MAGNET
All countries in CMS contibute to Magnet financirg in particular: Firland, France. Itrly, Japon*,
Kocea, Switreeland, USA

Total weight Overall diameter Overall length Magnetic field

12500 T
15.0 m
21.5 m 4 Tesla

TRACKER
Austria, Balgium, Finland, France, Germany.
Italy, Japan*, New Zealand, Switzerland, UK, USA
CRYSTAL ECAL
Belaus China Croata, Cyprus, France, Italy, Japan*
Portuga, Russa, Serbia, Swtzeland, UK, USA

HCAL
Barrel: Eulgaria, Incia, Spain", USA
Endcap: Belarus, Eulgaria, Russia, Ukraine HO: India

Production of Higgs Bosons

A. Gluon Fusion: $\operatorname{gg} \rightarrow \phi^{0}(\tan \beta<7)$.
B. Bottom Quark Fusion: $\mathrm{b} \overline{\mathrm{b}} \rightarrow \phi^{0}(\tan \beta>7)$

- $\sigma\left(g g \rightarrow \phi^{0} \mathrm{~b} \overline{\mathrm{~b}}\right)\left[\mathrm{m}_{\mathrm{b}}\left(\mathrm{M}_{\mathrm{b}}\right)\right]$

$$
\approx 3 \sigma\left(\mathrm{gg} \rightarrow \phi^{0} \mathrm{~b} \overline{\mathrm{~b}}\right)\left[\mathrm{m}_{\mathrm{b}}\left(\mathrm{M}_{\phi}\right)\right], \mathrm{M}_{\phi}=200 \mathrm{GeV}
$$

- $\sigma\left(\mathrm{gg} \rightarrow \phi^{0} \mathrm{~b} \overline{\mathrm{~b}}\right) \approx \sigma\left(\mathrm{b} \overline{\mathrm{b}} \rightarrow \phi^{0}\right), \mu_{\mathrm{F}}=\mathrm{M}_{\phi} / 4$
S. Dawson, C.B. Jackson, L. Reina, D. Wackeroth (2003 \& 2004);
V. Ravindran, J. Smith, and W.L. van Neerven (2003);
R.V. Harlander \& W.B. Kilgore (2002); C. Anastasiou \& K. Melnikov (2002).
M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas (1995).
T. Plehn (2002); F. Maltoni, Z. Sullivan and S. Willenbrock (2003);
E. Boos and T. Plehn (2003); R.V. Harlander and W.B. Kilgore (2003).
B. Plumper, DESY-THESIS-2002-005.
J. Campbell et al., arXiv:hep-ph/0405302.

Higgs Boson Production via Bottom-Quark Fusion

- The dominant subprocess for the production of a Higgs boson in association with bottom quarks is bottom-quark fusion $\mathrm{b} \overline{\mathrm{b}} \rightarrow \phi^{0}$.
- If we require one bottom quark at high p_{T} from the production process, the leading-order subprocess should become $\mathrm{bg} \rightarrow \mathrm{b} \phi^{0}$.
- For the production of the Higgs boson accompanied by two high $\mathrm{p}_{\mathrm{T}} \mathrm{b}$ quarks, the leading subprocess should be gg, qq $\rightarrow \mathrm{b} \overline{\mathrm{b}} \phi^{0}$.

Campbell, Ellis, Maltoni and Willenbrock (2003);
S. Dawson, C.B. Jackson, L. Reina, D. Wackeroth (2003 \& 2004); Hou, Ma, Zhang, Sun, and Wu (2003); C.S. Huang and S.H. Zhu (1999); Choudhury, Datta and Raychaudhury (1998).

Higgs Boson Production via Bottom-Quark Fusion

There were two puzzling aspects in the NLO calculations of bottom quark fusion:

- The independent corrections of order α_{s} and $1 / \ln \left(\mathrm{m}_{\mathrm{h}} / \mathrm{m}_{\mathrm{b}}\right)$ are both large and of opposite sign.
- The cross section in hadron collisions via $\mathrm{gg} \rightarrow \mathrm{b} \overline{\mathrm{b}} \phi^{0}$ is an order of magnitude smaller than that obtained from $b \bar{b} \rightarrow \phi^{0}$.

One simple solution: $\mu_{\text {Factorization }}=\mathrm{m}_{\phi / 4}$.
F. Maltoni, Z. Sullivan, and S. Willenbrock, Phys. Rev. D 67, 093005 (2003).

Order Counting for Bottom Quark Fusion

 Dicus, Stelzer, Sullivan and Willenbrock (1999)Leading-order contribution: $b \bar{b} \rightarrow H: \mathcal{O}\left[\alpha_{s}^{2} \ln ^{2}\left(M_{H} / m_{b}\right)\right]$
$\mathcal{O}\left(\alpha_{s}\right)$ correction:
(1) $b \bar{b} \rightarrow H$ with virtual gluon, and
(2) $b \bar{b} \rightarrow H g$: soft, hard/collinear, and hard/non-colinear
$\mathcal{O}\left[\left(1 / \ln \left(M_{H} / m_{b}\right)\right]\right.$ correction: $b g \rightarrow b H$
$\mathcal{O}\left[1 / \ln ^{2}\left(M_{H} / m_{b}\right)\right]$ corrections: $g g \rightarrow b \bar{b} H$

Next-to-leading order (NLO) correction =
$\mathcal{O}\left(\alpha_{s}\right)$ correction $+\mathcal{O}\left[\left(1 / \ln \left(M_{H} / m_{b}\right)\right]\right.$ correction.

Higgs Pair Production in Bottom Quark Fusion

~In the Standard Model, gluon fusion is the dominant process to produce a pair of Higgs bosons via triangle and box diagrams with quarks.
~Bottom quark fusion can also produce Higgs pairs at a lower rate.
~The rate for Higgs pair production at the LHC is small in the Standard Model.
\sim However, it can become significant in models in which the Higgs coupling to the bottom quark is enhanced.
\sim The high energy and high luminosity at the LHC might provide opportunities to detect a pair of Higgs bosons as well as to measure the trilinear Higgs couplings.

Parton Model

Probability of finding a parton of flavor a in hardon A

Leading Order Cross Section

lowest order cross section for $\mathrm{b} \overline{\mathrm{b}} \rightarrow \mathrm{h} \mathrm{h}$:

(1)

(2)

(3)
$\mathrm{b}\left(\mathrm{p}_{1}\right) \overline{\mathrm{b}}\left(\mathrm{p}_{2}\right) \rightarrow \mathrm{h}(\mathrm{p} \quad \mathrm{s}) \mathrm{h}(\mathrm{p} \quad 4)$
$\hat{\sigma}_{b \bar{\prime}}=\frac{1}{2} \frac{1}{2 \hat{s}} \int \frac{d^{3} p_{3}}{(2 \pi)^{3} 2 E_{3}} \frac{d^{3} p_{4}}{(2 \pi)^{3} 2 E_{4}}$
$(\mathbf{2} \pi)^{4} \delta^{4}\left(\mathbf{p}_{1}+\mathbf{p}_{2}-\mathbf{p}_{3}-\mathbf{p}_{4}\right)\left|\overline{\mathbf{m}_{0}}\right|^{2}$
Final state identical

$$
\left|\overline{M_{0}}\right|^{2}=\left(\frac{1}{3} \cdot \frac{1}{3}\right)\left(\frac{1}{2} \cdot \frac{1}{2}\right) \sum_{\substack{\text { spin } \\ \text { coilor }}}\left|M_{0}\right|^{2}
$$

Matrix Element Squared

Amplitudes for each diagram

$$
\begin{aligned}
& \mathbf{M}_{s}^{0}=\hat{\mathbf{M}} \\
& 0 \\
& 0 \\
& \delta_{j i}=-\frac{3 \overline{m_{b}}(\mu) M_{h}^{2}}{v^{2}\left(s-M_{h}^{2}+i M_{h} \Gamma_{h}\right)} \bar{v}\left(p_{2}\right) u\left(p_{1}\right) \delta_{j i} \\
& \mathbf{M}_{\mathbf{t}}^{0}=\hat{\mathbf{M}}_{i}^{0} \delta_{j i}=\frac{\bar{m}_{b}^{2}(\mu)}{v^{2} t} \bar{v}\left(p_{2}\right) p_{3} u\left(p_{1}\right) \delta_{j i} \\
& \mathbf{M}_{u}^{0}=\hat{\mathbf{M}}_{\mathrm{u}}^{0} \delta_{j i}=-\frac{\bar{m}_{b}^{2}(\mu)}{v^{2} u} \bar{v}\left(p_{2}\right) p_{3} u\left(p_{1}\right) \delta_{j}
\end{aligned}
$$

Matrix Element Squared

$$
\begin{aligned}
= & \frac{3}{2}\left(\frac{\bar{m}_{b}^{2}(\mu)}{v^{2}}\right)\left(\frac{\hat{s}}{v^{2}}\right)\left|\frac{M_{h}^{2}}{\left(s-M_{h}^{2}+i M_{h} \Gamma_{h}\right)}\right|^{2} \\
& +\frac{1}{6}\left(\frac{\bar{m}_{b}^{4}(\mu)}{v^{4}}\right)\left(1-\frac{M_{h}^{4}}{u t}\right) \frac{(u-t)^{2}}{u t}
\end{aligned}
$$

Next-to-Leading Order Corrections

$>\alpha_{\mathrm{s}}$ Corrections from $\mathrm{b} \overline{\mathrm{b}} \rightarrow$ hhg
\square Corrections from virtual gluons. Infrared singularity: $\mathbf{p}_{\mathbf{g}} \rightarrow \mathbf{0}$, ultra-violet singularity: $p_{\mathrm{g}} \rightarrow \infty$
\square Corrections from real gluon emission Infrared singularity: $\mathbf{p g}_{\mathbf{g}} \rightarrow \mathbf{0}$
collinear singularity: p_{g} parallels to one of initial b or $\overline{\mathbf{b}}$ momentums.
$>1 / \wedge$ Corrections from $b g \rightarrow b h h$ only collinear singularities
gluon splits into a pair of collinear b

Infrared and Collinear Divergences

$>$ Relevant Lagrangian: $\mathrm{g}=$ gauge coupling, $\mathrm{T}=\mathbf{S U}(3)$ matrices
$\mathcal{L}=\bar{\Psi}(\mathbf{i} \delta-\mathbf{g} \mathbf{A} \cdot \mathbf{T}-\mathbf{m}) \psi-\frac{1}{4} \mathbf{T r G}{ }_{\mu v} \mathbf{G}^{\mu v}-\frac{\mathbf{m}_{\Psi}}{\mathbf{v}} \mathbf{H} \bar{\Psi} \Psi-3 \frac{\mathbf{m}_{h}^{2}}{\mathbf{v}} \mathbf{H H H}$
Fields: Quark, ψ, gluon and Higgs,H.
>Problems arise from parton level interactions Infrared (IR) and collinear (CO) singularities

Ultra-Violet Divergence

Ultra-violet singularity

>Vertex with Yukawa coupling must be renormalized.
Renormalization introduces a renormalization scale μ_{R}
In principle, μ_{R} is arbitrary
In practice, μ_{R} is chosen to be a physical scale Q or $\sqrt{\hat{s}}$
interaction at distance « $1 / \mu_{R}$ or momentum scale» μ_{R} are integrated out.
Ultra-violet divergences are hidden into quantities which can be measured experimentally: mass, coupling

Running mass for Quarks

As a consequence of renormalization, just like the coupling constant, quark masses also depend on the momentum exchange and renormalization scheme
$\bar{m}(\mu)=\bar{m}\left(\mu_{0}\right)\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{0}\right)}\right)^{\gamma_{0} / \beta_{0}} \frac{1+a_{1} \frac{\alpha_{s}(\mu)}{z}}{1+a_{1} \frac{\alpha_{s}\left(\mu_{0}\right)}{\pi}}$

$$
\begin{aligned}
& \gamma_{0}=1 \\
& \gamma_{1}=\frac{1}{16}\left(\frac{202}{3}-\frac{20}{9} N_{f}\right)
\end{aligned}
$$

$$
a_{1}=-\frac{b_{1} \gamma_{0}}{b_{0}^{2}}+\frac{\gamma_{1}}{b_{0}}
$$

Pole mass: $\quad M_{b}=\bar{m}\left(M_{b}\right)\left(1+C_{F} \frac{\alpha_{S}\left(M_{b}\right)}{\pi}\right)$

Diagrams with Virtual Gluons

(1)

(4)

(7)

(2)

(5)

(8)

(3)

(6)

(9)

$$
M_{i} \equiv \mathrm{M}_{\mathrm{s}}^{2}\left(\mathrm{M}_{\mathrm{i}} \mathrm{~T}\right)_{\mathrm{ji}} \hat{M}_{\mathrm{d}}^{0} \mathrm{X}_{\mathrm{i}}
$$

Amplitude of Loop Diagrams

DAmplitude for one loop virtual corrections.

$$
M_{\text {loop }}=g_{s}^{2}\left(T^{a} T^{a}\right)_{\mathrm{ji}}\left(X_{s} \hat{M} \hat{s}_{0}^{0}+X_{t} \hat{M_{t}^{0}}+X_{u} \hat{M}_{u}^{0}\right)
$$

$$
X_{\mathrm{s}}=\mathrm{X}_{\mathrm{g}}
$$

$$
\mathbf{x}_{\mathrm{t}}=\mathbf{x}_{1}+\mathbf{x}_{3}+\mathbf{x}_{5}+\mathbf{x}_{7}
$$

$$
x_{u}=X_{2}+x_{4}+x_{6}+X_{8}
$$

Virtual corrections contain both UV and IR divergences UV is removed by renormalization counter term.
$\square \mathrm{b}$ quark Yukawa coupling is renormalized

$$
\frac{\delta_{\mathrm{m}} \mathrm{~m}_{\mathrm{b}}}{\mathrm{~m}_{\mathrm{b}}}=-\mathrm{A} \frac{16 \pi \alpha_{\mathrm{s}}}{\varepsilon}
$$

$$
A=\frac{1}{16 \pi^{2}} \Gamma(1+\varepsilon)\left(4 \pi \mu^{2}\right)^{\varepsilon}
$$

Contributions from Virtual Gluons

Matrix element squared

$$
\begin{aligned}
& \left|M_{\mathrm{v}}\right|^{2}=2 \operatorname{Re}\left(\mathrm{M}_{\text {loop }} \mathrm{M}_{0}^{*}\right)+\left|\mathrm{M}_{\text {ст }}\right|^{2} \\
& =\mathrm{A} \frac{64 \pi \mathrm{~S}_{\mathrm{s}}}{3}\left\{\left[-\frac{1}{\varepsilon^{2}}+\frac{1}{\varepsilon} \ln (\mathrm{~s})-\frac{3}{2 \varepsilon}\right]\left|M_{\circ}\right|^{2}-\left|M_{\mathrm{D}}\right|^{2}\right\}
\end{aligned}
$$

IR and UV divergences

finite terms
$\left|M_{D}\right|^{2}$ includes all remaining finite terms.
IR divergences will be canceled by the IR divergences from real gluon emission diagrams

Real Gluon Emission

Corrections from real gluon emission

(1)

(3)

(2)

(4)

(5)

(6)

(7)

(8)
there is infrared and collinear singularities $\left(m_{b} \sim 0\right)$

Soft Cutoff

We introduce a new cutoff parameter δ_{s} to separate the gluon phase space to soft and hard regions for numerical integration
\square soft regions: $\quad E_{g} \leq \delta_{s} \frac{\sqrt{s}}{2}$
Infrared and collinear singularities.
\square hard regions: $E_{g}>\delta_{s} \frac{\sqrt{s}}{2}$
only collinear singularities.

$$
\delta \hat{\sigma}_{\alpha_{s}}=\delta \hat{\sigma}_{\mathrm{v}}+\delta \hat{\sigma}_{\text {soft }}+\delta \hat{\sigma}_{\text {hard }}
$$

Corrections from Soft Gluons

$>$ soft region corrections:
We assume gluon momentum p_{g} is zero every where in the amplitude except in the denominators
The amplitude is simplified to:

$$
\frac{\mathbf{M}_{\text {soff }}=\mathbf{g}_{\mathrm{s}}^{2} \mathbf{T}_{\mathrm{ji}}\left(\frac{\mathbf{p}_{2}^{\mu}}{\mathbf{p}_{2} \cdot \mathbf{p}_{\mathrm{g}}}-\frac{\mathbf{p}_{1}^{\mu}}{\mathbf{p}_{1} \cdot \mathbf{p}_{\mathrm{g}}}\right)\left(\hat{\mathbf{M}}_{\mathrm{s}}^{0}+\hat{\mathbf{M}}_{\mathrm{t}}^{0}+\hat{M}_{\mathrm{u}}^{0}\right)}{\mathbf{Y}}
$$

infrared and collinear singularities
Three body phase space is simplified to:

$$
\left.\mathrm{d} \Phi_{3}\right|_{\text {soft }}=\left.\mathrm{d} \Phi_{2} \mathrm{~d} \Phi_{\mathrm{g}}\right|_{\text {soft }} \quad \text { Set } \mathbf{p}_{\mathbf{g}} \rightarrow \mathbf{0} \text { in } \delta \text { function. }
$$

Phase Space of the Soft Gluon

gluon phase space

$$
\begin{aligned}
& \mathbf{d} \Phi_{\mathbf{g}} \mathbf{l}_{\text {soft }}=\frac{\mathbf{d}^{\mathbf{N - 1} \mathbf{p}_{\mathbf{g}}}}{(2 \pi)^{\mathbf{N - 1} 2 \mathbf{E}_{\mathbf{g}}}=\frac{\Gamma(1-\varepsilon)}{\Gamma(1-2 \varepsilon)} \frac{\pi^{\varepsilon}}{(2 \pi)^{3}}} \\
& \int_{0}^{\frac{\sqrt{5}}{2} \delta_{s}} \mathbf{d E}_{\mathbf{g}} \mathbf{E}_{\mathrm{g}}^{1-2 \varepsilon} \int_{0}^{\pi} \sin ^{1-2 \varepsilon} \theta_{1} d \theta_{1} \int_{0}^{\pi} \sin ^{-2 \varepsilon} \theta_{2} d \theta_{2}
\end{aligned}
$$

Matrix element squared (integrated gluon phase space)

$$
\begin{aligned}
& \left|\mathbf{M}_{\text {soff }}^{\prime} \mathbf{I}^{2}=\int \mathbf{d} \Phi_{\mathrm{g}} \mathrm{I}_{\text {soff }}\right| \mathbf{M}_{\text {soff }} \mathrm{I}^{2} \\
& =\left|\mathbf{M}_{0}\right|^{2} \mathbf{A} \frac{64 \pi \alpha_{\mathrm{s}}}{3}\left[\frac{1}{\varepsilon^{2}}-\frac{1}{\varepsilon} \ln \left(\delta_{s}^{2}\right)-\frac{1}{\varepsilon} \ln (\hat{s})\right. \\
& \left.+\frac{1}{2} \ln ^{2}\left(\hat{s} \delta_{s}^{2}\right)-\frac{\pi^{2}}{3}\right]
\end{aligned}
$$

Cancellation of Infrared Divergences

Virtual diagrams plus soft contribution of real diagrams Collinear singularity

$$
\left|M_{v}\right|^{2}+\left|M_{\text {sof }}\right|^{2}
$$ from soft region, will be absorbed into PDF

$$
=\mathbf{A} \frac{64 \pi \alpha}{3}\left(-\frac{1}{\varepsilon}\right)\left[\ln \left(\delta_{s}^{2}\right)+\frac{3}{2}\right]\left|M_{0}\right|^{2}
$$

$+\mathbf{A} \frac{64 \pi \alpha_{\mathrm{s}}}{3}\left[\frac{1}{2} \ln ^{2}\left(s \delta_{s}^{2}\right)-\frac{\pi^{2}}{3}\right]\left|\mathrm{M}_{0}\right|^{2}$
$\left.-\mathrm{A} \frac{64 \pi a^{2}}{3} \right\rvert\, \mathrm{M}_{\mathrm{D}} \mathrm{I}^{2}$
Finite virtual contributions

Finite contributions from soft region

Collinear Cutoff

\square hard region has collinear singularity
We introduce second new cutoff parameter δ_{c} to separate the hard region into hard/non-collinear and hard/collinear regions.
hard/collinear regions.

$$
\frac{2 \mathbf{p}_{1} \cdot \mathbf{p}_{g}}{\mathbf{E}_{\mathrm{g}} \sqrt{\hat{s}}}<\delta_{\mathrm{c}} \quad \text { or } \quad \frac{2 \mathbf{p}_{2} \cdot \mathbf{p}_{\mathrm{g}}}{\mathbf{E}_{\mathrm{g}} \sqrt{\hat{s}}}<\delta_{c} \Rightarrow \begin{aligned}
& -1<\cos \theta_{\mathrm{g}}<-1+\bar{\delta}_{\mathrm{c}} \\
& 1-\bar{\delta}_{\mathrm{c}}<\cos \theta_{\mathrm{g}}<1
\end{aligned}
$$

α_{s} corrections change to:

$$
\delta \hat{\sigma}_{\alpha_{\mathrm{s}}}=\delta \hat{\sigma}_{\mathrm{v}}+\delta \hat{\sigma}_{\text {soft }}+\delta \hat{\sigma}_{\text {hard } / \mathrm{c}}+\delta \hat{\sigma}_{\text {hard } / \mathbf{n c}}
$$

Hard/non-collinear corrections are finite and can be computed easily.

Hard Collinear Corrections

The initial b quark splits into a hard parton b' and a collinear hard gluon.

$$
p_{b^{\prime}}=z p_{b} \quad \text { and } \quad p_{g}=(1-z) p_{b}
$$

Matrix element squared factorized to:

$$
\begin{aligned}
& \|^{\mathbf{M}} \text { nardic }\left.\right|^{2}(\mathrm{~b} \overline{\mathrm{~b}} \rightarrow \text { hhg) } \\
& \rightarrow\left(4 \pi \alpha_{\mathrm{s}}\right) \mu^{2 \varepsilon}\left|\mathrm{M}_{0}\right|^{2} \frac{-2 \mathrm{P}_{\mathrm{b}^{\prime} \mathrm{b}}(\mathrm{Z}, \varepsilon)}{\mathrm{Z}\left(\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{g}}\right)}+(1 \leftrightarrow 2)
\end{aligned}
$$

Altarelli-Parisi splitting function:

$$
\mathbf{P}_{b^{\prime} b}(z, \varepsilon)=C_{F}\left[\frac{1+z^{2}}{1-z}-\varepsilon(1-z)\right]=P_{b b}(z)+\varepsilon \mathbb{P}_{b b}(z)
$$

Phase Space of the Hard Collinear Gluon

Define a new variable, $s_{\mathrm{bg}}=2 p_{1} \bullet p_{g}$

$$
0 \leq s_{\mathrm{bg}} \leq \frac{\hat{\mathrm{s}}}{2}(1-\mathrm{z}) \delta_{\mathrm{c}}
$$

The gluon phase space change to:

$$
\frac{\mathbf{d}^{\mathbf{N}-1} \mathbf{p}_{\mathbf{g}}}{(2 \pi)^{\mathbf{N}-1} \mathbf{2 E}}=\frac{(4 \pi)^{\varepsilon}}{16 \pi^{2}} \frac{1}{\Gamma(1-\varepsilon)} d z\left(S_{b_{8}}\right)\left(1-z S_{b_{8}}\right)^{-\varepsilon}
$$

Together with matrix element squared, s_{bg} can be integrated out.

$$
\begin{aligned}
& 1 \overline{\mathrm{M}}_{\text {hard/0 }} \mathrm{I}^{2}(\mathrm{~b} \overline{\mathrm{~b}} \rightarrow \text { chg) } \\
& \rightarrow(4 \pi \alpha \mathrm{~s}) \mu^{2 \varepsilon}\left|\mathrm{M}_{0}\right|^{2} \frac{2 \mathrm{P}_{\mathrm{b}^{\prime} \mathrm{b}}(\mathbf{Z}, \varepsilon)}{\left(S_{08}\right)}+(1 \leftrightarrow 2)
\end{aligned}
$$

Hard Collinear Corrections

The cross section in hard -collinear region:

$$
\begin{aligned}
\sigma_{\text {havd ic }}= & \int d x_{1} d x_{2} \bar{b}\left(x_{2}\right) \hat{\sigma}^{\prime}(b \bar{b} \rightarrow h h) \\
& \frac{\alpha_{s}}{2 \pi}\left(\frac{4 \pi \mu^{2}}{\hat{s}}\right)^{c} \frac{\Gamma(1-\varepsilon)}{\Gamma(1-2 \varepsilon)}\left(-\frac{1}{\varepsilon}\right) \delta_{c}^{-\varepsilon} \\
& \int_{x_{1}}^{1-\delta_{s}} P_{b b}(z, \varepsilon) \frac{d z}{z}\left[\frac{(1-z)^{2}}{2 z}\right]^{-\varepsilon} b\left(\frac{x}{z}\right)
\end{aligned}
$$

Absorb this into parton distribution function

At factorization scale μ_{f}, in $\overline{\mathrm{MS}}$ scheme

$$
\begin{array}{r}
b(x)=b\left(x, \mu_{f}\right)\left\{1+\frac{\alpha_{s}}{2 \pi}(4 \pi)^{\varepsilon} \Gamma(1+\varepsilon)\left(\frac{1}{\varepsilon}\right)\left[\ln \left(\delta_{s}^{2}\right)+\frac{3}{2}\right]\right\} \\
+\frac{\alpha_{s}}{2 \pi}(4 \pi)^{c} \frac{\Gamma(1-\varepsilon)}{\Gamma(1-2 \varepsilon)}\left(\frac{1}{\varepsilon}\right)^{1-\delta_{s}} \int_{x_{1}} P_{b b}(z) \frac{d z}{z} b(x / z)
\end{array}
$$

Cancellation of Collinear Divergences

Replace $\mathrm{b}(\mathrm{x})$ by $\mathrm{b}\left(\mathrm{x}, \mu_{\mathrm{f}}\right)$ and drop terms high order than α_{s}
Extra terms in LO contributions.

$$
\left.\begin{array}{rl}
\sigma_{L 0}= & \int d x_{1} d x_{2} b\left(x_{1}, \mu\right) \bar{b}\left(x_{2}, \mu\right) \hat{\sigma}_{L O} \\
& +\int d x_{1} d x_{2} b\left(x_{1}, \mu\right) \bar{b}\left(x_{2}, \mu\right) \hat{\sigma}^{\text {collinear }} \\
\text { singularity in } \\
\text { soft region }
\end{array}\right]
$$

α_{s} Corrections to $b \bar{b} \rightarrow h h$

$$
\begin{aligned}
& \delta \sigma_{\alpha_{s}}=\sigma_{v}+\sigma_{\text {soft }}+\sigma_{\text {hard } / c}+\sigma_{\text {hard /nc }} \\
& =\int d x_{1} d x_{2} b\left(x_{1}, \mu\right) \bar{b}\left(x_{2}, \mu \hat{\sigma}_{D}\right. \\
& \text { soft }\left\{\begin{array}{l}
\int d x_{1} d x_{2} b\left(x_{1}, \mu\right) \bar{b}\left(x_{2}, \mu\right) \hat{\sigma}_{L O} \\
\times \frac{4 \alpha_{S}}{3 \pi}\left\{\left[\frac{1}{2} \ln ^{2}\left(\hat{s} \delta_{s}^{2}\right)-\frac{\pi^{2}}{3}\right]-\ln \left(\mu^{2}\right)\left[\ln \left(\delta_{s}^{2}\right)+\frac{3}{2}\right]\right\}
\end{array}\right. \\
& +\frac{\alpha_{S}}{2 \pi} C_{F} \int d x_{1} d x_{2} \bar{b}\left(x_{2}, \mu\right) \hat{\sigma}_{L O} \int_{x_{1}}^{1-\delta_{S}} \frac{d z}{z} b\left(x_{1} / z, \mu\right) \\
& \left.\times\left\{\frac{1+z^{2}}{1-z} \ln \left[\frac{\hat{s}}{\mu^{2}} \frac{(1-z)^{2}}{z} \frac{\delta_{c}}{2}\right]+(1-z)\right\}+(b \leftrightarrow \bar{b})\right\} \\
& +\int d x_{1} d x_{2} b\left(x_{1}, \mu\right) \bar{b}\left(x_{2}, \mu\right) \hat{\sigma}_{\text {hard } / n c} \\
& +(1 \leftrightarrow 2) \\
& \text { collinear }
\end{aligned}
$$

Independence on the Soft Cutoff

$$
\delta_{c}=\delta_{s} / 10, \mu_{R}=\mu_{F}=M_{\mathrm{h}} / 2
$$

(a) $\mathrm{M}_{\mathrm{h}}=120 \mathrm{GeV}$
(b) $\mathrm{M}_{\mathrm{h}}=200 \mathrm{GeV}$

Independence on the Collinear Cutoff

$$
\begin{aligned}
& \delta_{s}=10 \delta_{c}, \mu_{\mathrm{R}}=\mu_{\mathrm{F}}=\mathrm{M}_{\mathrm{h}} / 2 \\
& \begin{array}{ll}
\text { (a) } \mathrm{M}_{\mathrm{h}}=120 \mathrm{GeV} & \text { (b) } \mathrm{M}_{\mathrm{h}}=200 \mathrm{GeV}
\end{array}
\end{aligned}
$$

Corrections from $b g \rightarrow b h h$

1/^ corrections from lowest-order b g $\rightarrow \mathrm{b}$ hh

(1)

(3)

(2)

(4)

(5)

(7)

(8)

Initial gluon splits into a collinear b $\overline{\mathrm{b}}$ pair
diagram (1), (2) and (5) have collinear singularities

Collinear Cutoff for $b g \rightarrow b h h$

only collinear singularity exists
Gluon splits into a pair of collinear band \bar{b} this singularity is absorbed into gluon distribution function

We only need one cutoff to separate final b phase space into collinear and non-collinear regions.
collinear regions $\frac{-\left(\mathbf{p}_{\mathbf{g}}-\mathbf{p}_{\mathrm{b}}\right)^{2}}{\mathbf{E}_{\mathrm{g}} \sqrt{\hat{\mathbf{s}}}}<\delta_{\mathbf{c}}$
Corrections from $\mathrm{bg} \rightarrow \mathrm{bhh}$ is separated to:
$\delta \hat{\sigma}_{\mathrm{bg}}=\boldsymbol{\delta} \hat{\sigma}_{\mathrm{c}}+\boldsymbol{\delta} \hat{\sigma}_{\mathrm{nc}}$

Cancellation of the Collinear Singularity

Cross section in collinear region is simplified to

$$
\begin{aligned}
\delta \sigma_{b g / c}= & \int d x_{1} d x_{2} b\left(x_{2}\right) \hat{\sigma}(b \bar{b} \rightarrow h h) \\
& \frac{\alpha_{s}}{2 \pi}\left(\frac{4 \pi \mu^{2}}{\hat{s}}\right)^{\varepsilon} \frac{\Gamma(1-\varepsilon)}{\Gamma(1-2 \varepsilon)}\left(-\left(\frac{1}{\varepsilon}\right) \delta_{c}^{-\varepsilon}\right. \\
& \int_{x_{1}}^{1} P_{b_{s}}(z, \varepsilon) \frac{d z}{z}\left[\frac{(1-z)^{2}}{2 z}\right]^{-\varepsilon} G\left(x_{1} / z\right)
\end{aligned}
$$

Absorb this divergence into parton distribution function

$$
\begin{aligned}
G(x)= & G(x, \mu)+\frac{\alpha_{s}}{2 \pi}(4 \pi)^{\varepsilon} \frac{\Gamma(1-\varepsilon)}{\Gamma(1-2 \varepsilon)}\left(\frac{1}{\varepsilon}\right) \\
& \int_{x_{1}}^{1} P_{b g}(z) \frac{d z}{z} G(x / z)
\end{aligned}
$$

Contributions from $b g \rightarrow b h h$

$$
\begin{aligned}
\mathbf{P}_{\mathrm{bg}}(\mathbf{z}) & =\frac{1}{2}\left[\mathbf{Z}^{2}+(1-\mathbf{z})^{2}\right]-\varepsilon \mathbf{Z}(1-z) \\
& =\mathbf{P}_{\mathrm{bg}}(\mathbf{z})+\varepsilon \mathbf{P}_{\mathrm{bg}}(\mathbf{z})
\end{aligned}
$$

Corrections from bg $\rightarrow \mathbf{b h h}$

$$
\begin{aligned}
\sigma_{b g}= & \int d x_{1} d x_{2} b\left(x_{2}\right) G\left(x_{1}\right) \hat{\sigma}_{L O}(b g \rightarrow b h h) \\
= & \left.\int d x_{1} d x_{2} b\left(x_{2}\right) G\left(x_{1}, \mu\right) \hat{\sigma}_{L O} d b g \rightarrow b h h\right) \\
& +\int d x_{1} d x_{2} b\left(x_{2}\right) \hat{\sigma}(b \bar{b} \rightarrow h h) \text { Collinear cancellation } \\
& \times \frac{\alpha_{s}}{2 \pi} \frac{\Gamma(1-\varepsilon)}{\Gamma(1-2 \varepsilon)}\left(\frac{1}{\varepsilon}\right)_{x_{1}} P_{b g}(z) \frac{d z}{z} G\left(x_{1} / z, \mu\right)
\end{aligned}
$$

Cross Section of $b g \rightarrow b h h$

$$
\begin{aligned}
\delta \sigma_{b_{g}} & =\frac{\alpha_{S}}{2 \pi} \int d x_{1} d x_{2} b\left(x_{2}\right) \int_{x_{1}}^{1} \frac{d z}{z} G\left(x_{1} / z, \mu\right) \hat{\sigma}_{L O}(b \bar{b} \rightarrow h h) \\
& \times\left\{\frac{z^{2}+(1-z)^{2}}{2} \ln \left[\frac{\hat{s}}{\mu^{2}} \frac{(1-z)^{2}}{z} \frac{\delta_{c}}{2}\right]+z(1-z)\right\} \\
& +\int d x_{1} d x_{2} G\left(x_{1}, \mu\right) b\left(x_{2}, \mu\right) \hat{\sigma}_{n c}(b \mathbf{g} \rightarrow b h h) \\
& +(1 \leftrightarrow 2)
\end{aligned}
$$

$\overline{\mathrm{b}} \mathrm{g} \rightarrow \overline{\mathrm{b}} \mathrm{h} h$ Corrections have same results.

$$
\delta \sigma_{1 / \Lambda}=\delta \sigma_{b_{g}}+\delta \sigma_{\overline{b_{g}}}
$$

Independence on the Collinear Cutoff

$$
\mu_{\mathrm{R}}=\mu_{\mathrm{F}}=\mathrm{M}_{\mathrm{n}} / 2
$$

Dependence on μ

$$
\delta_{\mathrm{s}}=10^{-3}, \delta_{\mathrm{c}}=10^{-4}
$$

Cross Section versus Higgs Mass

$$
\delta_{\mathrm{s}}=10^{-3}, \delta_{\mathrm{c}}=10^{-4}
$$

Associated Higgs Pair Production

$$
\delta_{\mathrm{s}}=10^{-3}, \delta_{\mathrm{c}}=10^{-4}
$$

Higgs Pair Production via Gluon Fusion
 $\mathrm{gg} \rightarrow \mathrm{hh}$

Conclusions

~We have presented the NLO corrections to Higgs pair production via bottom quark fusion in the Standard Model.
Our NLO results are not sensitive to the difference between renormalization and factorization scales and we use the same renormalization and factorization scales.
\sim The rate of Higgs pair production in the Standard Model is very small, although the NLO corrections significantly increase this rate.
\sim However, the rate for Higgs pair production will be enhanced in models with large couplings of the Higgs bosons to b quarks.
\sim Our results are of interest in attempts to measure the trilinear Higgs coupling in such models.

$b \bar{b} \rightarrow H$ at NNLO Harlander and Kilgore (2003)

[^0]: ${ }^{\dagger}$ S. Dawson, C. Kao, Y. Wang and P. Williams, hep-ph/0610284, to be published in Phys. Rev. D.

