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Basics of AdS/CFT

• Exact equivalence between N = 4 Super Yang-Mills in the planar limit and free IIB

string theory in AdS5 × S5. (Maldacena 1997)

• Arise from the two different descriptions of low energy/decoupling limit of coinciding

D3- branes.

• Basic Tests: Identifications of Global Symmetry Groups:

– SO(2, 4): Isometry Group ofAdS5 = Conformal Group of Four-Dimensional QFT.

– SO(6) ∼= SU(4): Isometry Group of S5 = R-Symmetry Group of N = 4 SYM.

– PSU(2, 2|4): Symmetry Enhancement in the near horizon geometry ofAdS5×S5,

16→ 32 fermions of IIB = 32 superconformal symmetries of N = 4 SYM.

• It is a realization of Holographic Principle: “In ultimate theory of Quantum
Gravity, physics within some volume (AdS5) should be encoded by some theory
at its boundary (N = 4 SYM), so that its entropy satisfies the Bekenstein bound.”
(’t Hooft).
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• Different Regimes of the correspondence is parameterized by t’ Hooft coupling

λ = g
2
YMN = gsN , N →∞ (Planar− Limit)

• The planar gauge theory is perturbative when when λ� 1, loop expansion reliable.

• The string sigma model is perturbative when λ� 1, or R� ls gravity is reliable.

• Useful Strong-Weak Type Duality: But Difficult to Prove or Disprove!!

• By AdS/CFT: The spectrum of scaling dimensions for gauge invariant operators
should precisely match with the spectrum of energies for dual string states!

• Still cannot Quantize Strings in general RR Fluxed-background! Exact Quantization

Only in Plane-Wave Limit! (Berenstein-Maldacena-Nastase).

• Semi-classical Quantization can be performed for string states with large quantum

numbers!! (Frolov-Tseytlin + Others)

– Typeset by FoilTEX – 4



Recap on Spin-Chain and Spinning Strings

• In the planar limit, interested in the single trace, gauge invariant operators, consisting

of �
ΦI,Dµ,ΨA

α

�
.

• Physical operators should be of finite lengths, the trace condition then gives the

periodicity.

• For example, in SU(2) sector of N = 4 SYM, the typical operator consist of J

Z = 1√
2
(Φ5 + iΦ6) and Q X = 1√

2
(Φ1 + iΦ2):

OSU(2) ∼ Tr(ZZXZX . . . ZXZ) + Cyclic Permutation ,

J and Q can be large but should be finite.

• The problem of understanding the spectrum is to understand their scaling dimensions.

• Can introduce “Dilatation Operator” D = D(0) + δD(λ) acting on an operator, the

eigenvalue is the scaling dimension.
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• The anomalous dimension E(λ, J,Q) becomes the eigenvalue of anomalous dimension

operator δD(λ).

• For example, the classical and one-loop dilatation operators for the SU(2) sector are

given by:

D
(0)

= Tr(Z∂/∂Z +X∂/∂X) ,

D
(1)

= −
λ

8π2N
Tr [X,Z] [∂/∂X, ∂/∂Z] .

• The action of D(1) causes Huge Mixing Problem!!

D
(1)

Tr(ZXZZ . . . ) = #Tr(ZXZZ . . . )+#Tr(ZZXZ . . . )+#Tr(ZZZX . . . )+. . .

• Enhancement for D(1) appears when . . . ZXZZ . . . !!
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• In the planar limit, map δD to different Spin Chain Hamiltonians (Minahan and

Zarembo; Beisert, Staudacher).

• For example, SU(2) sector, Z “down spin ↓” and X “up spin ↑” so that

Tr(ZZXZX . . . ZXZ) −→ | ↓↓↑↓↑ . . . ↓↑↓〉 .

• At one loop, D(1) becomes Heisenberg “XXX” spin chain Hamiltonian in condensed

matter

D
(1)

=
λ

8π2

LX
i=1

(1i,i+1 − Pi,i+1) ,

1i,i+1| ↑↓>= | ↑↓> , Pi,i+1| ↑↓>= | ↓↑> .

• This is an Integrable Hamiltonian.

• Finding E1(λ) ≡ Diagonalization of D(1), which can be done by Bethe Ansatz

Techniques.
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• In thermodynamic limit J,Q → ∞, Q/J fixed, Bethe Equations reduces to integral

equations.

• The scaling dimension can then be shown to have expansion in L = J +Q

∆(λ) = L+
λ

L
(a

(0)

(1)
+
a

(1)

(1)

L
+ . . . ) +

λ2

L3
(a

(0)

(2)
+
a

(2)

(1)

L
+ . . . ) + . . .

• Can do the same for other larger sectors and at higher loop orders.
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Spinning Strings....

• Consider classical closed string action on AdS5 × S5.

−
√
λ

4π

Z
dτdσ(LAdS5

+ LS5) + fermions .

• Large J and Q etc. become angular momenta of the string states S5.

• Cyclicity becomes X(σ) = X(σ + 2π) condition for closed string.

• Spinning String Solutions arise from specific ansatze on worldsheet embeddings.

• The string action reduces to Integrable Models, e.g. Neumann or Neumann-Rosochatius

(Frolov, Tseytlin + apologies to many others).

• The energy of the string can be given in terms of Elliptic Functions/Integrals, and also

has expansion

E(λ) = L+
λ

L
(c

(0)

(1)
+
c
(1)

(1)

L
+ . . . ) +

λ2

L3
(c

(0)

(2)
+
c
(2)

(1)

L
+ . . . ) + . . .
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• AdS/CFT demands ∆(λ) = E(λ), confirmed at one and two loops.

• At three loops, does not work once we consider leading 1
L correction.

• Not a problem of AdS/CFT, but order of limits problem.

• Gauge Theory: λ small, first expand in λ, then 1
L.

• String Theory: λ large, first expand in 1
L, then λ

L2 .

• Different Limiting Procedure should be taken? So the problem simplify?

• Can separate the “finite size effects” of the form 1
L and “Stringy effects” of the form

1
λ?
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Scattering Matrice in Gauge/String Theories

Such special limit exists (Staudacher; Beisert; Hofman, Maldacena),

J →∞ , ∆→∞ ,

∆− J fixed , λ fixed . (1)

Scattering Matrix for SU(2) sector

• Consider again SU(2) sector, a field X or up spin ↑ is known as single Magnon.

• Different operators can be classified by different magnon number Q.

• Spectrum is not encoded in Bethe Equations, but the Scattering Matrix.

• Relax the cyclicity condition and consider the case Q = 1 with conserved momentum
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p (Beisert,2005):

|p >=

LX
l=1

e
ipl|l > , |l >≡ |Z . . . Z X|{z}

l−th
Z . . . Z > ,

• At one loop, energy of |p > is given by the XXX Hamiltonian D(1):

D
(1)|p >= 4 sin

2

�
p

2

�
|p > .

• Move on to Q = 2, with momenta p1 and p2, again can write down

|p1, p2 >=

LX
1≤l<k≤L

Ψ(p1, p2)| ↓ . . . ↑|{z}
l−th

↓ . . . ↓ ↑|{z}
k−th

↓ . . . ↓>

• The natural form of two magnon wave function Ψ(p1, p2) is given by

Ψ(p1, p2) = e
p1l+p2k + Ŝ(p1, p2)| {z }

S−matrix

e
p1k+p2l .
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• |p1, p2 > is again an eigenstate of D1, with energy

E1(p1, p2) = 4 sin
2

�
p1

2

�
+ 4 sin

2

�
p2

2

�
.

• Given the energy E1(p1, p2), can also obtain the S-matrix

Ŝ(p1, p2) =
u1 − u2 + i

u1 − u2 − i
, ui|{z}

rapidity

=
1

2
cot

�
pi

2

�
.

• Beyond one loop, all loop scattering matrix was proposed in (Beisert,Dippel, Staudacher

2004).

• The form of the scattering matrix remains the same, however the rapidity changes to

uk =
1

2
cot

�
pk

2

�s
1 + 8g2 sin2

�
pk

2

�
, g

2
=

λ

8π2
.
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• Q > 2, Factorized Scattering allows us to construct scattering matrix by bootstrap

method (illustration later).

• Can introduce alternative parameterizations, the “spectral parameter” x

x(u) =
u

2

�
1 +

q
1− 2g2/u2

�
, u(x) = x+

g2

2x
.

x
±

= x(u± i/2) , p = −i log
x+

x−
.

• This parametrization will be useful for bound states later.
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Scattering Matrix for N = 4 SYM

• Can generalize to full N = 4 SYM, now consider

. . . Z . . . ZXZ . . . Z · · ·+ (other insertions) .

• The impurity/magnon X = (ΦI, Dµ,Ψ
A
α) (sixteen flavors) transforms as bi-

fundamental representation

(�; �)

under the (psu(2|2) × psu(2|2)) n R|{z}
∆−J

residual symmetry group of psu(2, 2|4) of

N = 4 SYM.

• Residual symmetry preserves the “Vacuum” . . . ZZZ . . . .

• The bosonic part of the residual algebra contains SO(4) × SO(4), preserves the

killing vector dual to Z in string theory.
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• Focus on single su(2|2) = psu(2|2) n R only, the fundamental representation is given

by 2 + 2-dimensional superspace (“half magnon”)

(φa, ψα)
t
.

• Need two extra central charges, the algebra is extended to psu(2|2) n R3.

• The algebra is then given by

[R
a
b, J

c
] = δ

c
bJ
a −

1

2
δ
a
bJ
c
, [L

α
β, J

γ
] = δ

γ
βJ

α −
1

2
δ
α
βJ

γ
,

{Qα
a,S

b
β} = δ

b
aL

α
β + δ

α
βR

b
a + δ

b
aδ
α
βC ,

{Qα
a,Q

β
b} = ε

αβ
εabP , {Q̇α̇

ȧ, Q̇
β̇
ḃ} = ε

α̇β̇
εȧḃP ,

{Sa
α,S

b
β} = ε

ab
εαβK , {Ṡȧ

α̇, Ṡ
ḃ
β̇} = ε

ȧḃ
εα̇β̇K .
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• The action of the algebra on the fundamental representation

R
a
b|φc〉 = δ

c
b|φ

a〉 −
1

2
δ
a
b |φ

c〉 , L
α
β|ψγ〉 = δ

γ
β|ψ

α〉 −
1

2
δ
α
β |ψ

γ〉 ,

Q
α
a|φb〉 = aδ

b
a|ψ

α〉 , Q
α
a|ψβ〉 = bε

αβ
εab|φbZ+〉 ,

S
a
α|φb〉 = cε

ab
εαβ|ψβZ−〉 , S

a
α|ψβ〉 = dδ

β
α|φ

a〉 .

• Closure of the extended algebra psu(2|2)×R3 then gives the Exact Magnon Dispersion

Relation

∆− J =

s
1 + 8g2 sin2

�
p

2

�
.

• It is a BPS state of psu(2|2)2 n R and has sixteen-fold degeneracies.
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• Can also construct the scattering matrix between two magnons from the algebra

. . . Z X|{z}
p
−→

. . . ZZ . . . X ′|{z}
p′
←−

Z . . .

S(p, p
′
)

−−−−→
. . . Z X ′′|{z}

p′
←−

. . . ZZ . . . X ′′′|{z}
p
−→

Z . . .

• Integrability needs the momemta p and p′ to be conserved, even though magnon

flavours may change.

• There are 164 states, can simplify by having

S(p, p
′
) ∼= S(p, p

′
)SU(2|2)| {z }

162 states

× S̃(p, p
′
)SU(2|2)| {z }

162 states

– Typeset by FoilTEX – 18



• The S-matrix S(p1, p2)SU(2|2) is then constrained by its invariance under the algebra

psu(2|2)× R3.

[S(p1, p2), J1 + J2] = 0

• Also Yang-Baxter equation and Unitarity

S12S13S23 = S23S13S12 , S12S21 = I

• The residual symmetry allows us to determine the scattering matrix for N = 4 SYM

up to an Overall Dressing Factor σ2.

• The form of the Dressing Factor had been proposed earlier (at lowest order) (Arutyunov,

Frolov, Staudacher):

σ
2
(pk, pj) = exp

 
2i

∞X
r=2

 
g2

2

!r

[q[r(pk)qr+1](pj)]

!
.
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• The qr(pk) , r = 2 , . . . ,∞ are the higher conserved charges carried by the magnon

qr(pk) =
1

gr−1

2 sin
�
r−1
2 pk

�
r − 1

0
B@
q

1 + 8g2 sin2
�pk

2

�
− 1

2g sin
�pk

2

�
1
CA
r−1

.

• Appeared as an “Interpolating Factor” between “gauge” and “stringy” spin-chains.

• Correctly reproduced the “Near BMN limit” and famous “∆ ∼= 4√
λ”.

• Can interpret S(p1, p2) = σ2Ŝ(p1, p2) as the Stringy Scattering Matrix.
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• As a phenomenological application, one can consider the SL(2) sector containing D−
and Z, as it has “Twist Two” operator:

Tr(D
S
−Z

2
) + . . . (2)

its anomalous dimension can simply be given by scattering matrix with dressing phase

!!

• Remarkable match with the “Honest Field Theory Calculation” for QCD upto three-

loops!! (Moch, Vermaseren, Vogt)

• Further predict the anomalous dimensions for “higher twist operators” and arbitrary

D− insertions to higher loops!!

• Derive magnon dispersion relation from string theory?

• Derive magnon scattering matrix from string theory?

• Studying the asymptotic spectrum of N = 4 SYM, like bound states, breathers?
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Magnon Bound states in Gauge Theory

• The spectrum of N = 4 SYM in limit (1) should consist of elementary magnons and

their infinite tower of bound states.

• Focus on SU(2) sub-sector for simplicity, the all loop S-matrix between two magnons

is

Ŝ(p1, p2) =
u1 − u2 + i

u1 − u2 − i
=
x+

1 − x
−
2

x−1 − x
+
2

1− g2/2x+
1 x
−
2

1− g2/2x−1 x
+
2

.

• The Magnon Bound state appears when simple pole appears in S(p1, p2) at complex

momenta (Dorey 2006)

u1 − u2 = i , or x
−
1 = x

+
2 .

• The normalizability of the bound state can be seen at one-loop

x
±
i ≈ ui ±

i

2
, Ψ(l1, l2) ≈ [cos (p/2)]

l2−l1| {z }
Decaying

e
ip/2(l1+l2)

.
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• The exact dispersion relation of the bound state is then given by

∆− J =

r
4 + 8g2 sin2 p

2
, p = p1 + p2 .

• For general Q magnons, again factorizability gives

uk − uk+1 = i , or x
−
k = x

+
k+1 , k = 1, 2, . . . , Q− 1 .

• The exact dispersion relation for Q magnon bound state

∆− J =

s
Q2 + 8g2 sin2

�
p

2

�
.
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• The exactness of the dispersion again comes from Supersymmetry (HYC,Dorey,

Okamura; Beisert)

• The magnon bound states again transform in the short representations of (psu(2|2)×
psu(2|2)) n R3

(Q− boxes;Q− boxes) ,
where Q− boxes corresponds to super-symmetrized representation.

• The SU(2) bound state given here is one state of the multiplet containing many other

flavors.

• ∆ − J is again given by the central charge carried by the multiplet, all flavors share

the same dispersion relation!

• Can show that (Q− boxes;Q− boxes) correctly produces the magnon bound state

dispersion relation.

• Valid for all λ and Q, reproduce it in string theory for λ,Q� 1?

• Scattering matrix for the magnon bound states?
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The Giant and Dyonic Giant Magnons

• To find string states that reproduce magnon and bound state dispersion relations.

• J → ∞ limit, rescaling the worldsheet, string becomes infinitely long (Hofman,

Maldacena, 2006).

• The worldsheet now change from a cylinder to a plane.

• The elementary magnon J →∞, corresponds to σ-model on R× S2.

• The magnon bound state J →∞, Q ≈
√
λ, corresponds to σ-model on R× S3.

• Reduction Procedure to known integrable models (Pohlmeyer, 1976):

σ −model on R× S2 → sine Gordon Model ,

σ −model on R× S3 → Complex sine Gordon Model .

• Elementary magnons and magnon bound states correspond to classical solitons/kinks

in each model.
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Brief Notes on Complex sine Gordon Model

• The equation of motion for CsG field ψ

∂+∂−ψ + ψ
∗∂+ψ∂−ψ

1− |ψ|2
+ ψ(1− |ψ|2) = 0 .

• This has exact one soliton solution

ψ1-soliton = e
iµ cos(α) exp(i sin(α)T )

cosh(cos(α)(X −X0))
.

with boosted world sheet coordinates

X = cosh(θ)x− sinh(θ)t , T = cosh(θ)t− sinh(θ)x .

• The theory has two parameters θ (rapidity) and α (internal U(1) angle).

• Reduces to sine Gordon model when α = 0.
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The string worldsheet embedding are given by

Z1 = X1 + iX2 , and Z2 = X3 + iX4 , |Z1|2 + |Z2|2 = 1

Giant Magnon Solution

Z1 =

�
sin

�
p

2

�
tanh(Y )− i cos

�
p

2

��
exp(it) ,

Z2 =
sin
�p

2

�
cosh(Y )

, Y =
x− cos

�p
2

�
t

sin
�p

2

� .

(Hofman,Malacena, 2006)

• The two end points correspond to x = ±∞ on the worldsheet.
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• The momentum carried by the magnon is given by p = ∆ϕ the angle extended by the

string in the S1 ⊂ S5.

• Correctly reduced to “sine-Gordon Soliton”.

• The Giant Magnon has infinite energy ∆ and angular momentum J , however the

combination

∆− J = 2
√

2g sin

�
p

2

�
.

precisely reproduce the strong coupling limit of the exact dispersion relation!
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Dyonic Giant Magnon Solution

Z1 =
1

√
1 + k2

(tanh [cos(α)X]− ik) exp(it) ,

Z2 =
1

√
1 + k2

1

cosh [cos(α)X]
exp (i sin(α)T ) ,

k =
sinh θ

cosα
= cot

�
p

2

�
.

(HYC,Dorey,Okamura; Arutyunov, Frolov, Zamaklar; Minahan, Tirziu, Tseytlin; Spradlin,

Volovich)

• The solution now has second non-zero angular momentumQ and its an Action Variable.

• Correctly reduced to Complex sine-Gordon Soliton.

• Correctly gives the dispersion relation for SU(2) magnon bound states.
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Scattering of Magnon Bound states

Elementary Magnon Scattering

• At λ� 1, scattering of elementary magnons = scattering of giant magnons.

• Strong coupling limit of magnon scattering matrix, it is dominated by AFS dressing

factor

log S(pj, pk) ≈ −2
√

2g

�
cos

�
pj

2

�
− cos

�
pk

2

��
log

2
64sin2

�
pj−pk

4

�
sin2

�
pj+pk

4

�
3
75 .

• GM=sG soliton, consider the scattering phase of two sG solitons (Hofman, Maldacena,

2006).

• Using the GM solution, sG scattering phase precisely reproduce above! Should be

considered as an derivation for AFS dressing factor.
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Bound state Scattering (HYC,Dorey,Okamura; Roiban)

• Consider scattering of two magnon bound states of charge Q1 and Q2, factorized

scattering allows for Bootstrap method.

• The scattering matrix for bound states is

SBS(X
+
, X
−
, Y

+
, Y
−
) = exp(iΘ(X

+
, X
−
, Y

+
, Y
−
))

=

Q1Y
j1=1

Q2Y
j2=1

S
�
x

+
j1
, x
−
j1

; y
+
j2
, y
−
j2

�
,

S(x, y) = σ
2
(x, y)| {z }
AFS

× Ŝ(x, y)| {z }
BDS

.

• Impose the boundstate conditions x−j1
= x+

j1+1, etc., can deduce

X
+

= x
+
1 , X

−
= x

−
Q1

; Y
+

= y
+
1 , Y

−
= y

−
Q2
.
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• In g →∞ limit, the scattering phase Θ(X+, X−, Y +, Y −) becomes

√
2g[K(X

+
, Y

+
) +K(X

−
, Y
−
)−K(X

+
, Y
−
)−K(X

−
, Y

+
)] .

• Here K(X,Y ) = K0(X,Y ) + K̂(X,Y ), where K0(X,Y ) is from AFS, and

K̂(X,Y ) is from BDS.

• More specifically, the AFS contribution has the form

K0(X,Y ) = −
��
X +

1

X

�
−
�
Y +

1

Y

��
log

�
1−

1

XY

�
,

• Need to sum over all Q1, Q2 magnons, when bound state conditions are imposed, the

summation is simplified.

• The BDS contribution K̂(X,Y ) is given by��
X +

1

X

�
−
�
Y +

1

Y

��
log

�
(X − Y )

�
1−

1

XY

��
.

• Derived from approximate the exact product expression by its Riemann Integral.
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• Combine both contributions together, K(X,Y ) is given by

K(X,Y ) = [(X + 1/X)− (Y + 1/Y )] log (X − Y ) .

• Comparison with the time-delay ∆τ = ∂Θ
∂E of two CsG solitons (Dorey,Hollowood,

1994)

• Use the dictionary:

∆− J = 2
√

2g
cos (α) cosh (θ)

cos2 (α) + sinh2 (θ)
,

Q = 2
√

2g
cos (α) sin (α)

cos2 (α) + sinh2 (θ)
.

• Deduce that

X
±

= coth

�
θ1

2
± i
�
α1

2
−
π

4

��
, Y

±
= coth

�
θ2

2
± i
�
α2

2
−
π

4

��
.
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• Finally, precise match with the CsG time-delay!

• A non-trivial check of the integrability in the SU(2) subsector.
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Conclusion and Work in Progress

• Discussed magnon bound states in gauge/string theories.

• Discussed their classification and scattering.

• Dressing factor receives further λ corrections (Hernandez, Lopez).

• Calculate these from a “first principle” approach? As perturbation from soliton

scattering matrix?

• Understanding magnons and bound states as finite-gap solutions?

• Scattering of bound states of different flavors? (Work in Progress with Volovich and

Kalosious)

• Understanding the weak coupling interpolation of dressing factor? Transcendentality?
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