$SU(4)_L \times U(1)_X$ electroweak gauge group with little Higgs

Soo-hyeon Nam

Department of Physics National Central University

Collaboration with Otto Kong (NCU)
Work in Progress

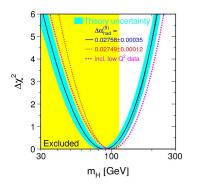
March 15, 2007

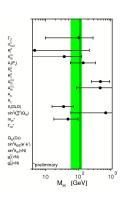
HEP Seminar at NTHU

- Introduction
 - Experimental background
 - Motivation
 - Little Higgs approach
 - Various little Higgs models
- Model Construction
 - Scalar Sector
 - Gauge Boson Sector
 - Fermion Sector
- Phenomenological Constraints
- Summary

- Introduction
 - Experimental background
 - Motivation
 - Little Higgs approach
 - Various little Higgs models
- Model Construction
 - Scalar Sector
 - Gauge Boson Sector
 - Fermion Sector
- 3 Phenomenological Constraints
- 4 Summary

Introduction - Experimental Background



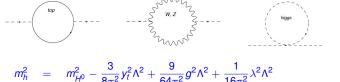


★ Precision electroweak data are (known to be) in good agreement with the Standard Model with a Higgs mass less than about 200 GeV.

(lepewwg.web.cern.ch/LEPEWWG)

Introduction- Motivation

 Due to quantum corrections, the Higgs mass is quadratically sensitive to the cutoff scale: ~ ^{Λ²} (→ naturalness problem?)



$$m_h^2 = m_{H^0}^2 - \frac{3}{8\pi^2} y_t^2 \Lambda^2 + \frac{3}{64\pi^2} g^2 \Lambda^2 + \frac{1}{16\pi^2} \lambda^2 \Lambda^2$$

$$(200 \text{ GeV})^2 = m_{H^0}^2 + \left[-(2 \text{ TeV})^2 + (700 \text{ GeV})^2 + (500 \text{ GeV})^2 \right] \left(\frac{\Lambda}{10 \text{ TeV}} \right)^2$$

$$\Rightarrow \Lambda \sim 1 \text{ TeV} \rightarrow \text{Fine-Tuning Issue}$$

• Note that cutoff Λ for non-renormalizable operators such as $|H^{\dagger}D_{\mu}H|^2/\Lambda^2$ should be greater than about 5 TeV.

Introduction - Little Higgs approach

- As an alternative solution to the naturalness problem (and the fine-tuning issue), little Higgs models (LHM) has been recently introduced. (Arkani-Hamed, Cohen, and Georgi 2001)
- LHMs adopts the early idea that Higgs can be considered as a Nambu Goldstone boson from global symmetry breaking at some higher scale $\Lambda \sim 4\pi f$.

(Dimopoulos, Preskill 1982; Georgi, Kaplan 1984; Banks 1984)

- Higgs acquires a mass radiatively through symmetry breaking at the EW scale v, by collective breaking.
- Consequently, quadratic divergences absent at one-loop level ⇒ cancellation among same spin states!

Introduction - Various little Higgs models

Model	Global Group	Gauge Group	EW-scale scalars	TeV-scale scalars
Minimal Moose	$SU(3)^8/SU(3)^4$	$SU(3) \times SU(2) \times U(1)$	h_1, h_2, ϕ, σ	(none)
Minimal Moose with $SU(2)_C$	$SO(5)^8/SO(5)^4$	$SO(5) \times SU(2) \times U(1)$	h_1, h_2	$\phi^r, \sigma^{\pm}, \sigma^r$
Moose with T-parity	$SO(5)^{10}/SO(5)^5$	$(SU(2) \times U(1))^3$	h_1, h_2	$h_{3,4,5}, \phi^r_{1,2,3}, \sigma_{1,2,3,4,5}, \eta_{1,2,3}$
Littlest Higgs	SU(5)/SO(5)	$(SU(2) \times U(1))^2$	h	φ
SU(6)/Sp(6) model	SU(6)/Sp(6)	$(SU(2) \times U(1))^2$	h_1, h_2	σ
Littlest Higgs with $SU(2)_C$)	$SO(9)/SO(5) \times SO(4)$	$SU(2)^3 \times U(1)$	h	ϕ, ϕ^r, η
Littlest Higgs with T-parity	SU(5)/SO(5)	$(SU(2) \times U(1))^2$	h	φ
SU(3) simple group	$SU(3)^2 \times U(1)/SU(2)^2 \times U(1)$	$SU(3) \times U(1)$	h, η	(none)
SU(4) simple group	$SU(4)^4 \times U(1)/SU(3)^4 \times U(1)$	$SU(4) \times U(1)$	h_1,h_2,η_1,η_2	$\sigma_1, \sigma_2, \sigma_3$
SU(9)/SU(8) simple group	SU(9)/SU(8)	$SU(3) \times U(1)$	h_1, h_2	σ_1, σ_2

 \star In this talk, we discuss the simple group model with $SU(4)_L \times U(1)_X$ electroweak gauge group (suggested by Kaplan and Schmaltz, 2003) by embedding the anomaly-free fermion spectra.

- Introduction
 - Experimental background
 - Motivation
 - Little Higgs approach
 - Various little Higgs models
- Model Construction
 - Scalar Sector
 - Gauge Boson Sector
 - Fermion Sector
- 3 Phenomenological Constraints
- Summary

Model Construction - Scalar Sector

 The Coleman-Weinberg mechanism (radiative corrections) produces the Higgs potential:

$$V = \delta m^2 h^{\dagger} h + \delta \lambda (h^{\dagger} h)^2$$

- In SU(3) LHM (simplest), generated Higgs mass is somewhat too large, so a tree level " μ " term is included by hand and partially cancels the Higgs mass.
- " μ " term explicitly breaks the spontaneously broken global symmetry and gives a mass to the would-be Nambu-Goldstone boson η :

$$-V = \mu^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}$$

$$= 2f_{1}f_{2}\mu^{2} \cos\left(\frac{f_{\eta}}{\sqrt{2}f_{1}f_{2}}\right) \left[1 - \frac{f^{2}}{2f_{1}^{2}f_{2}^{2}}(h^{\dagger}h) + \frac{f^{4}}{24f_{1}^{3}f_{2}^{3}}(h^{\dagger}h)^{2} + \ldots\right]$$

• In SU(4) LHM, however, the model produces a tree-level quartic coupling from the following terms, so doesn't regire the above μ term:

$$\kappa_{11}{|\Phi_1^{\dagger}\Psi_1|}^2 + \kappa_{22}{|\Phi_2^{\dagger}\Psi_2|}^2 + \kappa_{12}{|\Phi_1^{\dagger}\Psi_2|}^2 + \kappa_{21}{|\Phi_2^{\dagger}\Psi_1|}^2$$

Model Construction - Scalar Sector

- Start from a non-linear sigma model [SU(4)/SU(3)]⁴ with four complex quadruplets scalar fields Φ_{1,2} and Ψ_{1,2}
 - \implies Diagonal SU(4) is gauged.
- Gauge symmetry breaking: SU(4)_w × U(1)_X → SU(2)_w × U(1)_Y
 - \implies 12 new gauge bosons with masses of order the scale f.
- Global symmetry breaking: [SU(4)]⁴ → [SU(3)]⁴
 - \implies 12 of the 28 degrees of freedom in the Φ_i and Ψ_i are eaten by the Higgs mechanism when $SU(4)_w$ is broken.
 - \implies Remaining 16 consist of two complex doublets h_u and h_d , three complex SU(2) singlets σ_1 , σ_2 and σ_3 , and two real scalars η_u and η_d .

(Kaplan and Schmaltz 2003)

Model Construction - Scalar Sector

One possible parametrization of the non-linear sigma model fields Φ_i and Ψ_i with general f_i (SU(4) breaking is not aligned):

$$\Phi_{1} = e^{+i\mathcal{H}_{\mathcal{U}}\frac{f_{12}}{f_{11}}} \begin{pmatrix} 0\\0\\f_{11}\\0 \end{pmatrix} \qquad \Phi_{2} = e^{-i\mathcal{H}_{\mathcal{U}}\frac{f_{11}}{f_{12}}} \begin{pmatrix} 0\\0\\f_{12}\\0 \end{pmatrix}$$

$$\Psi_{1} = e^{+i\mathcal{H}_{\mathcal{U}}\frac{f_{22}}{f_{21}}} \begin{pmatrix} 0\\0\\0\\f_{21} \end{pmatrix} \qquad \Psi_{2} = e^{-i\mathcal{H}_{\mathcal{U}}\frac{f_{21}}{f_{22}}} \begin{pmatrix} 0\\0\\0\\f_{22} \end{pmatrix}$$

$$\mathcal{H}_{u} = \begin{pmatrix} 0 & 0 & h_{u} & 0 \\ 0 & 0 & h_{u} & 0 \\ h_{u}^{\dagger} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} / f_{1} \qquad \mathcal{H}_{d} = \begin{pmatrix} 0 & 0 & 0 & h_{d} \\ 0 & 0 & 0 & h_{d} \\ 0 & 0 & 0 & 0 \\ h_{d}^{\dagger} & 0 & 0 \end{pmatrix} / f_{2}$$

$$f_{i}^{2} = \sum_{j=1,2} f_{ij}^{2}$$

• Most general expression for the electric charge generator:

$$Q = aT_{3L} + \frac{1}{\sqrt{3}}bT_{8L} + \frac{1}{\sqrt{6}}cT_{15L} + XI_4$$

- Correct embedding of the SM isospin $SU(2)_L$ doublets gives a = 1.
- Charge operator acting on the representations 4 and $\bar{4}$ of $SU(4)_L$:

$$\begin{split} Q[4] &= \textit{diag}\left(\frac{1}{2} + \frac{b}{6} + \frac{c}{12} + X, -\frac{1}{2} + \frac{b}{6} + \frac{c}{12} + X, -\frac{2b}{6} + \frac{c}{12} + X, -\frac{3c}{12} + X\right) \\ Q[\tilde{4}] &= \textit{diag}\left(-\frac{1}{2} - \frac{b}{6} - \frac{c}{12} + X, \frac{1}{2} - \frac{b}{6} - \frac{c}{12} + X, \frac{2b}{6} - \frac{c}{12} + X, \frac{3c}{12} + X\right) \end{split}$$

• If we demand for gauge bosons with electric charges 0 and ± 1 only, there are not more than four different possibilities:

$$b = c = 1$$
; $b = c = -1$; $b = 1 \& c = -2$; $b = -1 \& c = 2$

We focus on this scenario

Covariant derivative for 4-plets:

$$iD_{\mu} = i\partial_{\mu} + gT^{\alpha}A^{\alpha}_{\mu} + g_{X}XA^{X}_{\mu}$$

There are 15 gauge bosons associated with SU(4)_L:

$$T^{lpha}A^{lpha}_{\mu}=rac{1}{\sqrt{2}}\left(egin{array}{cccc} D^0_{1\mu} & W^+_{\mu} & Y^0_{\mu} & X'^+_{\mu} \ W^-_{\mu} & D^0_{2\mu} & X^-_{1\mu} & Y'^0_{\mu} \ ar{Y}^0_{\mu} & X^+_{1\mu} & D^0_{3\mu} & W'^+_{\mu} \ X'^-_{\mu} & ar{Y}^0_{\mu} & W'^-_{\mu} & D^0_{4\mu} \end{array}
ight)$$

$$\begin{split} D_1^{0\mu} &= A_3^\mu/\sqrt{2} + A_8^\mu/\sqrt{6} + A_{15}^\mu/\sqrt{12} & D_2^{0\mu} &= -A_3^\mu/\sqrt{2} + A_8^\mu/\sqrt{6} + A_{15}^\mu/\sqrt{12} \\ D_3^{0\mu} &= -2A_8^\mu/\sqrt{6} + A_{15}^\mu/\sqrt{12} & D_4^{0\mu} &= -3A_{15}^\mu/\sqrt{12} \end{split}$$

Mass matrix for the neutral Hermitian gauge bosons:

$$\frac{1}{4}g^{2} \begin{pmatrix} \frac{v^{2}}{2} & -\frac{t}{2\sqrt{2}}v^{2} & 0 & 0 \\ -\frac{t}{2\sqrt{2}}v^{2} & \frac{t^{2}}{2}f^{2} & \frac{t}{\sqrt{2}}\left(f^{2} - \frac{v^{2}}{2}\right) & \frac{t}{\sqrt{2}}\triangle f^{2} \\ 0 & \frac{t}{\sqrt{2}}\left(f^{2} - \frac{v^{2}}{2}\right) & f^{2} - \frac{v^{2}}{2} & \triangle f^{2} \\ 0 & \frac{t}{\sqrt{2}}\triangle f^{2} & \triangle f^{2} & f^{2} \end{pmatrix} \xrightarrow{\frac{1}{\sqrt{3}}A_{8} - \frac{2}{\sqrt{6}}A_{15}}$$

$$f^2 = f_1^2 + f_2^2$$
, $\triangle f^2 = f_1^2 - f_2^2$, $v^2 = v_1^2 + v_2^2 \ (\gg \triangle v^2)$, $t = g_X/g$

Physical Gauge Boson Masses:

$$\bullet \ \ M_W^2 = \frac{1}{4} g^2 \left(v_1^2 + v_2^2 \right), \qquad M_Y^2 = \frac{1}{2} g^2 f_1^2, \qquad M_{Y'}^2 = \frac{1}{2} g^2 f_2^2$$

•
$$M_X^2 = \frac{1}{4}g^2 (2t_1^2 - v_1^2 + v_2^2), \qquad M_{X'}^2 = \frac{1}{4}g^2 (2t_2^2 + v_1^2 - v_2^2)$$

•
$$M_{W'}^2 = \frac{1}{4}g^2(2f_1^2 + 2f_2^2 - v_1^2 - v_2^2)$$

$$\bullet \ M_Z^2 = \frac{1}{2}g^2 \frac{1+t^2}{2+t^2} \left(v_1^2 + v_2^2 - \frac{t^4}{(2+t^2)^2} \frac{v_1^2 v_2^2}{t_1^2 + t_2^2} \right)$$

•
$$M_{Z'}^2 = \frac{1}{4}g^2(2+t^2)(f_1^2+f_2^2) - M_Z^2$$
, $M_{Z''}^2 = \frac{1}{4}g^2(f_1^2+f_2^2)$

$$v_1^2 \equiv v_u^2 - \frac{v_u^2}{6f_1^4} \left(\frac{f_{12}^4}{f_{11}^2} + \frac{f_{11}^4}{f_{12}^2} \right), \quad v_2^2 \equiv v_d^2 - \frac{v_d^2}{6f_2^4} \left(\frac{f_{22}^4}{f_{21}^2} + \frac{f_{21}^4}{f_{22}^2} \right)$$

Model Construction - Fermion Sector

- Prerequisite for the fermion sector construction:
 - Accommodate the known left-handed quark and lepton isodoublets in the two upper components of 4 and 4 (or 4 and 4)
 - Don't allow for electrically charged antiparticles in the two lower components of the multiplets (antiquarks violate SU(3)_c, and e⁺, μ⁺ and τ⁺ violate lepton number at tree level)
 - Forbid the presence of exotic electric charges in the possible models
 - \Longrightarrow The electric charge of the third and fourth components in 4 and $\bar{4}$ must be equal either to the charge of the first and/or second component.
 - \implies b and c can take only the four sets of values.

Model Construction - Fermion Sector

• For example, each fermion 4-plet takes the following form:

$$b = c = 1 : \begin{pmatrix} u \\ d \\ D \\ D' \end{pmatrix} \quad \text{or} \quad b = c = -1 : \begin{pmatrix} d \\ u \\ U \\ U' \end{pmatrix}$$

$$c_1 = 1 & c_2 = 2 : \begin{pmatrix} u \\ d \\ d \end{pmatrix} \quad c_2 = 2 : \begin{pmatrix} u \\ d \\ d \end{pmatrix}$$

$$b = 1 \& c = -2 : \begin{pmatrix} u \\ d \\ D \\ U \end{pmatrix}$$
 or $b = -1 \& c = 2 : \begin{pmatrix} u \\ d \\ U \\ D \end{pmatrix}$

 Our choice is to have the duplicated extra heavy fermions which can remove the quadratic divergences due to their SM fermion partners.

Model Construction - Fermion Sector

• There are total five possible ways to construct anomaly-free fermion spectra for b=-1 & c=2.

(Ponce, Gutiérrez, and Sánchez 2004)

 We choose the following set of fermion spectra which would be feasible enough to complete this little Higgs model (Kong 2003):

	$U(1)_Y$ -states				
$(3_C, 4_L, \frac{1}{6})$	$\frac{1}{6}[Q]$	$\frac{2}{3}(T)$	$\frac{-1}{3}(B)$		
$2(3_c, \bar{4}_L, \frac{1}{6})$	$2\frac{1}{6}[2 Q]$	$2\frac{-1}{3}(D,S)$	$2\frac{2}{3}(U,C)$		
$3(I_C, 4_L, \frac{-1}{2})$	$3 = \frac{1}{2} [3 L]$	3 0(3 N)	3 -1(3 <i>E</i> ⁻)		
$6(\bar{3}_c, 1_L, \frac{-2}{3})$	$6 = \frac{-2}{3} (\bar{u}, \bar{c}, \bar{t}, \bar{U}, \bar{C}, \bar{T})$				
6 $(\bar{3}_c, 1_L, \frac{1}{3})$	$6\ \frac{1}{3}\ (\bar{d},\bar{s},\bar{b},\bar{D},\bar{S},\bar{B})$				
$6(1_c, 1_L, 1)$	3 1 (e^+, μ^+, τ^+) 3 1(3 E^+)				

 \implies Anomaly cancellation is achieved when $N_f = N_c = 3 \Rightarrow$ one of the best features of this model.

- Introduction
 - Experimental background
 - Motivation
 - Little Higgs approach
 - Various little Higgs models
- 2 Model Construction
 - Scalar Sector
 - Gauge Boson Sector
 - Fermion Sector
- 3 Phenomenological Constraints
- Summary

Phenomenological Constraints

• Custodial SU(2) symmetry violating shift in the Z mass:

$$\delta \rho \equiv \alpha T \simeq \frac{t^4}{4(2+t^2)^2} \frac{v^2}{f^2} \qquad (f^2 = f_1^2 + f_2^2)$$

- For $T \lesssim 0.15$ (95% CL), $f_{SU(4)} \gtrsim 1.07$ TeV \implies comparable to $f_{SU(3)} \gtrsim 2.3$ TeV
- Also, combined analysis of Z pole observables and the atomic parity violation data gives (for $f_1 \approx f_2$):

$$M_{Z'} \gtrsim 0.67 \text{ TeV} \quad \Rightarrow \quad f_{SU(4)} \gtrsim 1.23 \text{ TeV}$$

 Further phenomenological study (especially of fermion sector) is required to test the model itself - In progress



- Introduction
 - Experimental background
 - Motivation
 - Little Higgs approach
 - Various little Higgs models
- 2 Model Construction
 - Scalar Sector
 - Gauge Boson Sector
 - Fermion Sector
- 3 Phenomenological Constraints
- Summary

Summary

- As an alternative to SUSY, a little Higgs model is proposed to describe a TeV scale effective theory.
- It is natural to complete the LHM with all nice features of the SM such as the gauge anomaly cancellation conditions which dictate the SM fermionic spectrum.
- Sensible phenomenological analysis of such models has to start with feasible complete global quantum number assignment to all multiplets.
- Combined analysis of Z pole observables and the atomic parity violation data gives $\Lambda \sim 4\pi f \gtrsim 15$ TeV.
- Further phenomenological study is in progress.

