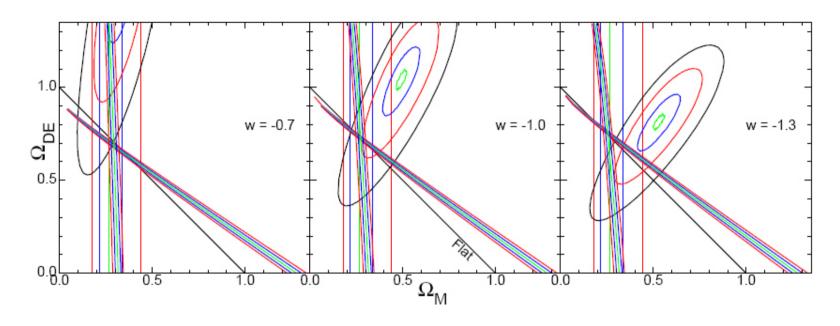


Dark Energy vs. Modified Gravity

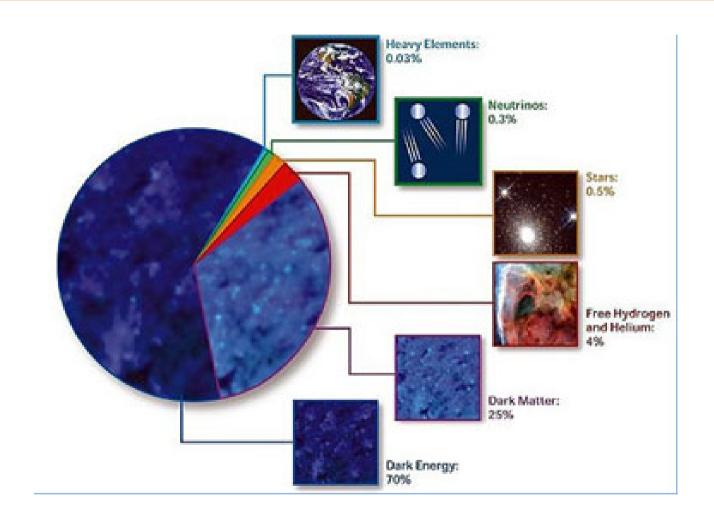
Seminar at NTHU . Jun.14.2007 Seokcheon Lee (碩天 李) Institute of Physics, Academia Sinica

Outline


- Experimental Evidences
- Motivations
- Models
- Phenomena (Evolution of Background, Growth factors)
- Summary

Experimental Evidences

(Cosmological Concordance ?!)



- SNe Ia (Fig from E.L.Wright 06)
- CMB
- Values for H (Age of Universe)
- ♦ Baryonic Oscillations → SDSS

Experimental Evidence II

Motivations

$$\delta G_{\mu\nu}(MG) + R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu} + 8\pi G T_{\mu\nu}(DE)$$

$$S = \int d^n x \sqrt{-g} \left[\frac{1}{2} f(R, \phi) + \mathcal{L}_{\phi}(g_{\mu\nu}, \phi, \partial \phi) + \mathcal{L}_{m}(g_{\mu\nu}, \Psi) \right]$$

- Observations are inconsistent with the expected universe (GR[FLRW] + Matter). Based on homogeneous and isotropic space-time.
- Need to change either Gravity or Matter (if we still believe homogeneity and isotropy).

Generalized Gravity Theories I

- * A broad class of alternative gravity theories
- ♦ Ψ: matter fields
- Φ : a scalar field

$$S = \int d^n x \sqrt{-g} \left[\frac{1}{2} f(R, \phi) + \mathcal{L}_{\phi}(g_{\mu\nu}, \phi, \partial \phi) + \mathcal{L}_{m}(g_{\mu\nu}, \Psi) \right]$$

$$\mathcal{L}_{\phi} = -\frac{M^2}{2}\omega(\phi)(\partial\phi)^2 - V(\phi)$$

$$(\partial \phi)^2 = \nabla_{\mu} \phi \nabla^{\mu} \phi. \ F(R, \phi) = \partial f(R, \phi) / \partial R.$$

Generalized Gravity Theories II

Generalized gravity	$\frac{1}{2}f(R,\phi)$	$\mathcal{L}_{\phi}(\phi,\partial\phi)$	$p(R,\phi)$	φ	$\hat{V}(\varphi)$	Ref
Nonlinear gravity	$\frac{1}{2}f(R)$	$\omega = 0, V = 0$	p = F(R)	$\sqrt{\frac{3}{2}} \ln F$	$\frac{FR-f}{2F^2}$	[1]
R^2 -gravity	$\frac{1}{2}(R + \alpha R^2)$	$\omega = 0, V = 0$	$p = 1 + 2\alpha R$	$\sqrt{\frac{3}{2}} \ln F$	$\frac{FR-f}{2F^2}$	[2]
1/R-gravity	$\frac{1}{2}(R-\mu^4/R)$	$\omega = 0, V = 0$	$p = 1 + \mu^4 / R^2$	$\sqrt{\frac{3}{2}} \ln F$	$\frac{FR-f}{2F^2}$	[3]
Scalar-tensor theory	$\frac{1}{2}F(\phi)R$	$\omega(\phi), V(\phi)$	$p = F(\phi)$	$\int \sqrt{\frac{\omega}{F} + \frac{3}{2} \frac{F'^2}{F^2}} d\phi$	$\frac{V}{F^2}$	[4]
Brans-Dicke theory	ϕR	$\omega(\phi) = 2\frac{\omega}{\phi}, \ V = 0$	$p = \phi$	$\int \sqrt{\frac{\omega}{F} + \frac{3}{2} \frac{F'^2}{F^2}} d\phi$	0	[5]
Dilaton	$\frac{1}{2}e^{-\phi}R$	$\omega(\phi) = e^{-\phi}, \ V = 0$	$p = e^{-\phi}$	$rac{5}{2}\phi$	0	[6]
NMC scalar	$\frac{1}{2}(1+\xi\phi^2)R$	$\omega = 1, V(\phi)$	$p = 1 + \xi \phi^2$	$\int \frac{\sqrt{1+\xi(6\xi-1)\phi^2}}{1-\xi\phi^2} d\phi$	$\frac{V}{1-\xi\phi^2}$	[7]
$CC (\xi = \frac{1}{6})$	$\frac{1}{2}(1+\frac{1}{6}\phi^2)R$	$\omega = 1, V(\phi)$	$p = 1 + \frac{1}{6}\phi^2$	$\sqrt{6} \tanh^{-1} \frac{\phi}{\sqrt{6}}$	$\frac{V}{1-\frac{1}{6}\phi^2}$	[8]
Induced Gravity	$\frac{1}{2}\epsilon\phi^2R$	$\omega = 1, V(\phi)$	$p = \epsilon \phi^2$	$\sqrt{6 + \frac{1}{\epsilon}} \ln \phi$	$\frac{V}{\epsilon \phi^2}$	[9]
GR with a scalar	$\frac{1}{2}R$	$\omega = 1, V(\phi)$	p = 1	φ	V	

Generalized Gravity Theories III

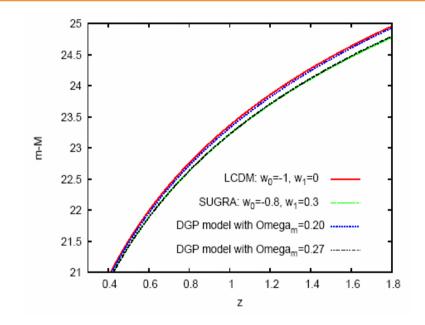
- G. Magnano and L. M. Sokolowski, Phys. Rev. D 50, 5039. 1994 [gr-qc/9312008].
- [2] A. A. Starobinsky, Phys. Lett. B 91, 99, 1980.
- S. M. Carroll, V. Duvvuri, M. S. Turner, Phys. Rev. D 70, 043528. 2004 [astro-ph/0306438].
- [4] J. Nordtvedt Kenneth, Astrophys. J. 161, 1059. 1970.
- C. Brans and R. H. Dicke, Phys. Rev. 124, 925. 1961.
- [6] T. Damour and A. M. Polyakov, Nucl. Phys. B 423, 532. 1994 [hep-th/9401069].
- [7] F. Lucchin, S. Matarrese, and M. D. Pollock, Phys. Lett. B 167, 163, 1986.
- [8] S. Sonego and V. Faraoni, Class. Quant. Grav. 10, 1185. 1993.
- [9] S. L. Adler, Rev. Mod. Phys. 54, 729, 1982

Quartessence (Unification of DM & DE)

Model	ρ	Ref
Modified polytropic Cardassian	$[Aa^{3q(\nu-1)} + Ba^{-3q}]^{\frac{1}{q}}$	[10]
New generalized Chaplygin gas	Same	[11]
$\Lambda \mathrm{CDM}$	$q = 1, \nu = 1$	[12]
Cardassian expansion	q = 1	[13]
Polytropic Cardassian	$\nu = 1$	[11]
generalized Chaplygin gas	$\nu = 2$	[14]
variable Chaplygin gas	q = 2	[15]
Chaplygin gas	$\nu = 2, q = 1$	[16]
Modified Chaplygin gas	$(A + Ba^{-3})^q$	[17]
Exponential Cardassian	$(Aa^{-3} + B)\exp\left[\left(\frac{qB}{Aa^{-3} + B}\right)^{\nu}\right]$	[18]
Extra dimension inspired	$Aa^{-3}[1 + \exp(-Ba^{-3})]^q$	[19]
Phenomenological approach	$A(1 + Ba^{-1})^{q-\nu}[1 + Ca^{-\nu}]$	[20]
Leaking gravity (DGP)	$Aa^{-3} + B - \sqrt{B^2 + ABa^{-3}}$	[21]

Quartessence II

- [10] K. Freese, Nucl. Phys. Proc. Suppl. 124, 50. 2003 [hep-ph/0208264].
- [11] X. Zhang, JCAP 0601, 003. 2006 [0411221].
- [12] T. Koivisto, H. Kurki-Suonio, and F. Ravndal, Phys. Rev. D 71, 064027. 2005. [astro-ph/0409163]
- [13] K. Freese and M. Lewis, Phys. Lett. B540, 1. 2002 [astro-ph/0201229].
- [14] M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev. D66, 043507, 2002 [gr-qc/0202064].
- [15] Z.-K. Guo and Y.-Z. Zhang, [astro-ph/0506091].
- [16] A. Y. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B511, 265 2001 [gr-qc/0103004].
- [17] L. P. Chimento, Phys. Rev. D69, 123517 2004 [astro-ph/0311613].
- [18] D.-J. Liu, C.-B. Sun, and X.-Z. Li, Phys. Lett. B634, 442. 2006 [astro-ph/0512355].
- [19] Y.-G. Gong, X.-M. Chen, and C.-K. Duan, Mod. Phys. Lett. A19, 1933. 2004 [astro-ph/0404202].
- [20] V. F. Cardone, A. Troisi, and S. Capozziello, Phys. Rev. D69, 083517. 2004 [astro-ph/0402228].
- [21] C. Deffayet, G. R. Dvali, and G. Gabadadze, Phys. Rev. D65, 044023. 2002 [astro-ph/0105068].

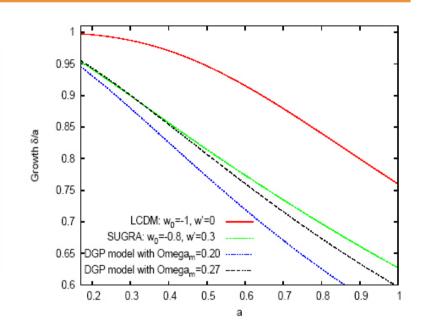


Background Evolution

$$H^2 - \delta H^2 = \sum_{i=\text{rad,mat}} \frac{8\pi G}{3} \rho_i$$

$$\omega_{\rm DE} = -1 + \frac{1}{3} \frac{d \ln \delta H^2}{d \ln(1+z)}$$

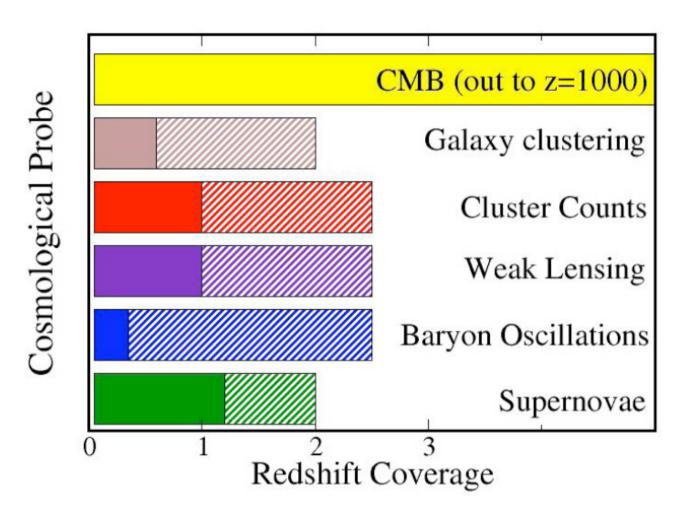
❖ SNe Hubble diagrams for DE and DGP models (Fig from M.Ishak et al, 06)



Growth Factors

$$\ddot{\delta} + 2H_{\scriptscriptstyle DGP}\dot{\delta} - 4\pi G\rho \big(1 + \frac{1}{3\beta}\big)\delta = 0$$

$$\beta = 1 - 2r_c H_{DGP} \left(1 + \frac{\dot{H}_{DGP}}{3H_{DGP}^2} \right)$$

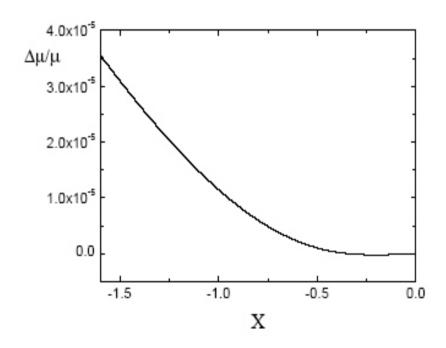


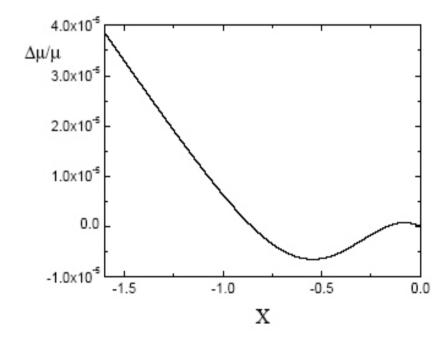
Growth factors of linear perturbations

DETF probes

Time Varying Alpha (Late time)

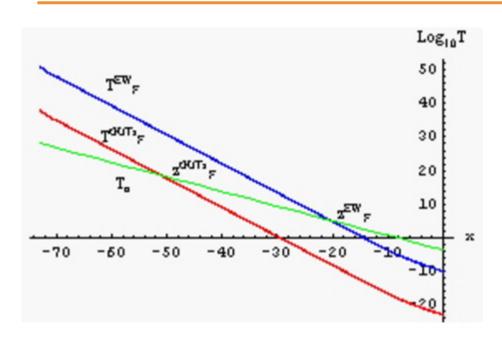
Table 4: Results for $\Delta \alpha/\alpha$ for comparisons with the Oklo, meteoritic, present-day, and equivalence principle bounds. Values of $\Delta \alpha/\alpha$, ξ , and ζ have been scaled by a factor of 10^6 , values of $\dot{\alpha}/\alpha$ and $\Delta g/g$ have been scaled by a factor of 10^{17} .


$\frac{V(\phi)}{V_0}$	$\left(\frac{\Delta \alpha}{\alpha}\right)_3$	$\left(\frac{\Delta \alpha}{\alpha}\right)_{1.5}$	ξ	ζ	$\left(\frac{\Delta \alpha}{\alpha}\right)_{0.14}$	$\left(\frac{\overline{\Delta \alpha}}{\alpha}\right)_{0.45}$	$\frac{\dot{\alpha}}{\alpha}$ (yr ⁻¹)	$\frac{\Delta g}{g}$
$\exp(\lambda \phi^2/2)$	-5.4	-3.4	0	-7.6	-0.24	-0.42	9.6	-2.5
	-5.4	-2.1	22	0	-0.011	-0.05	0.048	-0.074
	-0.93	-0.6	0	-1.3	-0.041	-0.073	1.7	-0.076
	-1.4	-0.6	5.8	0	-0.0028	-0.013	0.013	-0.0053
$\cosh(\lambda \phi)$	-5.4	-0.54	0	-29	-0.097	0.20	0.17	-36
	-5.4	-0.054	310	0	-0.0017	-0.029	0.0014	-1.5
	-4.5	-0.6	0	-24	-0.082	0.17	0.16	-26
	-34	-0.6	1900	0	-0.011	-0.18	0.012	-59



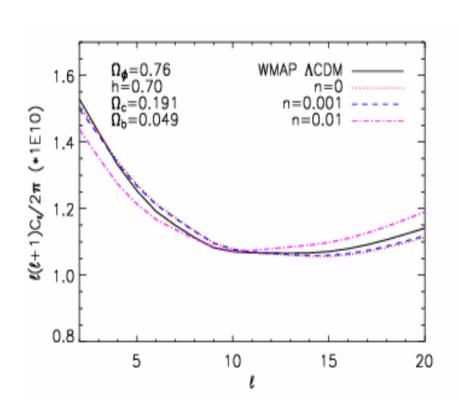
Time Varying Mass

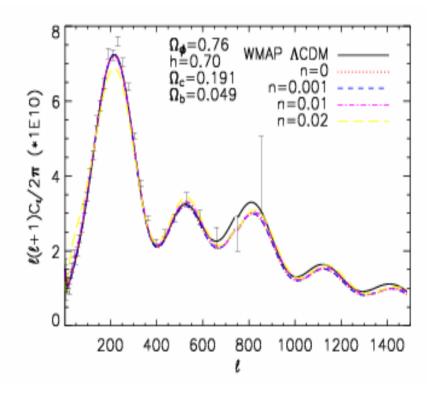
Time Varying proton to electron mass ratio. (SL, 07): observation: E-5 Chand et.al, 04 (z ~ 2.8)



Spontaneous Baryogenesis

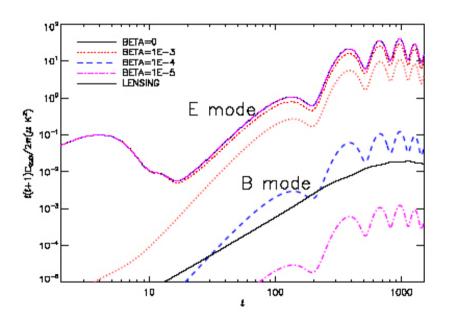
$$\frac{q}{M_*} \bar{M} \, \partial_\mu \phi j_B^\mu$$

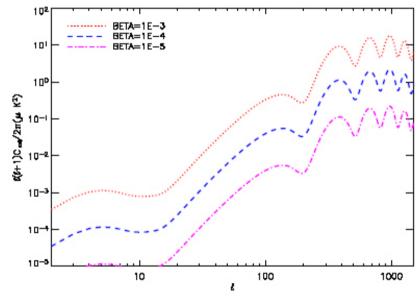

To obtain the expected value of the baryon asymmetry (E-10), the freeze-out temperature are 10E10 GeV and 1Mev for GUTs and EW, respectively. (SL, personal note)



CMB T

❖ S.L,G-C.Liu, K-W.Ng (06)





CMB E,B,EB

❖ Due to cosmological birefringence (double refraction), we have mixing between E and B modes (S.L, G-C.Liu, K-W.Ng, 06): counter example of Schiff's conjecture

Summary

- Homogeneity and Isotropy should be checked.
- Alternative scenario on cosmology will give huge effects on particle physics.
- Both MG and DE models can satisfy current observations.
- Geometric tests are not enough to separate MG with DE.
- Need to distinguish possible models with upcoming observations.

Quintessence

- ❖ Quintessence = Fifth Element (精髓 정수)
- Air, Earth, Fire, Water(In Alchemy)
- ❖ b, DM, n, γ(In Cosmology)
- Tip : Milla Jovovich(In Film)
 - @ www.millaj.com

Quintessence Potentials (SL 06)

Quintessence Potential	Reference	- ω	
$V_0 \exp(-\lambda \phi)$	Ratra & Peebles (1988), Wetterich (1988),		
	Ferreira & Joyce (1998)	$\lambda > 5.5 - 4.5, \Omega < 0.1 - 0.15$	
$V_0/\phi^{\alpha}, \alpha > 0$	Ratra & Peebles (1988)	$\omega > -0.7$	
$m^2 \phi^2, \lambda \phi^4$	Frieman et al (1995)	PNGB $M^4[\cos(\phi/f)+1]$	
$V_0(\exp M_p/\phi - 1)$	Zlatev, Wang & Steinhardt (1999)	$\Omega_m \geq 0.2, \omega < -0.8$	
$V_0 \exp(\lambda \phi^2)/\phi^{\alpha}$	Brax & Martin (1999,2000)	$\alpha \geq 11, \omega \simeq -0.82$	
$V_0(\cosh \lambda \phi - 1)^p$	Sahni & Wang (2000)	$p<1/2, \omega<-1/3$	
$V_0 \sinh^{-\alpha}(\lambda \phi)$	Sahni & Starobinsky (2000),	early time : inverse power	
	Ureña-López & Matos (2000)	late time : exponential	
$V_0(e^{\alpha\kappa\phi}+e^{\beta\kappa\phi})$	Barreiro, Copeland & Nunes ($2000)$	$\alpha > 5.5, \beta < 0.8, \omega < -0.8$	
$V_0[(\phi - B)^{\alpha} + A]e^{-\lambda\phi}$	Albrecht & Skordis (2000)	$\omega \sim -1$	
$V_0 \exp[\lambda(\phi/M_p)^2]$	Lee, Olive, & Pospelov (2004)	$\omega \sim -1$	
$V_0 \cosh [\lambda \phi/M_p]$		$\omega \sim -1$	

Matter Power Spectrum II

$$\bar{\delta}_c'' + \mathcal{H}\bar{\delta}_c' - \frac{3}{2}\mathcal{H}^2 \frac{(\delta\bar{\rho}_{\text{tot}} + \bar{p}_{\text{tot}})}{\bar{\rho}_{cr}} - \frac{(a \times \text{coup})'}{a} = 0$$

$$coup = B_{(c),\bar{\phi}\bar{\phi}}\bar{\phi}'\delta\phi + B_{(c),\bar{\phi}}\delta\phi' = n\lambda(\bar{\phi}\delta\phi)'$$

$$\bar{\delta}_c^{(\pm)} = c_{(\pm)} \eta^{\nu_{(\pm)}}$$

$$\nu_{(\pm)} = \frac{-(1+\xi) \pm \sqrt{24 + (1+\xi)^2}}{2(1-\xi)}$$

DE

❖ DARK ENERGY IS NOWHERE!