Conductance of Single Molecular Junctions

Research Center for Applied Sciences, Academia Sinica

Department of Physics, National Tsing Hua Universit

October 1, 2008

Outline:

1. Introduction

Why molecular electronics?

2. Comparison with experiments

Alkanethiol molecules

3. What is the single-molecule conductance?

An alkanedithiol molecule

4. Spontaneous oscillation of current

A C₆₀ molecule

5. Summary

1. Introduction:

What's the problem?

45 nm now

Physical limit: Diffraction of light.

Economical limitation: Too expensive.

Molecular electronics: A solution

The main idea: use molecules to create analogues of today's IC chips.

Because molecules are small and can form structures by self-assembly.

Aviram & Ratner, (1974).

For example ..

Some experiments

J.G. Kushmerick NanoLetters '03

H.B. Weber APL '03

S.M. Lindsay Science '03

D. Stewart NanoLetters '04

But, there is a big problem:

Most experimental data can not be reproduced by other groups!

Except....

A SAM measurement: Alkanethiol molecular wires.

Wold and Frisbie, JACS 123, 5549 (2001)

Rather similar results from other groups: M. Reed et al (2003); Lindsay et al, Nanotechnology, 13, 5 (2002).

Can we simulate these experimental data from first principles?

How to calculate current?

Landauer formula:

$$I(V_b) = \frac{2e^2}{h} \int_{-\infty}^{+\infty} T(E, V_b) \left(f_l - f_r \right) dE$$

Real space DFT plus Keldysh Green's functions: Taylor, Guo, Wang, PRB 63, 245407(2001)-----McGill-Device-CALculator (McDCAL); Brandbyge, et al, PRB 65, 165401(2002)---Transiesta.

Conventional Density Functional Theory (DFT) solves two kinds of problems:

Finite isolated system

Gaussian-03

Quantum transport:

A device is neither finite nor periodic, and is in non-equilibrium

Periodic systems

VASP

Computational modeling

Calculation of electron current

2. Comparison with experiments: Alkanethiol molecules

Quantitative agreement with measurements

Experimental: average slope (beta) is close to 1

From alkanethiol to alkanedithiol

• Our calculation: still shows

$$R_n = R_o \exp(\beta n)$$

- Our calculated beta is still about 1.0;
- Our R_o is smaller than that of alkanethiol by about a factor of 18.

Experiments so far:

- 1. Cui et al, J. Chem. Phys. 106, 8069 (2002): β
- $\beta = 0.57$

2. Engellkes et al (Frisbie lab) (2003):Xu and Tao, Science (2003):Lee and Reed, J. Phys. Chem (2004):

$$\beta = 1.05$$

Alkane has a large HOMO-LUMO gap, ~10eV. The Fermi level is inside the gap, but closer to HOMO.

> There is a tiny feature near Fermi level which determines the resistance.

3. What is the single-molecule conductance?

Conductance of a Au nanowire:

Nature 395, 780 (1998)

Nano Lett. 6, 2362 (2006)

Conductance of a single molecule

J. Tao et al, Science (2003)

New measurement on single alkanedithiol molecule

J. Tao et al, JACS (2003); Science (2003)

Previous modeling:

PRL 95, 156803 (2005)

PHYSICAL REVIEW LETTERS

week ending 7 OCTOBER 2005

Conductance of an Ensemble of Molecular Wires: A Statistical Analysis

Yibin Hu,1,2 Yu Zhu,2 Hongjun Gao,1 and Hong Guo2,1

¹International Center for Quantum Structures, Institute of Physics, Chinese Academy of Science, Beijing, China ²Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Received 21 April 2005; published 3 October 2005)

		Calculation	Experiment
N = 6	G =	0.0010	0.0012
N = 8	G =	0.000 13	0.000 25
N = 10	G =	0.000 02	0.000 02
			Unit: G₀

Kaun & Seideman, Phys. Rev. B 77, 033414 (2008)

Contact effect (N=6):

Au surface states and Au-S hybridization (from lead s, p_z band)

4. Spontaneous oscillation of current

Nanomechanical oscillations in a single-C₆₀ transistor

H. Park, et al, Nature (2000)

Current-driven oscillations:

(10) (10)

t (ps)

Predictions from calculations

T. Seideman, et al, Chem. Phys. (2002)

f 🔶 the C🛛 mass

H. Park, et al, Nature (2000)

The bouncing Bucky ball

Our model:

Transmission spectra:

Three channels

One induces the motion; the other probes it.

Different locations

Current oscillates as the molecule vibrates

The ac/dc ratio, the power output efficiency, is 0.26 (L = 26.42 a.u.)

When L = 25.42 a.u., the ratio is 0.07

Only a range of L permits both a large ratio and high average conductance

Kaun and Seideman, PRL 94, 226801 (2005)

Applications:

 A nanoscale generator of a radiation field, thus a THz optoelectronic device.

A miniature mass spectrometry.

 The direct, time-domain probing of the current-driven dynamics in nanojunctions.

Experimentally Nanotube radio

A. Zettl et al, Nano Lett. 7, 3508 (2007)

5. Sumary:

- Conductance are quantitative consistent to experimental data
- Contacts play important roles
- Au-S hybridization states dominates the conduction
- Current-driven dynamics can be used to produce oscillating current in molecular junctions

Acknowledgements:

- Prof. Tamar Seideman
- Prof. Hong Guo

Northwestern Univ.

McGill Univ.