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* Introduction

* Quantum Circuit and Login

* Quantum Fourier Transform (QFT)
e Shor’s algorithm

* Summary
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“I think I can safely say that nobody understands quantum mechanics”
! E

When we get to the very, very small world---say circuits of seven atoms---we
have a lot of new things that would happen that represent completely new
opportunities for design. Atoms on a small scale behave like nothing on a large
scale, for they satisfy the laws of quantum mechanics. So, as we go down and
fiddle around with the atoms down there, we are working with different laws,
and we can expect to do different things. We can manufacture in different ways.
We can use, not just circuits, but some system involving the quantized energy
levels, or the interactions of quantized spins, etc.

There’s Plenty of Room at the Bll“llm

Richard P. Feynman, December 29th 1959

e
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P.W. Shor

* P. W. Shor,
*““Algorithms for quantum computation: Discrete logarithms and factoring”
*Proc. 35nd Annual Symposium on Foundations of Computer Science
[EEE Computer Society Press (1994), 124-134.
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Quantum Bit=Qubit

Center for Quantum Computation http://www.qubit.org/



http://www.qubit.org/

Representation of Data - Qubits

A bit of data 1s represented by a single atom that 1s in one of
two states denoted by ' and ' . A single bit of this form 1s
known as a qubit

A physical implementation of a qubit could use the two energy
levels of an atom. An excited state representing |1> and a
ground state representing |0>.

Light pulse of
frequency A for
Excited time interval t

State

Nucleus

Ground
State

Electron




Representation of Data - Superposition

Light pulse of
frequency A for time
interval t/2

o e



Data Retrieval

* In general, an n qubit register can represent the numbers 0
through 2”n-1 simultaneously.

Sound too good to be true?...It is!

= [f we attempt to retrieve the values represented within a
superposition, the superposition randomly collapses to
represent just one of the original values.
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Supperposition Principle
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Quantum Entanglement
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The two-photon may be said to be in a definite state of
sameness of polarization even though neither photon has a
polarization of its own
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Quantum De-Coherence
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Schroedinger's Cat

\ ,&\ Observer

Eefore Opening the Box
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Geiger Counter

http://www.lassp.cornell.edu/ardlouis/dissipative/Schrcat.html



L1 YT PR N R PR T

YR Sppegl YA 2

*Active: *Passive:
*Quantum error correction *Decoherence-free subspace
*Quantum feedback control *Bang-bang decoupling

*Quantum Error Correction
*Knowing the error without knowing the state
*Encoded qubit, Ex: |0>,=|000>, |1> =[111>
*Error detection
*Error correction

*Threshold for resilient quantum computation
P, ~10>



D1 Vincenzo’s Criteria

Be a scalable physical system with well-defined qubits
Be 1nitializable to a simple fiducial state such as |000...>
Have much longer decoherence times

Have a universal set of quantum gates

Permit high quantum efficiency measurements



A Scalable Physical System
with
Well-defined Qubits

* Well-defined qubits

— Parameter known, (in principle), for each qubit
— Coupling to environment and other qubit known
— Tunable inter qubit interactions (can be relaxed)
— Higher levels far away (to reduce decoherence)

e Scalable

— Many qubit can be read out, manupulated individaully

— Selectivity



Basic Components

e Get familiar with the basic components 1n
quantum circuit

» Understand the physical and operation
meaning of quantum circuit

* Be able to read the more complicated quantum
circuit and



Basic Components

e Qubit

— Single qubit
— Multiple qubit

e Quantum operation

— Single qubit operation

— Multiple qubit operation ]

o Quantum measurement




Basic Components
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Basic Components
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Frequently Used Gates
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Frequently Used Gates

SWAP

Controlled-NOT

Controlled-Z

Controlled-Phase

Controlled-U
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Controlled Operation
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[t——~ U ) =U°|t)
la) —@—|a) Target Qubit
'b) —@—|b)

Apply “NOT” when control=0



Connection to Classical Computation

» Classical computation is (in principle)
Irreversible

e Quantum computation is (in principle)
reversible

e Connection? Reversibility? Dissipation?



Energy and Computations

e Laudauer’s principle:

— Suppose a computer erases a single bit of
iInformation. The entropy of theenvironment
Increases by at least kB*In2, here kB Is
Boltzmann’s constant.

* Reversibly computation:

— If all computer could be done reversibly, then
Landauer’s principle imply no lower bound on
the amount of energy dissipated by the
computer!



Quantum Gates are Reversible

e For any unitary matrix U, we have UTU=|

) [¢')=U| p)

Ut

9"y =U"[¢"Y=U"U|p)=]9p)

* |s it possible to simulate classical gate by

guantum gate?

— The answer Is, of course, yes.



Fredkin Gate

Truth Table
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Toffoll gate
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Operations on Qubits - Reversible Logic

*Due to the nature of quantum physics, the destruction of
information in a gate will cause heat to be evolved which can
destroy the superposition of qubits.

Input Output

In these 3 cases,
information is
being destroyed

The AND Gate

A
C
B

*This type of gate cannot be used. We must use
Quantum Gates.




Quantum Gates

* Quantum Gates are similar to classical gates, but do not have
a degenerate output. 1.e. their original input state can be derived
from their output state, uniquely. They must be reversible.

*This means that a deterministic computation can be performed
on a quantum computer only if it is reversible. Luckily, it has
been shown that any deterministic computation can be made
reversible.(Charles Bennet, 1973)



Quantum Gates - Hadamard

=Simplest gate involves one qubit and is called a Hadamard
Gate (also known as a square-root of NOT gate.) Used to put
qubits into superposition.

A U] R S B
State State State
|0> |0> + |1> |1>




Quantum Gates - Controlled NOT

" A gate which operates on two qubits 1s called a
Controlled-NOT (CN) Gate. If the bit on the control line is
1, invert the bit on the target line.

Input Output

A - Target TN A’
N

B - Control B’




Example Operation - Multiplication By 2

= We can build a reversible logic circuit to calculate multiplication
by 2 using CN gates arranged in the following manner:

Input Output

0 Carry Bit

~
J
L H . >< ! Ones Bit

N
N

N




Quantum Gates - Controlled Controlled NOT
(CCN)

= A gate which operates on three qubits 1s called a
Controlled Controlled NOT (CCN) Gate. Iff the bits on
both of the control lines is 1,then the target bit is inverted.

Input Output

A - Target

N
N
>

B - Control 1 B’

C - Control 2 C




A Universal Quantum Computer

= The CCN gate has been shown to be a universal reversible
logic gate as i1t can be used as a NAND gate.

A - Target T A Input Output
\/
B - Control 1 B’
L
C - Control 2 C




Quantum Fourier Transform

e Discrete Fourier transform:



QFT: Product Representation
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Efficient Circuit for QFT




4-Qubit QFT-1
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*Qubits representing more significant bits are represented by higher lines



=

4-Qubit QF T-2

N
|
|
VAV

*Use the symmetric property of controlled gate

L%

U

*Now if we do the measurement right after the QFT circuit (period finding)



=

|
VAV

4-Qubit QF T-2

*Nothing further happens until the final measurement




4-Qubit QFT-3

vy V)

M

M

VinH M

*If y,=1, apply V,, V,, V,

*If y,=0, do nothing

*Produce the same state after the red box
*PRL 76, 3228 (1996)




4-Qubit QFT-4

x> —H H H

*PRL 76, 3228 (1996)
«Symmetric between control and target



Shor’s Algorithm

=Shor’s algorithm shows (in principle,) that a quantum
computer 1s capable of factoring very large numbers in

polynomial time.

The algorithm 1s dependant on
*Modular Arithmetic
*Quantum Parallelism
*Quantum Order Finding

*Quantum Fourier Transform



Shor’s Algorithm - Periodicity
*  An important result from Number Theory:

F(a) = x* mod N is a periodic function

= Choose N =15 and x =7 and we get the following:

7 mod15=1
71 mod 15=7
72 mod 15 =4
7> mod 15 =13
74 mod 15=1

=  Order of x mod N i1s the least positive integer r s.t. x*=1 mod N



Shor’s Algorithm - In Depth Analysis

To Factor an odd integer N (Let’s choose 15) :

Choose an integer ( such that N? < q< OINZ  let’s pick =256
Choose a random integer X such that GCD(X, N) =1 let’s pick x=7

Create two quantum registers (these registers must also be
entangled so that the collapse of the input register corresponds to
the collapse of the output register)

* Input register: must contain enough qubits to represent numbers
as large as q-1. up to 255, so we need 8 qubits

*  Qutput register: must contain enough qubits to represent
numbers as large as N-1. up to 14, so we need 4 qubits



Shor’s Algorithm - Preparing Data

4. Load the input register with an equally weighted
superposition of all integers from 0 to g-1. 0 to 255

5. Load the output register with all zeros.




Shor’s Algorithm - Modular Arithmetic

6. Apply the transformation X mod N to each number in
the input register, storing the result of each computation

in the output register. Note that we are using decimal

numbers here only for simplicity.




Shor’s Algorithm - Superposition Collapse

7. Now take a measurement on the output register. This will
collapse the superposition to represent just one of the results
of the transformation, let’s call this value C.




Shor’s Algorithm - Entanglement

Now things really get interesting !

. Since the two registers are entangled, measuring the output

register will have the effect of partially collapsing the input
register into an equal superposition of each state between 0
and (-1 that yielded c (the value of the collapsed output

register.)




Shor’s Algorithm - QFT




Shor’s Algorithm - QFT




Shor’s Algorithm - The Factors :)

10. Now that we have the period, the factors of N can be
determined by taking the greatest common divisor of N
with respect to X(P2 + 1 and x(P/2) - 1. The idea here is
that this computation will be done on a classical
computer.




Shor’s Algorithm - Problems

* The QFT comes up short and reveals the wrong period. This
probability is actually dependant on your choice of . The
larger the q, the higher the probability of finding the correct

probability.

= The period of the series ends up being odd




Summary

 Quantum computer is powerful
— In some applications

« Quantum computer is not powerful
— Hybrid computation needec

e Quantum computation is difficult
— Decoherence, decoherence, decoherence
— Fight the decoherence

e Quantum computation is fun !
— Deeper understanding of QM
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