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摩爾定律 Moore's law

如何持續成長？

微小尺度=>量子力學效應？

危機？ 轉機？



There’s Plenty of Room at the
Richard P. Feynman, December 29th 1959

When we get to the very, very small world---say circuits of seven atoms---we 
have a lot of new things that would happen that represent completely new 
opportunities for design. Atoms on a small scale behave like nothing on a large 
scale, for they satisfy the laws of quantum mechanics. So, as we go down and 
fiddle around with the atoms down there, we are working with different laws, 
and we can expect to do different things. We can manufacture in different ways. 
We can use, not just circuits, but some system involving the quantized energy 
levels, or the interactions of quantized spins, etc.

先知………
“I think I can safely say that nobody understands quantum mechanics”



C.H. Bennett, G. Brassard, S. Breidbart, and S. Wiesner
“Quantum Cryptography, or Unforgetable Subway Tokens” , 1983.

C.H. Bennett and G. Brassard
“Quantum Cryptography: Public Key Distribution and Coin Tossing”, 
1984. 

C.H. Bennett, G. Brassard, S. Breidbart, and S. Wiesner,
“Eavesdrop-Detecting Quantum Communications Channel”, 1985.

D. Deutsch
“Quantum theory, the Church-Turing principle and 
the universal quantum computer”, 1985.

八十年代的先行者

C.H. Bennett G. Brassard D. Deutsch



• P. W. Shor, 
•“Algorithms for quantum computation: Discrete logarithms and factoring”
•Proc. 35nd Annual Symposium on Foundations of Computer Science
•IEEE Computer Society Press (1994), 124-134.

P.W. Shor

九十年代的大突破



已知的量子演算法

Quantum Search Quantum Fourier Transform Hidden Subgroup

Discrete log Order-finding

Factoring

Break cryptosystems
(RSA)

Speedup for some
NP problems

Search for
crypto keys

指數超頻多項式超頻



資訊＝可區分性

•想一想,為什麼用筆把字寫下是一種儲存資訊的方法？

•因為我們可以區分不同的字,也就用字的可區分性來儲存資訊。

•從這樣的觀點來看現在的電腦
•所有的資訊可以化約為位元(O, 1).
•所以有的資訊處理過程都可以化約成邏輯閘(NOT,AND)
•這樣的原理,讓我們可以用不同的物理系統去製造電腦

01010≠10010



資訊的物理性
Information is Physical

•當我們走到微觀的尺度
•構成資訊的單元如光子,自旋等,必須遵守量子力學的原理

•量子態無法在不受干擾的情況下被量測或拷貝

•我們需要一套量子資訊學

•量子資訊學可以化約成
•量子位元 Quantum Bit
•量子運算 Quantum Gate
•萬用量子計算模型 Universal Quantum Computation



Center for Quantum Computation http://www.qubit.org/

變換莫測的量子位元
Quantum Bit=Qubit

非零即一的傳統位元

http://www.qubit.org/


Representation of Data  - Qubits

A bit of data is represented by a single atom that is in one of 
two states denoted by |0> and |1>.  A single bit of this form is 
known as a qubit

A physical implementation of a qubit could use the two energy 
levels of an atom.  An excited state representing |1> and a 
ground state representing |0>.

Excited 
State

Ground 
State

Nucleus

Light pulse of 
frequency λ for 
time interval t

Electron

State |0> State |1>



Representation of Data - Superposition
Light pulse of 

frequency λ for time 
interval t/2

State |0> State |0> + |1>



Data Retrieval

In general, an n qubit register can represent the numbers 0 
through 2^n-1 simultaneously.

Sound too good to be true?…It is!
If we attempt to retrieve the values represented within a 

superposition, the superposition randomly collapses to 
represent just one of the original values. 

1

n



量子態疊加原理
Supperposition Principle

Calcite Crystal

H

V

H

V

H

V

Prob=cos2θ

Prob=sin2θ



量子平行運算

傳統電腦的XOR=Control Not

量子版本的Control Not

輸入疊加態=>輸出疊加態

|1>

|0>

=
+
2 +

2



量子糾纏
Quantum Entanglement
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+
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≠

The two-photon may be said to be in a definite state of 
sameness of polarization even though neither photon has a 
polarization of its own



量子電腦的困擾

量子消相干
Quantum De-Coherence

量子糾纏=> 量子消相干過程=> 量子不糾纏=古典物理

系統

環境

Interaction



http://www.lassp.cornell.edu/ardlouis/dissipative/Schrcat.html

Schroedinger's Cat



量子消相干時間尺度決定了量子資訊處理的可能性

如何對抗量子消相干?

•Active:
•Quantum error correction
•Quantum feedback control
•…….

•Passive:
•Decoherence-free subspace
•Bang-bang decoupling
•…….

•Quantum Error Correction
•Knowing the error without knowing the state
•Encoded qubit, Ex: |0>L=|000>, |1>L=|111>
•Error detection
•Error correction

•Threshold for resilient quantum computation
•Pth≈10-5



Di Vincenzo’s Criteria

• Be a scalable physical system with well-defined qubits

• Be initializable to a simple fiducial state such as |000...> 

• Have much longer decoherence times 

• Have a universal set of quantum gates 

• Permit high quantum efficiency measurements 



A Scalable Physical System 
with 

Well-defined Qubits

• Well-defined qubits
– Parameter known, (in principle), for each qubit
– Coupling to environment and other qubit known
– Tunable inter qubit interactions (can be relaxed)
– Higher levels far away (to reduce decoherence)

• Scalable
– Many qubit can be read out, manupulated individaully
– Selectivity



Basic Components

• Get familiar with the basic components in 
quantum circuit

• Understand the physical and operation 
meaning of quantum circuit

• Be able to read the more complicated quantum 
circuit and



Basic Components

• Qubit
– Single qubit
– Multiple qubit

• Quantum operation
– Single qubit operation
– Multiple qubit operation

• Quantum measurement

U

M
y

n

U



Basic Components
• Doing nothing

• Single qubit gate

• Two qubits gate
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Basic Components
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Frequently Used Gates
• Hadamard:

• Pauli-X:

• Pauli-Y:

• Pauli-Z:

• Phase:

• π/8:
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Frequently Used Gates
• SWAP

• Controlled-NOT

• Controlled-Z

• Controlled-Phase

• Controlled-U
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Controlled Operation
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Connection to Classical Computation

• Classical computation is (in principle) 
irreversible

• Quantum computation is (in principle) 
reversible

• Connection? Reversibility? Dissipation?



Energy and Computations

• Laudauer’s principle: 
– Suppose a computer erases a single bit of 

information. The entropy of theenvironment
increases by at least kB*ln2, here kB is 
Boltzmann’s constant.

• Reversibly computation:
– If all computer could be done reversibly, then 

Landauer’s principle imply no lower bound on 
the amount of energy dissipated by the 
computer!



Quantum Gates are Reversible

• For any unitary matrix U, we have U†U=I

• Is it possible to simulate classical gate by 
quantum gate?
– The answer is, of course, yes.
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Fredkin Gate
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Toffoli gate 
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Due to the nature of quantum physics, the destruction of 
information in a gate will cause heat to be evolved which can 
destroy the superposition of qubits.

Operations on Qubits - Reversible Logic

A B   C
0 0 0
0 1 0
1 0 0
1 1 1

Input Output

A

B
C

In these 3 cases, 
information is 
being destroyed

Ex.

The AND Gate

This type of gate cannot be used.  We must use 
Quantum Gates.



Quantum Gates
Quantum Gates are similar to classical gates, but do not have 

a degenerate output. i.e. their original input state can be derived 
from their output state, uniquely.  They must be reversible.

This means that a deterministic computation can be performed 
on a quantum computer only if it is reversible.  Luckily, it has
been shown that any deterministic computation can be made 
reversible.(Charles Bennet, 1973)



Quantum Gates - Hadamard

Simplest gate involves one qubit and is called a Hadamard 
Gate (also known as a square-root of NOT gate.)  Used to put 
qubits into superposition.

H
State                 
|0>

State   
|0> + |1>

H
State   
|1>

Note: Two Hadamard gates used in 
succession can be used as a NOT gate



Quantum Gates - Controlled NOT  

A gate which operates on two qubits is called a 
Controlled-NOT (CN) Gate.  If the bit on the control line is 
1, invert the bit on the target line.

A - Target

B - Control

A B   A’ B’
0 0

1
0
1

1
1
0

0 0
0 1
1 0
1 1

Input Output

Note: The CN gate has a similar 
behavior to the XOR gate with some 

extra information to make it reversible.

A’

B’



Example Operation - Multiplication By 2

Carry Bit

Carry 
Bit

One
s 

Bit   

Carry 
Bit

One
s Bit

0 0
01

0 0
0 1

Input Output

Ones Bit

We can build a reversible logic circuit to calculate multiplication 
by 2 using CN gates arranged in the following manner:

0

H



Quantum Gates - Controlled Controlled NOT 
(CCN) 

A - Target

B - Control 1

C - Control 2

A B   C A’ B’ C’
0 0

1
0
1

1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 1 1

0
1
1

0
0
0
1

0
1
0
1

0 0
0 0
0 1
0 1

Input Output

A’

B’

C’

A gate which operates on three qubits is called a 
Controlled Controlled NOT (CCN) Gate.  Iff the bits on 
both of the control lines is 1,then the target bit is inverted.



A Universal Quantum Computer
The CCN gate has been shown to be a universal reversible 

logic gate as it can be used as a NAND gate.

A - Target

B - Control 1

C - Control 2

A B   C A’ B’ C’
0 0

1
0
1

1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 1 1

0
1
1

0
0
0
1

0
1
0
1

0 0
0 0
0 1
0 1

Input OutputA’

B’

C’

When our target input is 1, our target 
output is a result of a NAND of B and C.



Quantum Fourier Transform

• Discrete Fourier transform:

• Quantum Fourier transform:
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QFT: Product Representation
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Efficient Circuit for QFT

H R2 Rn-1 Rn

H Rn-1 Rn

H Rn
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4-Qubit QFT-1

•Qubits representing more significant bits are represented by higher lines



4-Qubit QFT-2

U

U
=

•Use the symmetric property of controlled gate

•Now if we do the measurement right after the QFT circuit (period finding)



4-Qubit QFT-2

M

•Nothing further happens until the final measurement



4-Qubit QFT-3

•If y0=1, apply V1, V2, V3
•If y0=0, do nothing
•Produce the same state after the red box
•PRL 76, 3228 (1996)



4-Qubit QFT-4

•PRL 76, 3228 (1996)
•Symmetric between control and target



Shor’s Algorithm

Shor’s algorithm shows (in principle,) that a quantum 
computer is capable of factoring very large numbers in 
polynomial time. 

The algorithm is dependant on

Modular Arithmetic

Quantum Parallelism

Quantum Order Finding

Quantum Fourier Transform



Shor’s Algorithm - Periodicity

Choose N = 15 and x = 7 and we get the following:

70 mod 15 = 1

71 mod 15 = 7

72 mod 15 = 4

73 mod 15 = 13

74 mod 15 = 1
.
.
.Order of x mod N is the least positive integer r s.t. xr=1 mod N

An important result from Number Theory:

F(a) = xa mod N is a periodic function



Shor’s Algorithm - In Depth Analysis

2 2

To Factor an odd integer N  (Let’s choose 15) :

1. Choose an integer q such that N2 < q < 2N2 let’s pick q=256

2. Choose a random integer x such that GCD(x, N) = 1 let’s pick x=7

3. Create two quantum registers (these registers must also be 
entangled so that the collapse of the input register corresponds to 
the collapse of the output register)

• Input register: must contain enough qubits to represent numbers 
as large as q-1.  up to 255, so we need 8 qubits

• Output register: must contain enough qubits to represent 
numbers as large as N-1. up to 14, so we need 4 qubits



Shor’s Algorithm - Preparing Data

4. Load the input register with an equally weighted 
superposition of all integers from 0 to q-1.  0 to 255

5. Load the output register with all zeros.  

The total state of the system at this point will be:

1

√256
∑ |a, 000>
a=0

255

Input 
Register

Output 
Register

Note: the comma here 
denotes that the 
registers are entangled



Shor’s Algorithm - Modular Arithmetic
6. Apply the transformation x mod N to each number in 

the input register, storing the result of each computation 
in the output register.

a

Input Register 7a Mod 15 Output Register
|0> 70 Mod 15 1
|1> 71 Mod 15 7
|2> 72 Mod 15 4
|3> 73 Mod 15 13
|4> 74 Mod 15 1
|5> 75 Mod 15 7
|6> 76 Mod 15 4
|7> 77 Mod 15 13

Note that we are using decimal 
numbers here only for simplicity.

.

.



Shor’s Algorithm - Superposition Collapse
7. Now take a measurement on the output register.  This will 

collapse the superposition to represent just one of the results 
of the transformation, let’s call this value c.

Our output register will collapse  to represent one of 
the following: 

|1>, |4>, |7>, or |13>

For sake of example, lets choose |1>

|ψ>=|0>|1>+|1>|7>+|2>|4>+|3>|13>+|4>|1>+|5>|7>+|6>|4>+|7>|13>+..

=(|0>+|4>+..)|1>+(|1>+|5>+..)|7>+(|2>+|6>+..)|4>+(|3>+|7>+..)|13>



Shor’s Algorithm - Entanglement

8. Since the two registers are entangled, measuring the output 
register will have the effect of partially collapsing the input 
register into an equal superposition of each state between 0 
and q-1 that yielded c (the value of the collapsed output 
register.)

Now things really get interesting !

Since the output register collapsed to |1>, the input register 
will partially collapse to:

|0> +       |4> +       |8> +       |12>, . . .

The probabilities in this case are         since our register is
now in an equal superposition of 64 values (0, 4, 8, . . . 252)

1

√64

1

√64

1

√64

1

√64
1

√64



Shor’s Algorithm - QFT

Note: A is the set of all values that 7   mod 15 yielded 1.  
In our case A = {0, 4, 8, …, 252}

So the final state of the input register after the QFT is:
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Shor’s Algorithm - QFT

The QFT will essentially peak the probability amplitudes at 
integer multiples of q/4 in our case 256/4, or 64.

|0>, |64>, |128>, |192>, …

So we no longer have an equal superposition of states, the 
probability amplitudes of the above states are now higher 
than the other states in our register.  We measure the 
register, and it will collapse with high probability to one of 
these multiples of 64, let’s call this value p.

With our knowledge of q, and p, there are methods of 
calculating the period (one method is the continuous fraction 
expansion of the ratio between q and p.)



Shor’s Algorithm - The Factors :) 

10. Now that we have the period, the factors of N can be 
determined by taking the greatest common divisor of N 
with respect to x(P/2) + 1 and x(P/2) - 1.  The idea here is 
that this computation will be done on a classical 
computer.

We compute:

Gcd(7 + 1, 15)  = 5

Gcd(7 - 1, 15)  = 3

We have successfully factored 15!

4/2

4/2



Shor’s Algorithm - Problems

The QFT comes up short and reveals the wrong period.  This 
probability is actually dependant on your choice of q.  The 
larger the q, the higher the probability of finding the correct 
probability.

The period of the series ends up being odd

If either of these cases occur, we go back to 
the beginning and pick a new x.



Summary
• Quantum computer is powerful

– In some applications
• Quantum computer is not powerful

– Hybrid computation needed
• Quantum computation is difficult

– Decoherence, decoherence, decoherence
– Fight the decoherence

• Quantum computation is fun !
– Deeper understanding of QM
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