Quantum Physics Midterm, Dec. 2, 2011.

The details or reasonings must be provided to justify your answers.

- 1. (10+10%) (a) For a 1-dimensional harmonic oscillator, give the matrix representations of a^{\dagger} and a in the basis in which the Hamiltonian is diagonal.
 - (b) Using the matrices found in (a), calculate the commutator $[a, a^{\dagger}]$.
- 2. (10+10+10%) At t=0, the wave function $\Psi(x,0)$ for a free particle with mass m is prepared as shown.

If one performs the \hat{x} measurement at t=0 and it is found the particle is in the range of $-1 \le x \le 0$.

- (a) Sketch the wave function, $\psi(x,0)$, right after the measurement.
- (b) Calculate the σ_x right after the measurement.
- (c) By Fourier decomposition, obtain the analytical expression for $\psi(x,t)$. (Do your best to simplify the result, but leave it in the integral form.)
- 3. (10+10+10+10%) The Hamiltonian for a certain three-level system is represented by the matrix

$$\hat{H} = E_0 \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \right)$$

Two other observables, \hat{A} and \hat{B} , are represented by the matrices

$$\hat{A} = a \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 4 \end{pmatrix}, \ \hat{B} = b \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

- (a) Find the eigenvalues and the normalized eigenvectors of \hat{H} , \hat{A} and \hat{B} .
- (b) Suppose the system is described by the state at t=0

$$|\psi(0)\rangle = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

- with $|c_1|^2 + |c_2|^2 + |c_3|^2 = 1$. Find (at t = 0) $\langle \hat{H} \rangle, \langle \hat{A} \rangle$, and $\langle \hat{B} \rangle$. (c) What is $|\psi(t)\rangle$? What is the probability that you measure $\hat{H} = 2E_0$ first and then A = -a?
- (d) What are $d\langle \hat{A} \rangle/dt$ and $d\langle \hat{B} \rangle/dt$?.
- 4. (10+10%) A particle of mass m in the gravitational potential near the surface of Earth can be described by the Hamiltonian $\hat{H} = \frac{\hat{P}_z^2}{2m} - mg\hat{Z}$ where $g = 9.8m/sec^2$.
 - (a) Calculate $d\langle \hat{Z} \rangle/dt$, $d\langle \hat{P}_Z \rangle/dt$, and $d\langle \hat{H} \rangle/dt$
 - (b) Obtain $d^2\langle \hat{Z}\rangle/dt^2$ and solve the equation to get $\langle \hat{Z}\rangle(t)$ such that $\langle \hat{Z}\rangle(0)=h$ and $\langle \hat{P}_Z \rangle(0) = 0.$
- 5. (10+10%) A 2-state system posses the normalized energy eigenstates $|1\rangle$ and $|2\rangle$ such that $\hat{H}|1\rangle = E_1|1\rangle$ and $\hat{H}|2\rangle = E_2|2\rangle$. There is another observable \hat{Q} with the known "experimental" results that: (1) $\langle 1|\hat{Q}|1\rangle = 1/2$, (2) $\langle 1|\hat{Q}^2|1\rangle = 1/4$, and (3) $\langle 2|\hat{Q}^3|2\rangle = 1.$
 - (a) Find the eigenvalues and the eigenvectors of \hat{Q} .
 - (b) What kind of state $|\psi\rangle$ can make $\sigma_H\sigma_Q=0$?