
The situation, approximately 
14 billion years before right now:

BANG
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Then, shortly thereafter:

e = electron
p = proton
n = neutron
e = antielectron

p = antiproton

n = antineutron
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Then, the universe expanded and cooled:
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Then, True Love!

Each particle finds its “soul mate”.
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POP!

POP!

POP!

POP!

POP!

POP!

Married life is passionate, but short. Nothing is left but 
a pulse of light.
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In the mass cosmic wedding,
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Except for a very small number of lonely, left-over particles,
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Question: Who are these final, few, 
lonely particles that no one wanted?    
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Question: Who are these final, few, 
lonely particles that no one wanted?
Answer: They are you.    
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Question: Why, right after the Big 
Bang, was there just a tiny bit more 
matter than antimatter?  (How is it we 
can exist, today?)
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Question: Why, right after the Big 
Bang, was there just a tiny bit more 
matter than antimatter?  (How is it we 
can exist, today?)
Answer:  Physicists don’t know!  But we are trying to 
understand. 



What does “electric dipole moment” have 
to do with
“a tiny bit more electron than antielectron 
14 billion years
ago”?   
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What does “electric dipole moment” have to do with
“a tiny bit more electron than antielectron 14 billion years
ago”?   Modern-day fossil of ancient asymmetry.
Symmetries

1.electrons act just like antielectrons.
2.electrons and other particles look the same in the mirror:

3. Particles look same if you 
“run the movie backwards.”

e

p

e

p





In nature, we see a lot of symmetry.

things look the same in the mirror.  
things look same when time runs backwards.  (little things.)
matter is same as antimatter

this is a little hard to explain:  these different 
symmetries are  connected by theoretical considerations.
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-

Meet Mr. Electron.

charge =  -q
mass = me
It spins.
It has a magnetic
north pole and
south pole.
Symmetry
Question: north and
south pole the same?

s

“N”

“S”

B



North Pole, Earth                       South Pole, Earth
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Meet Mr. Electron.
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electron
Electric 
Dipole
Moment
(eEDM)?

“N”

“S”



-

Meet Mr. Electron.

+

-
-

eEDM looks like offset between center of mass and 
center of charge!

electron
Electric 
Dipole
Moment
(eEDM)?



Mass

Charge

de

de< 10-28 cm





An extra thickness of electric charge 
on north pole, in proportion to the size
of the earth, thickness of a virus.

If the electron has an 
asymmetry of this tiny size,
a very small “electric dipole
moment”, that would be a 
very important “fossil”, a big
clue to help explain the
more important asymmetry,
the asymmetry that asks 
“why are we here?”



Measuring electron EDM using molecular 
ions

JILA eEDM collaboration



• Kevin Cossel (now Dr.)
• Matt Grau
• Laura Sinclair
• Huanqian Loh
• Dr. Kang-Kuen Ni (now Prof.)
• Will Cairncross
• Dan Gresh
• Yiqi Ni
• Prof. Jun Ye
• Prof. Eric Cornell

•Bob Field

•John Bohn
•Ed Meyer
•Chris Greene
•Jia Wang

•St Petersberg Theory

Thanks:  NSF/PFC, 
NIST,

and Marsico       
Foundation





An extra thickness of electric charge 
on north pole, in proportion to the size
of the earth, thickness of a virus.

How to measure 
something so 
very small?



#1 Rule of experimental physics:  if you want to 
measure something very carefully, change the 
thing you want to measure into a frequency, and 
measure that!











gravity!





gravity!

This is a very good way to
measure gravity. If it gets even
a very small amount stronger
or weaker, the clock will
“tick” a little faster or a little
slower.   Physicists can measure 
changes in clock as small as on part
in 1,000,000,000,000,000   (10-15)
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Ex #2: How strong is 
the magnet?

N

S

A compass.

N

S
If our little magnet is 
weak, it wiggles slowly
(low frequency), if it is
strong, it wiggles 
quickly (high 
frequency).
Measure the frequency 
measure the magnet!





Ex #2: How strong is 
the magnet? A compass.

N
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N
S

The proton (inside your
body, inside the NMR 
scanner) is a very 
small magnet. To
make the proton wiggle 
strongly we need the 
biggest  lab magnet 
possible.

a proton inside
patient’s body.





Ex #3: Forget about
proton!  Forget about
magnet!
What about electron
electric dipole moment?

A compass.

N

S

N
S



A compass.

N

S

Ex #3: Forget about
proton!  Forget about
magnet!
What about electron
electric dipole moment?

+
-- An electron with,

maybe!
electric dipole
moment (EDM)



Ex #3: Forget about
proton!  Forget about
magnet!
What about electron
electric dipole moment?

A compass.

--------

+++++++

+
-- An electron with,

maybe!
electric dipole
moment (EDM)



A compass.

--------

+++++++

+
-- An electron with,

maybe!
electric dipole
moment (EDM)

If electron EDM exists
at all, it is very small.
We must apply a
VERY large 
electric field.
Two problems!



--------

+++++++

+
--

If electron EDM exists
at all, it is very small.
We must apply a
VERY large 
electric field.
Two problems!

Problem 1:
Lightning!
Spark!
(If electric field
is too big.)
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If electron EDM exists
at all, it is very small.
We must apply a
VERY large 
electric field.
Two problems!

Problem 2:
Electron gets 
pulled away by 
electric field.
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Hf++ Fl-e

We use HfF+

“Hafnium Fluoride plus”

Big electric field is good –
it helps electron wiggle faster!
What else do we need to compare
time really well?
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Which clock is faster?  Let’s
count the “ticks”.
After one min, 
#1: 60 ticks.   #2:  60 ticks.
Are they the same? 
Let’s count for one hour.
#1: 3600.      #2 3600.
Wow. They are really the 
same. Let’s count for one
day:
#1: 86398.   #2: 86399.

Aha. Grandfather #2 is a 
little bit faster!
But we had to watch them
for a long time, to know.

Grandfather
#1: “tick, tick,
tick…”

Grandfather
#2: “tick, tick,
tick…”



In order to listen to the electron “tick”
for a long time, we keep the molecule,
HfF+, in an “ion trap”.



A box to keep ions in so we can measure them a long time.
An “ion trap.”



Lasers

Lasers
Lasers

Experiment
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Q #1:  How to we make the electron, in the molecule, 
“tick”?   
Q #2: How do we “listen” to it tick?

A: We use lasers.



+
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SF6+Ne

Hf

+
+

-
-

+/-+/-
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0
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Many species, inc.
neutral HfF
Many isotopes,
many v, many J
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Mean occ. ~1/1000



Many species, inc.
neutral HfF
Many isotopes,
many v, many J
many F, many p
Mean occ. ~1/1000

neutral 180HfF Ω=1/2 J=1/2
Single internal
quantum level.

uv laser #1

HfF+ 1Σ+ v=1

uv laser 
#2

Rydberg HfF, n*~15, v=1
N=0,l=2,l+s=3/2,J=3/2

180HfF+ 1Σ+ v=0
30% N=0, mN=0
mI = +/-1/2, 
mean occ. =15%

1Σ+
e-

180HfF+ 1Σ+ v=0
N=0, mN=0

mI = +/-1/2, 

1Σ+
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N+

_S- An electron with,
North pole, south
pole and,
maybe!
electric dipole
moment (EDM)



2015-6-19 A precision measurement of the 
electron EDM using trapped 

molecular ions

Upper 
Doublet

Lower 
Doublet

(fu(B) – fu(-B)) – (fl(B) – fl(-B))   = 0.34(33) Hz

84



Sensitivity Estimate

• N = 4 ions/shot (~106 counts/day)
• Eeff = 5x1010 V/cm
• τ = 0.4 secondNE

hd
eff

e τ2
<

proj. sensitivity: |de| ~ 10-28 e*cm with 1 day of data

So far, all measurements are consistent with zero.
The most accurate so far is the Harvard/Yale group,
our competition, who see that it must be smaller than
10-28 e*cm.   We hope to pass them, soon! 



Systematics

How to make sure you’re 
actually measuring 

something



Systematic Error Rejection.  Key Chops.

Chop: B E E/Eeff v Other
Tl beam Y Y N Y

YbF beam Y Y N N*

PbO vapor cell Y Y Y N*

trapped Cs Y Y N Trap

Cs fountain Y Y N N

ThO beam Y Y Y N*

Trapped MF+ Y N Y Rotation
sense



Systematic Error Rejection.  Key Chops.

Chop: B E E/Eeff v Other
Tl beam Y Y N Y

YbF beam Y Y N N*

PbO vapor cell Y Y Y N*

trapped Cs Y Y N Trap

Cs fountain Y Y N N

PbF beam Y Y N N*

Trapped MF+ Y N Y Y* Rotation
sense

We’ve got the chops, and:
Key fact:   νscience is independent of magnitude of

E, B, and ωrot.  Also should be independent of
strength of ion trap confinement, T, and nion.



Systematics bottom line:
We haven’t thought of a killer systematic at
the 10-28 level yet.   We will have a number of 
powerful techniques for smoking out unforeseen 
ones.
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Systematics bottom line:
We haven’t thought of a killer systematic at
the 10-28 level yet.   We will have a number of 
powerful techniques for smoking out unforeseen 
ones.

In the end, we’ve got to try it,
because we are fossil hunters

and “hunters got to hunt.”
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Linear Paul trap.

Vz

Vz

ωz/2π=800 Hz

Linear quadrupole Paul trap.

Vrf =Arf cos ωrf t 

+Vrf

+Vrf +Vrf

+Vrf

- Vrf

- Vrf
ωx/2π~ωy/2π~ 3 kHz

Linear quadrupole Paul trap, with 
rotating electric bias field…

Vrot=Arot cos ωrot + φ

φ = 0o

φ = 180o

φ = 120o

φ = 60o

φ = 240o

φ = 300o

…..and with a magnetic gradient 
field to provide bias.

Transition freq. is 
immune to uniform dc
B-fields: no mu-metal 
shielding necessary!

15 cm
ωrf/2π~ 50 kHz

ωrot/2π~ 200 kHz

Erot ~ 20 V/cm

rrot ~ 0.5 mm



180HfF+ 1Σ+ v=0
N=0, mN=0

mI = +/-1/2, 

1Σ+

180HfF+ 1,3Π0

ir laser 
#2

ir laser 
#1



180HfF+ 1Σ+ v=0
N=0, mN=0

mI = +/-1/2, 

1Σ+

180HfF+ 1,3Π0

ir laser 
#2

ir laser 
#1



180HfF+ 1,3Π0



180HfF+ 1,3Π0



180HfF+ 1,3Π0



180HfF+ 1,3Π0



180HfF+ 1,3Π0

??



Arrival time (us)
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Arrival time (us)

180HfF+ 1,3Π0

ir laser 
#2

γ

Detect
LIF?

180HfF+ Ω=0 
J=0

uv laser 
#3

U

rHf-F

Hf+ + F

HfF+

uv laser 
#4

3∆1
?

+/-+/-

+/- +/-

-/+-/+
HfF+  ?
Hf+?



Q: What about 
systematic errors?



Wl = 2gFµBB - deεeff

Coherent transfer
difficulty: large doppler width

986 nm

900 nm

J = 1

3∆1  

Wu = 2gFµBB + deεeff
Ω12

Ω23

mJ =  -1      0      1



Rethinking Ion Trap Loading

1064 nm 
ablation pulse

Hf 
rod

skimmerpulse 
valve

2 photon 
ionization

~ 100 
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1% SF6
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+
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Total length ~1.5 m

Create pre-polarized sample of ions via 2 photon process


