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We develop a strong-coupling theory for the superfluidity of fermion pairing phase in a Bose-Fermi
mixture. Dynamical screening, self-energy renormalization, and a pairing gap function are included self-
consistently within the adiabatic limit (i.e., the phonon velocity is much smaller than the Fermi velocity).
An analytical solution for the transition temperature (Tc) is derived within reasonable approximations.
Using typical parameters of a 40K-87Rb mixture, we find that the calculated Tc is several times larger than
that obtained in the weak coupling theory, and can be up to several percent of the Fermi temperature.
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Recently the superfluidity of a fermion pairing phase has
become an extensively studied subject in the field of ultra-
cold atoms [1–7]. The attractive interaction for two fermi-
ons to form a Cooper pair can be provided either by the
direct s-wave scattering between different spin states [1–
3], or by the effective interaction mediated by the conden-
sate phonons in a Bose-Fermi mixture (BFM) [4,5]. The
former systems attract a lot of attention on the BCS-BEC
crossover near the Feshbach resonance regime [3], while
the latter systems, which can mimic some traditional
electron-phonon systems in solid state physics, are ex-
pected to have many interesting many-body phases in
different parameter regimes [6–8].

To observe the predicted fermion pairing phase or other
many-body states in a BFM, experimentalists usually have
to increase the boson-fermion interaction strength via a
heteronuclear Feshbach resonance [7,9]. However, by
doing so the system will be driven into a strong-coupling
regime, where the direct application of the Bardeen-
Cooper-Schrieffer (BCS) theory for the superfluidity of
fermion pairing phase becomes unjustified and not reliable.
For example, the strong fermion-boson interaction may
renormalize the effective mass of fermions and hence
change its density of states near the Fermi surface.
Besides, the fermionic quasiparticle fluctuations at finite
temperature can also dynamically screen the effective in-
teraction induced by condensate phonons. None of the
these effects have been included in the weak coupling
theory developed in the literature [4–6]. Moreover, in
most of the weak coupling theories, one usually applies
an instantaneous approximation (i.e., assuming the phonon
velocity, cb, is much larger than the Fermi velocity, vF).
Such approximation is, however, very unrealistic in typical
systems like 40K-87Rb or 6Li-23Na mixtures, which are
usually in the adiabatic regime (cb=vF � 0:05–0:5< 1)
due to the weak interaction between bosonic atoms [5].
Therefore in order to have a reasonable comparison be-
tween the theoretical results and the experimental mea-
surement, it is necessary and important to develop a full
strong-coupling theory, including the adiabaticity of con-
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densate phonons as well as the strong correlation effects of
a BFM self-consistently.

In this Letter, we develop a strong-coupling theory for
the superfluidity of (s-wave) fermion pairing phase in a
BFM within the adiabatic regime by generalizing the cele-
brated Migdal-Eliashberg equations used in the conven-
tional superconductors [10,11]. By strong coupling, we
mean to treat the fermion self-energy, dynamical screen-
ing of the effective interaction, and the pairing gap func-
tion self-consistently. Hence the obtained results are reli-
able even when the fermion-boson interaction is not weak.
Vertex diagrams are safely neglected by applying Migdal’s
theorem in the adiabatic regime of phonons [10,11]. Using
a single mode approximation we further derive an analyti-
cal solution for the superfluidity transition temperatures
and compare them with the known weak coupling BCS
results in a different parameter regime. In a typical
40K-87Rb mixture, we find that the obtained Tc is several
times larger than the weak coupling results, and can be up
to a few percent of the Fermi energy before reaching phase
instability. Effects due to strong boson-fermion correla-
tions are also critically discussed.

We consider a three dimensional BFM composed of spin
polarized bosons and fermions in two equally occupied
hyperfine spin states. For simplicity, we neglect the inho-
mogeneous magnetic trap potential so that the total
Hamiltonian can be written to be [6]
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where b̂k and f̂k;s are the field operators for bosonic and
fermionic atoms of momentum k and isospin s �"; # .
�̂bk �

P
pb̂
y
p�kb̂p is the boson density operator, and ��bk �

k2=2mb ��b is the bosonic kinetic energy with mb being
the atom mass and �b being the chemical potential.
Similar notation also applies to fermions with a superscript
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or subscript f, and �̂fk � �̂fk;" � �̂
f
k;#. Ubb �

4�abb
mb

, Uff �
4�aff
mf
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, are, respectively, the boson-boson,

fermion-fermion, and boson-fermion pseudopotential
strength, with aij being the associate s-wave scattering
length.mr is the reduced mass and � is the system volume.

Throughout this Letter we assume that the tempera-
ture is so low that all bosons are condensed at zero mo-
mentum state. The condensate excitations (phonons) are

of Bogoliubov type dispersion: !0
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are, re-

spectively, the phonon velocity and the healing length of
the condensate with density nb. As a result, one can effec-
tively describe the BFM system by the following fermion-
phonon type Hamiltonian [4–6]: H �
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fermion-phonon coupling strength. Integrating out the pho-
non field, one can obtain a retarded phonon-induced inter-

action between fermions: Vph�k; !	 �
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the phonon velocity is smaller than the Fermi velocity as
considered in this Letter, the dynamical screening due to
fermion density fluctuations has to be included by calcu-
lating the Dyson’s equations shown in Fig. 1(a), where
Uk � Vph and U? � Vph �Uff are the bare effective
interaction between fermions in the spin parallel/perpen-
dicular channels. The full dressed effective interaction can
then be easily derived to be [11]
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FIG. 1. Feynman diagrams studied in the strong-coupling the-
ory of a BFM. (a) Full (dressed) effective interaction (see the
text). (b) Migdal-Eliashberg equations, where S and W are the
self-energies for normal and anomalous Green’s functions, re-
spectively. (c) Polarizability, P, is replaced by bubbles without
vertex correction. (d) Vertex correction neglected in the strong-
coupling theory due to Migdal’s theorem.
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where P�k; !	 is the polarizability due to fermionic qua-
siparticle and Cooper pair fluctuations. In Fig. 2 we show a
numerical result of V?eff�q;!	 and the screened phonon
dispersion (obtained by tracking the peak position of
ImV?eff�q;!	) at T � Tc for a typical 40K-87Rb system
[12]. As we will see later, although the screened phonon
dispersion is close to the bare (unscreened) results, their
spectral weights can still be quiet different due to the
fluctuations near the Fermi surface.

Now the single particle Green’s function, G�p; t	 �
�ihT̂fp;��t	f

y
p;��0	i, and the anomalous Green’s function

F�p; t	 � �ihT̂f�p;#�t	fp;"�0	i (where T̂ is the time-
ordering operator) can be calculated within a self-
consistent Hartree-Fock approximation as shown in
Fig. 1(b). Such mean-field treatment is justified in the
strong fermion-phonon interaction regime because the ver-
tex correction is proportional to the ratio of the phonon
velocity to the Fermi velocity (known as Migdal’s theorem
[10]), and hence its leading order correction to the bare
vertex [Fig. 1(d)] can be rather small (�1 < 0:1, see
Ref. [12]) in typical 40K-87Rb or 6Li-23Na mixtures. By
the same reason, we can also approximate the full fermion
polarizability, P, by a bubble diagram, P0�k; !	 �
2
i�

P
p
R d	

2�G�p; 		G�p� k; 	�!	, without vertex lines
inside the bubble diagram [Fig. 1(c)]. The contribution
coming from pair fluctuations can be neglected since
here we are only interested in the calculation of Tc.

To formulate the Migdal-Eliashberg equations [MEE,
see Fig. 1(b)] for a BFM system, we note that the phonon
excitation energy, !0

k, is unbounded in the high energy
limit, and hence the involved momentum integration can-
not be restricted to the vincinity of the Fermi surface, as
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FIG. 2. Phonon dispersions including (solid line) and not
including (dashed line) the dynamical screening effects. Below
the dotted line is regime of quasiparticle (fermion) excitations,
where the Landau damping broadens the phonon spectral func-
tion as shown in the inset. Inset: the real (solid line) and
imaginary (dashed line) parts of the full effective interaction,
V?eff�q;!	, at q � kF. Parameters are in Ref. [12].
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done in the original theory for the conventional super-
conductors [11]. We therefore define the following energy
dependent interaction strength:

~
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Z
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; (3)

where Bk;?�q; 		 � ���1 ImVk;?eff �q; 		 is the spectral
weight of the dressed interaction;

R
FS denotes the integra-

tion over Fermi surface, where the gap function is mea-
sured. N�E	 � mf

������������
2mfE

p
=2�2 is the 3D density of states
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for E> 0. Note that ~
2Fk;?�	; E	 drops to zero rapidly for
E! 1 due to the sharp spectral function, Bk;?, near the
phonon excitation energy (see Inset of Fig. 2). Following
the same argument as Eliashberg [11], we can neglect the
momentum dependence of self-energies, S andW, and then
solve Fig. 1(b) by introducing the gap function, ��!	 �
W�!	=Z�!	, and a renormalization coefficient, Z�!	�
1��S�!	�S��!	�=2! [11]. Z�!! 0	�1 
 1 measures
the single particle spectral weight at the Fermi surface, and
is equal to one for noninteracting fermions. Details of the
derivation for a BFM system will be presented elsewhere
[13]. The obtained MEE are the following:
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where nF=B��	 � �e�=T � 1	�1 is the Fermi-Bose distribu-
tion function. ~Z��	 is the real part of Z��	
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Note that the instantaneous interaction, Uff, contributes to
the self-energy, S, via a constant shift only [11] and there-
fore does not appear in the right-hand side of Eq. (4).
Furthermore, the ultraviolet divergence caused by the
pseudopotential Uff has also been removed in Eq. (5) by
eliminating the bare Lippmann-Schwinger equations
in vacuo as done in the weak coupling theory [2,4].
Therefore, the MEE shown above have included both the
nonretarded direct interaction and the retarded induced
interaction on equal footing.

To calculate the Tc of Cooper pairs we first linearize the
above equations by taking ��!	 ! 0 and approximate
Z�!	 by Z0 � Z�!! 0	. Assuming Tc is much smaller
than Fermi energy and typical phonon energy, we can
simplify Eqs. (4) and (5) to be
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To solve Tc and Z0 analytically we further apply the single
mode approximation, ImVk;?eff �q; 		 � ��V
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spectral weight. The phonon energy, !q, is obtained from

the peak position of ImVk;?eff �q; 		. Within such approxima-
tion ~
2Fk;? of Eq. (3) can be greatly simplified and Tc of
Eq. (7) can be solved to be
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2F?�	; 0	 are, respectively, the direct and induced
coupling strengths for Cooper pairs. D � 4EF=e

2Z0 is an
energy scale of Fermi energy. Z0 is then determined by
solving Z0 � 1� �k�Z0	 self-consistently since Z0 ap-
pears in the effective interaction via the polarizability, P.
The two coupling strengths, �k�Z0	 and �log�D	, are given
by (here 	c � !2kF )
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It is instructive to compare the analytical Tc in Eq. (8)
with the weak coupling results [4]: one can see that
Eq. (8) reproduces the weak coupling result [4] T0

c �
8�
�e2 exp� 1

�0��0
?

� if j�k�Z0	j; j�log�D	j  1. Here �0
? �

N�EF	U2
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FIG. 3. (a) Superfluid temperature as a function of boson-
fermion interaction strength, jabfjkF, for the strong-
coupling (solid lines) and weak coupling (dashed lines) theories.
Upper/lower pairs of lines are for boson density nb � 100=50�
um�3. Other parameters are given in Ref. [12]. (b) �? and �0

?

(�k � Z0 � 1 and ��log for the inset) in the same calculation
of (a) with nb � 100 um�3.
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induced coupling strength without any dynamical screen-
ing [4]. (Note that here we only discuss the s-wave pairing
symmetry. The non-s-wave scattering strength is in general
very small and can be neglected.) In Fig. 3(a) we compare
numerical results of Tc and T0

c , using typical parameters of
40K-87Rb systems [12]. We find both of them increase
subexponentially as the interaction strength, jabfjkF, in-
creases. Tc is larger than T0

c by a factor of 2–8 for
jabfjkF < 0:12, and then becomes almost equal to T0

c for
stronger interaction. Note that Tc=T0

c is large for small
jabfjkF simply because the repulsive direct interaction,
Uff > 0, sets the minimum value of jabfjkF for the pairing
phase. This ratio will decrease to one as jabfjkF ! 0 if
Uff 
 0. When jabfjkF > 0:15 the screened phonon ve-
locity, cb, becomes imaginary and the system becomes
unstable toward collapse. This critical value of jabfjkF is
a little higher than the results predicted by the weak
coupling theory [2] due to the reduction of the density of
states in the strong-coupling theory. Analyzing each quan-
tity of Eq. (8) more carefully [see Fig. 3(b)], we find that
although the ratio of �? to �0

? increases as jabfjkF in-
creases via dynamical screening, the final ratio of Tc to T0

c
still becomes smaller due to the strong quasiparticle renor-
malization, Z0 (see the inset), in the strong-coupling re-
gime. Numerically solving the full strong-coupling
equations [Eqs. (4) and (5)] can also provide more infor-
mation about the gap function spectroscopy, ��!	, and
fermion single particle spectral function, etc., which can
be measured by using rf spectroscopy and/or Bragg scat-
tering spectroscopy in the present experimental technique.

In summary, we have derived the full strong-coupling
theory for the fermion s-wave pairing phase in a Bose-
Fermi mixture. Our results apply to the limit of slow
14040
phonon velocity and hence are valid in the existing BFM
system (40K-87Rb or 6Li-23Na). The predicted critical tem-
perature for a typical 40K-87Rb mixture can be as high as a
few percent of the Fermi energy, which should be achiev-
able by present experimental groups.

We thank fruitful discussion with J. H. Bao, E. Demler,
M. D. Lukin, and C.-Y. Mou.
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