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A theory of resonant Raman scattering spectroscopy of one-dimensional electronic systems is developed on
the assumptions that(i) the excitations of the one-dimensional electronic system are described by the Luttinger-
liquid model,(ii ) Raman processes involve virtual excitations from a filled valence band to an empty state of
the one-dimensional electronic system, and(iii ) excitonic interactions between the valence and conduction
bands may be neglected. Closed form analytic expressions are obtained for the Raman scattering cross sections,
and are evaluated analytically and numerically for scattering in the polarized channel, revealing a “double-
peak” structure with the lower peak involving multispinon excitations with total spinS=0 and the higher peak
being the conventional plasmon. A key feature of our results is a nontrivial power-law dependence, involving
the Luttinger-liquid exponents, of the dependence of the Raman cross sections on the difference of the laser
frequency from resonance. We find that near resonance the calculated ratio of intensity in the lower energy
feature to the intensity in the higher energy feature saturates at a value of the order of unity(times a factor of
the ratio of the velocities of the two modes). We explicate the differences between the “Luttinger-liquid” and
“Fermi-liquid” calculations of resonant Raman spectroscopy(RRS) spectra and argue that excitonic effects,
neglected in all treatments so far, are essential for explaining the intensity ratios observed in quantum wires.
We also discuss other Luttinger-liquid features which may be observed in future RRS experiments.
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I. INTRODUCTION

One-dimensional(1D) physics has become increasingly
important to condensed-matter science in recent decades be-
cause many systems, including, for example, single wall car-
bon nanotubes,1 organic conductors,2 superconducting
nanowires,3 spin chains,4 and even ultracold atoms in highly
anisotropic magneto-optical traps5 have been developed to
levels that allow experimental studies of hitherto unprec-
edented extent and precision. Among these 1D(or quasi-1D)
systems, the semiconductor quantum wire structure(QWR)
is one of the most important and widely studied, because of
its simple band structure and highly tunable doping density.6

Also, great progress in microfabrication techniques has made
high quality samples available.7

Theoretically, one-dimensional systems are very well un-
derstood. The pioneering work of Tomonaga,8 Luttinger,9

and Haldane10 along with many other studies has produced
an essentially complete understanding of the low-energy
physics. However, the relation between the theoretical results
and experimental data is not as clear and direct as one would
like. For example, only a few unambiguous observations of
the fundamental concept of spin-charge separation have been
reported.11–13

Resonant Raman spectroscopy(RRS) has become a pow-
erful tool for studying the elementary excitations of electrons
in many different systems. Applications to low-dimensional
doped semiconductor nanostructures(two-dimensional quan-
tum wells or one-dimensional quantum wires) have been par-
ticularly prominent.6,14 In the usual RRS experiment, sche-
matically represented in Fig. 1(a), external photons are ab-
sorbed at one frequency and momentum by exciting an elec-
tron from the valence band to the conduction band(step 1)

and then emitted at another frequency and momentum via the
recombination of the hole in the valence band with another
electron in the conduction band(step 2). The final state of the
system contains one or more particle-hole pairs excited in the
conduction band. The dispersion of these particle-hole pair
states may be inferred from the energy and momentum dif-
ference between the incident and the scattered photons
(Stokes shift), while the nature[collective mode(plasmon)
and multipair excitation] may be inferred from the depen-
dence of the scattering amplitude on the polarization of the
incoming and outgoing photons and on the energy of the
incident photon.

The standard theory of Raman spectroscopy in
semiconductors15–18 is based on the Fermi liquid quasiparti-

FIG. 1. (a) Schematic representation of RRS process in the di-
rect gap two band model of electron doped GaAs nanostructures.vi

andv f are the initial and final frequencies of the external photons.
(b) and (c) are the three-leg and four-leg scattering vertices for
electron-photon interaction.
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cle picture and neglects resonance effects. The neglect of
resonance effects means that in the unpolarized geometry
(identical polarization of incoming and outgoing light) the
Raman process couples to the electron-density operator so
the Raman cross section is proportional to the dynamical
structure factor18,19 of the conduction-band electrons. Within
Fermi liquid theory and in the long wavelength limit relevant
to Raman scattering, the electron structure factor has ad
function peak at the plasmon(CDE) energy and a much
weaker feature at a lower energy associated with incoherent
particle-hole pairs. The lower energy feature is referred to as
the single-particle excitation(SPE) peak. The calculated
RRS intensity therefore has strong spectral peaks when the
energy difference between the incident and outgoing photons
coincides with the collective CDE mode frequencies at the
wave vector defined by the experimental geometry, while the
intensity at the SPE energy is much weaker than that at the
CDE energy(the ratio is of the order of the square of the
ratio of momentum transferred by the light to the Fermi mo-
mentum of the electron gas; for typical experimental relevant
parameters, about three orders of magnitude). This theoreti-
cal result, however, is in qualitative disagreement with the
experimental data,20–22 in which the polarized spectrum ex-
hibits a “double peak” structure with comparable-intensity
peaks at both CDE and SPE modes. This puzzling
feature20–22 of a ubiquitous strong SPE peak in addition to
the expected CDE peak occurs in one, two, and even in
three-dimensional doped semiconductor nanostructures, for
both intrasubband and intersubband excitations. Many theo-
retical proposals23–28 have been made to explain this two-
peak RRS puzzle. However, two of us have recently argued29

that within the standard theory, which neglects resonance
effects, none of the above proposed modified mechanisms’
theory can even qualitatively explain the experimental data.

But the situation changes when resonance effects are in-
cluded. In an important paper, Sassetti and Kramer24 (SK)
first proposed that in 1D systems, the prominent lower en-
ergy SPE peak is due to “spinon” excitations whose coupling
to light is enhanced by resonance effects. The qualitative
idea that resonance effects can strongly affect the relative
absorption cross sections of different modes is indeed impor-
tant. Unfortunately, as we have recently noted, the theory
presented in Ref. 24 suffers from two technical flaws. First, it
is not self-consistent: it uses a Fermi-liquid-based expression
to account for the resonance effects, but a Luttinger-liquid-
based expression to account for the conduction-band dynam-
ics. As we shall show below(and have already mentioned in
a previous brief communication25) Luttinger-liquid physics
affects the matrix element in a crucial way. Second, while the
SK calculation correctly notes that as resonance is ap-
proached the coupling becomes long ranged in space, it
omits the equally important fact that the coupling becomes
long ranged also intime.

In this paper, which amplifies and extends our previous
short communication,25 we derive and present a complete,
closed-form expression for the RRS scattering amplitudes in
the Luttinger-liquid model and calculate the resulting RRS
spectra in different resonance conditions at zero temperature.
We treat both the analytically tractable cases of short-ranged
interactions and the physically relevant case of the Coulomb

Luttinger liquid. In the Coulomb case we predict an asym-
metric broadening of the spectral peak in the higher energy
side arising from the curvature of the plasmon dispersion.
We find that most aspects of the RRS spectra are similar to
those predicted by the Fermi-liquid approach. As noted in
our previous work,25 characteristic Luttinger effects are re-
vealed in the dependence of the intensities on the difference
of the laser frequency from the resonance condition. Going
beyond the bosonic expansion developed in our earlier
work,25 we present explicit results for the total spectral
weights of the charge boson and spin boson excitations in the
polarized RRS channel at zero temperature. Far-from reso-
nance we find that the spin-singlet mode at energy,v=qvF,
has spectral weight much smaller than that of the charge
boson(i.e., plasmon); however, as resonance is approached
the weights in the two contributions become comparable. We
explain the difference between the Luttinger-liquid results
presented here and the Fermi-liquid results presented
previously.15–18,23,30 Our results remain inconsistent with
present experimental data, so we argue that Luttinger-liquid
effects have not yet been unambiguously detected in RRS
experiments. One possibility is that excitonic effects, ne-
glected in the present and previous treatments, are important.

The paper is organized as follows: In Sec. II we develop a
general theory of resonant Raman scattering in Luttinger liq-
uids. We then apply our theory to calculate the spectrum for
short- and long-ranged electron-electron interaction by using
bosonic expansion method in Sec. III. In Sec. IV, we go
beyond the bosonic expansion and calculate the full spectral
weights of the charge boson and spin-singlet excitations in
the polarized channel. We compare our calculation to the
previous Fermi liquid calculations in Sec. V. We critically
discuss the assumptions and resonance effects of our results
and compare them with the present experimental data in Sec.
VI. Finally we summarize our results in Sec. VII.

II. RESONANT RAMAN SCATTERING CROSS SECTION
OF A LUTTINGER LIQUID

In this section we present a derivation of the RRS scatter-
ing cross section for a Luttinger liquid. We consider an ide-
alized model of a quasi-one-dimensional system, in which
the electron motion in the transverse directions(y and z) is
assumed to be completely frozen due to a strong confinement
potential in both conduction and valence band(in other
words, we consider only the lowest conduction and highest
valence subband). Our results are likely to apply also to the
case where the resonance occurs via some other intermediate
state, but we have not considered this case explicitly.

The longitudinal(x direction) motion is assumed to be
free without defects or disorder. An important feature of
quantum wires is the Coulomb interaction, which is typically
unscreened and leads to a long-ranged interaction with a
well-known characteristic form25 involving the transverse
wave function.30 The scale dependence of the unscreened
Coulomb interaction complicates considerably the analysis
of Luttinger-liquid formulas, but as will be seen also leads to
the appearance of additional structures in the predicted RRS
spectra. In this section we derive an expression for the RRS
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cross section of a general model with arbitrary electron in-
teraction. Subsequent sections present results for short-
ranged interactions(where the analysis can be carried
through in considerable analytical detail) and the more
physically relevant long-ranged interaction, which requires
additional approximations.

The appropriate theoretical starting point for analysis of
Raman scattering is the following general Hamiltonian:

Htot = HV + HLL + Hcv + Hint
k,v, s1d

whereHV andHLL are the Hamiltonians for the valence and
conduction bands, respectively, andHint

k,v gives the coupling
of these carriers to externally applied radiation.Hcv describes
the excitonic interaction between conduction-band electrons
and valence-band holes, and may be important in certain
conditions.31 We will assume excitonic effects are irrelevant
in the energy regime of interest and will therefore setHcv
=0 throughout this paper. In this case, the RRS process in-
volves only one electron excited out of the valence band, so
that interactions in the valence band can be also neglected.
We consider a single one-dimensional conduction subband
and a valence subband, linearize the dispersion about the
Fermi level and include an(at this stage arbitrary) interaction
between conduction-band electrons. These considerations
imply

HV = o
r,p,s

Er,p
V vr,p,s

† vr,p,s, s2d

HLL = o
r,p,s

vFsrp − kFdcr,p,s
† cr,p,s +

1

2L
o

r1,r2,s1,s2

o
q,p1,p2

Vsqd

3cr1,p1−q/2,s1

† cr2,p2+q/2,s2

† cr2,p2−q/2,s2
cr1,p1+q/2,s1

, s3d

where the conduction-band Hamiltonian can be bosonized as
in the standard Luttinger-liquid theory32 yielding

HLL = o
p

svp
rbp

†bp + vp
ssp

†spd.

We approximate the valence-band energyEr,p
V by a linear

dispersion about the Fermi wave vector of electrons in the
conduction band,

Er,p
V < − Vrrs − vF

Vsrp − kFd,

whereVrrs;EF
c +EF

V+Eg is the RRS resonance energy[see
Fig. 1(a)]. Note that in this expression it is assumed that the
valence band is also one dimensional. If transverse motion in
the valence band is important, these degrees of freedom
should be integrated out, which will broaden the valence-
band propagator.(Note that the structure of the quantum wire
system means that momentum transverse to the wire need
not be conserved in an optical transition.) cr,p,s

† andvr,p,s
† are

creation operators of electrons of chiralityr = ±1 (left/right
moving), wave vectorp, and spins, in conduction band and
valence band, respectively;bp

† andsp
† are charge boson and

spin boson creation operators in Luttinger-liquid theory(see
Refs. 10 and 32 for a general review). vFskFd is the Fermi
velocity (wave vector) of conduction-band electrons.Vsqd is
the effective 1D electron-electron interaction within the con-

duction band. In Eq.(3), the charge(spin) boson energy
vp

rsvp
sd is related to the interactionVsqd via32

vp
r = upuvFÎ1 +

Vspd
pvF

, s4d

vp
s = upuvF, s5d

where we have assumed that electron-electron interaction is
spin independent so that the spin boson velocity is the same
as noninteracting electron Fermi velocity.

Finally, for the electron-photon interaction Hamiltonian
Hint we consider only the three-leg vertex for which photon
number is not conserved[see Fig. 1(b) and Refs. 30, 33, and
34], and neglect the four-leg vertex where photon number is
conserved[see Fig. 1(c)], because the contribution of the
latter does not give rise to resonance effects and is thus30

much smaller than the contribution of the three-leg vertex in
near-resonance conditions. We also represent the radiation by
a classical field, so that

Hint
k,v = o

r,p,s,s8

sg1ds,s8 + g2ds,−s8dhfcr,p,s
† stdvr,p−k,s8std

+ vr,p,s8
† stdcr,p−k,sstdge−ivt + fcr,p,s

† stdvr,p+k,s8std

+ vr,p,s8
† stdcr,p+k,sstdgeivtj, s6d

where v and k are energy and wave vector of the photon
interacting with electrons.g1 and g2 are coupling constants
for non-spin-flip and spin-flip scattering, respectively, and
their actual values are not important in our study. In the
remainder of this section, we present an explicit derivation of
expressions for the non-spin-flip(polarized spectrum) RRS
cross section following from Eqs.(2), (3), and(6).

Following our earlier work(Refs. 25 and 30), we use
second-order time-dependent perturbation theory to calculate
the rate at whichHint

k,v causes transitions from the ground
stateu0l to some stateunl in which the valence band is filled
and the conduction-band state has changed. One finds

Wsq,n;Vd = lim
T→`

1

To
n
UE

−T/2

T/2

dt1E
−T/2

t1

dt2

3knuHint
q/2,V+n/2st1dHint

−q/2,V−n/2st2du0lU2

, s7d

whereq andn are photon wave vector and frequency shifts
after Raman scattering andV is the mean frequency of inci-
dent and scattered photons during the process. We choose the
backward scattering channel so that all wave vectors in-
volved are along the wire direction for simplicity. Because
the valence band is filled in the ground state, the part of the
correlator involving valence electrons is simple:

kvr1,p1−q/2,s1

† st28dvr2,p2,s2
st18dvr3,p3,s3

† st1dvr4,p4−q/2,s4
st2dl0

= dr1,r2
dr3,r4

dp1,p2+q/2dp3,p4−q/2ds1,s2
ds3,s4

3eiEr1,p1

V st28−t18deiEr3,p3

V st1−t2d. s8d
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Using the space-time translational symmetry, Eq.(7) can
be further simplified by representing fermion operators in
coordinate space:

Wsq,n;Vd = lim
L→`

E
0

L

dRE
−`

`

dT eisnT−qRdkÔ†sR,TdÔs0,0dl0.

s9d

Here k¯l0 are the expectation values on the ground-state
wave function and

ÔsR,Td = o
r,s
E

0

L

dxE
0

`

dt fsx,tdcr,ssR+ x/2,T + t/2d

3cr,s
† sR− x/2,T − t/2d, s10d

and

fsx,td =
eiVt

L
o
p

eisEp
Vt−pxd = eisV−Vrrs+vF

VkFdtdsx + rvF
Vtd.

s11d

Equations(9)–(11) are our fundamental results. They show
that the RRS process creates an electron-hole pair separated
in space byx and in time byt, with the amplitude for a given
space-time separation controlled by the functionfsx,td,
which is essentially the propagator for the valence-ban hole.
Far-from resonancesuV−Vrrsu@vF

VkFd ,fsx,td is short ranged

in both x and t, so thatÔ becomes similar to the ordinary
density operator andW becomes a density-density correla-
tion function.29,30As the mean photon energy is tuned closer
to the resonance condition,f becomes longer ranged, so that

Ô becomes nonlocal in both space and time. This nonlocality
will be seen to give rise to the interesting resonance effects,
by allowing the light to couple to something other than the
dynamical structure factor. We also observe that up to this
point we have not made use of the one dimensionality in any
important way: the equations may easily be generalized to
two and three dimensions. Previous theories15–18,23–26,28,29,33

of the RRS process have been based on similar expressions
but with a functionf which essentially forcest=0 (i.e., no
retardation effects). We shall see below that the time depen-
dence is very important.

We now incorporate the special features of one-
dimensional physics by using the standard32 bosonization
representation of electron operators in Eq.(10) by assuming
zero temperature,

cr,ssx,td =
eirkFx

Î2pa
expSi o

p.0

Î p

pL
he−pa/2+irpxfcoshupbrpstd

− sinhupb−rp
† std + ssrpstdg + H.c.jD , s12d

where exps−2upd=vp
r /pvF=Î1+Vspd /pvF is the momentum

dependent LL exponent, anda→0+ is a convergence factor.

Substituting Eq.(12) into Eq. (10) and using the following
identity for linear boson operators,A and B (valid when
fA,Bg commutes with bothA andB, the colons denote nor-
mal ordering andk·l0 denotes expectation value with respect
to the ground state ofHLL):

eAeB = keAeBl0:e
A+B:,

we can rewriteÕ as

ÔsR,Td = Lo
r,s
E

0

`

dt eisV−VrrsdtGr,ss− rvF
Vt,td

:eFrs,rsR,−rvF
Vt;T,td < eFrs,ssR,−rvF

Vt;T,td:,

where we have separately normal ordered the charge
and spin boson operators and Grssx,td
=lima→0s2pad−1kcrssx,tdcrs

† s0,0dl is the electron Green’s
function in the conduction band. The phase operators,Fr

andFs are, respectively,

Frs,rsR,x;T,td = 2o
p.0

e−ap/2Î p

pL

3h− sinhupsinfpsrx + vp
rtd/2g

3fb−rp
† eipsrR+vp

rTd + H.c.g

+ coshupsinfpsrx − vp
rtd/2g

3fbrp
† e−ipsrR−vp

rTd + H.c.gj, s13d

Frs,ssR,x;T,td = 2so
p.0

e−ap/2Î p

pL
hsinfpsrx − vF

Vtd/2g

3fsrp
† e−ipsrR−vF

VTd + H.c.gj. s14d

To calculate the expectation value of a product of normal
orderings, we use two additional identities for the linear
bosonic operators[valid under the same condition as Eq.
(12)],

keAeBl0 = keA+Bl0e
fA,Bg/2 s15d

and

keAl0 = ekA2l0/2, s16d

so that

k:eA < eB:l0 = e−kA2l0/2e−kB2l0/2keAeBl0

= e−kA2l0/2e−kB2l0/2keA+Bl0e
fA,Bg/2 = ekABl0.

s17d

Combining all the results from Eqs.(9)–(17) and defining the
average photon frequency relative to the resonance fre-

quencyVrrs asṼ=V−Vrrs, we obtain
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Wsq,n;Ṽd = o
r1,r2

o
s1,s2

Ws1,s2

r1,r2sq,n;Ṽd,

Ws1,s2

r1,r2sq,n;Vd =E
−`

`

dTE dR einT−iqRE
0

`

dt1f r1s1

* st1;ṼdE
0

`

dt2 f r2s2
st2;Ṽd

3hexpfkFr1s1,rsR,− r1vF
Vt1;T,t1dFr2s2,rs0,− r2vF

Vt2;0,t2dl0g

3expfkFr1s1,ssR,− r1vF
Vt1;T,t1dFr2s2,ss0,− r2vF

Vt2;0,t2dl0g − 1j, s18d

where

f rsst;Ṽd = eiṼtGrss− rvF
Vt,td. s19d

The −1 in the last line of Eq.(18) arises from normal
ordering.10

The charge and spin part of the expectation values in Eq.
(18) can be calculated, respectively, to be(at zero tempera-
ture)

kFr1s1,rsR,x1,T,t1dFr2s2,rs0,x2,0,t2dl0

= 2r1r2E
0

` dp

p
e−ap/2e−ipvpThsinfpsx1 − r1vp

rt1d/2g

3sinfpsx2 − r2vp
rt2d/2gCr1,pCr2,pe

ipR

+ sinfpsx1 + r1vp
rt1d/2g

3sinfpsx2 + r2vp
rt2d/2gC−r1,pC−r2,pe

−ipRj, s20d

whereCr,p;coshup ssinhupd for r = +1 s−1d, and

kFr1s1,ssR,x1,T,t1dFr2s2,ss0,x2,0,t2dl0

= 2s1s2dr1,r2E
0

` dp

p
e−ap/2sinfpsx1 − vFt1d/2g

3sinfpsx2 − vFt2d/2geir 1pR−ipvF
VT. s21d

Equations(18)–(21) represent a complete solution to the
RRS cross section of a Luttinger liquid in the absence of
excitonic effects. We will evaluate them analytically and nu-
merically in the following sections.

III. LEADING-ORDER EFFECTS IN BOSONIC
EXPANSION

A. Overview

Although Eq.(18) is a complete closed-form expression
for the RRS cross section, it requires a numerical evaluation
which is not simple because final results are obtained by
cancellation of rapidly oscillating terms. It is instructive to
consider the analytical approximation obtained by expanding
the exponential factors in Eq.(18) in a Taylor series in
kFFln (n is an integer) and then evaluating the series term
by term. Note that in the present problem(unlike in the
evaluation of the electron Green’s function) each term in the

expansion is finite because the sine function in Eqs.(20) and
(21) removes the 1/p divergence in smallp region and, by
oscillating, ensures the convergence at largep. The expan-
sion approach has a simple physical interpretation: the term
of ordern in the expansion corresponds to a final state with
n excited bosons.

Section III B shows results obtained on the assumption of
short-ranged interaction between electrons in conduction
band, i.e.,Vspd=V0 with an appropriate momentum cutoff.
The well-known analytical methods of Luttinger-liquid(LL )
theory can then be applied, yielding a physical understanding
of the features of RRS spectrum. Section III C presents re-
sults obtained for the unscreened Coulomb interaction.

B. Results for short-ranged interaction

For simplicity here we assume that the valence-band elec-
tron velocity at the Fermi momentum of the conduction
band,vF

V, is much less than the conduction-band velocityvF
and can be neglected. In this approximation(which does not
affect any essential results),

fst,Ṽd = eiṼtGrssx = 0,td ,
eiṼt

2piÎvrvF

1

tsiE0tdaLL
, s22d

where

a =
1

4
S vr

vF
+

vF

vr

− 2D = sinh2ur s23d

is the Luttinger exponent andE0 is an energy cutoff above
which the Luttinger-liquid model ceases to describe the
physics.[Note that here we follow the standard convention
in the literature32 and thisa has nothing to do with the con-
vergent factor used in Eq.(11).] E0 is expected to be roughly
of the order of the conduction-band Fermi energyEF

c .32 The
time integrals can now be reduced tog functions, and the
expansion evaluated order by order.

We first show the results for the one-boson contribution in
the non-spin-flip process. Here the spin boson term is can-
celed by the spin sum as required for the conservation of
angular momentum. We have

W1sq,n;Ṽd =
G2s− ad
2qvFvr

uA1sṼ,q,adu2e2urdsn − qvrd, s24d

where the functionA1 is
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A1sṼ,p,ad = S Ṽ − qvr /2

E0
Da

− S Ṽ + qvr /2

E0
Da

. s25d

Thus the one-boson term is ad function at the plasmon en-
ergy, i.e., it gives the conventional CDE contribution to the
scattering cross section. The amplitude for excitation de-
pends on the difference of the mean photon frequency from
the resonance condition and on the transferred momentumq.

Far-from resonance,vq=qvr! uṼu andW1~ uṼu2a−2, while at

resonanceṼ=0 andW1~sin2spa /2d. Thus LL effects enter
the CDE partsn,qvrd of the spectrum in two ways(for
short-ranged interaction): first, far-from resonance, they
change the frequency dependence of spectral weights from

Ṽ−2, the noninteracting result, toṼ−2+2a. Second, near-

resonancesṼ,vrq/2d Luttinger-liquid effects resolve the
singularities which are found in the standard Fermi-liquid
expressions for the matrix elements: see Sec. V for a more
detailed discussion.

For the second-order(i.e., two-boson) contribution, we
obtain

W2sq,n;Ṽd =
G2s− ad

vF
2 HE

0

q dp

psq − pd
uA2

rsṼ,p,q − p,adu2

3cosh2s2urddsn − qvrd

+ 2E
q

` dp

psp − qd
uA2

rsṼ,p,p − q,adu2

3sinh2s2urdd fn − pvr − sp − qdvrg

+E
0

q dp

psq − pd
uA2

ssṼ,p,q − p,adu2dsn − qvF
sdJ
s26d

with sa=r ,sd

A2
asṼ,p1,p2,ad = S Ṽ − p1va /2 − p2va /2

E0
Da

− S Ṽ + p1va /2 − p2va /2

E0
Da

− S Ṽ − p1va /2 + p2va /2

E0
Da

+ S Ṽ + p1va /2 + p2va /2

E0
Da

. s27d

Note that for largeṼ (far-from resonance) W2,Ṽ−4+2a so
that in this limit the two-boson term is small compared to the
one-boson term, confirming the validity of the expansion in
the far-from resonance region. The first term in Eq.(26)
gives a renormalization of the strength of the CDE pole. The
second and third terms produce new effects appearing at sec-
ond order: first near the CDE peak, branch mixing[second
line of Eq. (26)] processes appear, leading to a continuum
absorption beginning at the CDE threshold,n=qvr. Second
the spin-singlet combination of spin bosons(third line) can

be excited via the two spinonkss ,ssl process giving rise to
the so-called SPE mode atn=qvF.

In Fig. 2, we show the perturbatively calculated LL polar-
ized RRS spectra including one- and two-boson contribu-
tions to the Raman intensity, for a particular choice of Lut-
tinger exponent The data are plotted as a function of energy
transferred at fixed momentum transferq; the different
graphs show results for different values of the laser fre-
quency relative to the resonance condition. One observes that
(i) the overall spectral weight decays very fast asV is moved
off-resonance, and(ii ) the SPE peak is only noticeable near
resonance.(iii ) The continuum structure arising from the sec-
ond term in Eq.(26) is visible but not very distinct. We also
remark that the three-boson term in the expansion(not cal-
culated in this paper) will produce an additional continuum
structure lying between the SPEsv=qvFd and the plasmon
sv=qvrd energies, due to the coupling between charge and
spin bosons via the RRS process. In our above calculation,
we have introduced a broadening factor,g=0.05EF, to real-
ize thed-function peak.35

FIG. 2. Polarized RRS spectra calculated via the bosonic expan-

sion method for various resonance conditions,Ṽ=V−Vrrs. One-
and two-boson contributions have been plotted separately in order
to show their relative contributions(see text). Finite broadening
factorg is introduced to express thed function (Ref. 35). Note that
the overall spectral weights decrease dramatically off-resonance, as
indicated by the individual scale factors on the right-hand side of
each plot.
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C. Long-ranged Coulomb interaction

We now consider the modifications arising in the physi-
cally relevant case of a long-range, unscreened Coulomb in-
teraction. As discussed elsewhere36 this corresponds to a
scale dependent Luttinger interaction parameter,aq
=a0ln1/2sq0/qd sfor q!q0d and the charge mode plasmon
energy,36

vq
r , 4a0vFq ln1/2sq0/qd. s28d

Hereq0,2.5/a (a is the typical width of QWR) is the mo-
mentum scale below which Coulomb effects become impor-
tant anda0=Îe2/2e0vFp (Ref. 36) for typical QWR struc-
ture. In the GaAs QWR material which was recently
studied,37,38 typical LL parameters area0,0.389 andq0
,1.43106 cm−1.

The scale dependence of the interaction prevents analytic
evaluation of the Luttinger-liquid formulas, but the bosonic
expansion can still be carried out, although both the integrals

defining fst ,Ṽd and those definingF must be evaluated nu-
merically.

In Fig. 3 we show the one- and two-boson contributions
to the polarized RRS intensity of 1D QWR using Coulomb
interaction parameters corresponding to the system studied in
Ref. 37. The basic features of the results are similar to the
short-ranged interaction, having one weak singlet-spinon
peak at the SPE spinon energyv=qvs=qvF arising from the
two coupled spin bosons, and one strong charge boson peak
at the plasmon energyv=qvq. Their relative strength varies

according to the resonance condition. Off resonance, the
two-boson-singlet-spinon peak is much weaker than the
charge boson plasmon peak, while their total spectral weight
is also very small compared with the near-resonance result.

Near resonance, an additional feature appears: the two-
charge-boson contribution gives another resonance peak at
v=2vq/2

r .vq
r, arising from the nonlinearq dependence of

vq
r due to the long-ranged Coulomb interaction. The result-

ing curvature acts to broaden the spectral weight on the
higher energy side. Next order bosonic terms will contribute
the spin-charge mixing weights fromkssr ,rssl-type higher
order correlations. This will introduce a continuum of rela-
tively weak spectral weight which is located in the energy
region between the spinon and the plasmon energies, as
noted previously. Finite temperature and homogeneous
broadening effect usually smear out the singularity and cause
a asymmetric continuum about the resonance peaks.35

IV. BEYOND THE BOSONIC EXPANSION

We now consider effects beyond the bosonic expansion in
the analytically tractable finite range interaction model. We
begin with the exact expression, Eqs.(20) and (21). The
values of mean positionR and timeT are expected to be
roughly inversely proportional to the momentumq and fre-
quency n transferred to the system. Ifn and q are small
compared to the basic scales(EF andkF) we may use a long
wavelength approximation to evaluate the phase factors in
the standard way obtaining

Ws1,s2

r1,r2sq,n;Ṽd =E
0

`

dt1 f r1s1

* st1;ṼdE
0

`

dt2 f r2s2
st2;Ṽd

3E
−`

`

dT einTE
−`

`

dRe−iqR

3hfFr1,r1

s sr1R− vsT;t1,t2dgas

3fFr1,r2

r sR− vrT;t1,t2dgar
s1d

3fFr1,r2

r s− sR+ vrTd;t1,t2dgar
s2d

− 1j,

s29d

where the exponents areas= 1
2dr1,r2

s1s2,ar
s1d= 1

2Cr1
Cr2

, and
ar

s2d= 1
2C−r1

C−r2
. TheF function is

Fr1,r2

a sX;t1,t2d =
svr1

a t1 + vr2

a t2d2 − sX + iad2

svr1

a t1 − vr2

a t2d2 − sX + iad2 , s30d

wherevr
a=sva+rvF

Vd /2 for a=s ,r svs=vFd.
We have not attempted a direct evaluation of this expres-

sion. Instead, we note that the spectrum is expected on gen-
eral grounds to consist of twod functions, at the CDE and
SPE energies, and two continua. Thed functions are the
features most easily observable experimentally, and it is pos-
sible to obtain convenient expressions for their weights. We
note that terms giving rise tod functions at the CDE energy
or SPE energy must be functions only ofR−vrT and R
−vsT, respectively. To isolate these terms we apply the iden-

FIG. 3. Polarized RRS spectra calculated via bosonic expansion
method for various resonance conditions in the LL model with
long-ranged Coulomb interaction. One- and two-boson contribu-
tions have been plotted separately in order to show their relative
contributions(see the text).
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tity ABC−1=sA−1dsB−1dsC−1d+sA−1dsB−1d+sA−1dsC
−1d+sB−1dsC−1d+sA−1d+sB−1d+sC−1d to Eq. (29).
Only terms involving just one of the threeF functions can
contribute to thed function, so we find that forn ,q.0 the
intensities may be written

ICDEsṼd = WrsṼddsn − vrqd + ¯ , s31d

ISPEsṼd = S o
s1s2=±1

s1s2Ws
s1,s2sṼdDdsn − vsqd + ¯ , s32d

where the ellipses denote the continuum terms and thed
function coefficients are, respectively,

Wrsq,Ṽd = 8pE
0

`

dt1 f r1s1
st1dE

0

`

dt2 f r2s2

!

3st2dE
−`

`

dR8e−iqR8hfF1,1
r sR8;t1,t2dgar − 1j,

s33d

Ws
s1s2sq,Ṽd = 2pE

0

`

dt1 f r1s1
st1dE

0

`

dt2 f r2s2

!

3st2dE
−`

`

dR8e−ir 1qR8hfF1,1
s sR;t1,t2dgs1s2/2 − 1j.

s34d

These formulas have an involved analytic structure, which
includes a discontinuity when either the incoming or the out-
going laser frequency is precisely in resonance with the
valence-band to conduction-band Fermi level energy differ-
ence. For large frequencies, the correct asymptotic behavior
arises from cancellation among oscillating terms. To make
the structure manifest and obtain forms which are convenient
for numerical evaluation we employ the further series of
transformations given in the Appendix, leading for

uṼu.vr,sq/2 to

Wrsq,uṼu . vrq/2d =

2s3/2d+asinSps1 + ad
2

DGs1 − 2ad

Ṽ1−2a
E

0

p/4

dfE
0

p/2

du
cos2uscotuda

Î1 + cos 2f cos 2u

331 1

Scosf −
vrq

2Ṽ
Î1 + cos 2f cos 2u

2 D2
1−2a

− 1 1

Scosf +
vrhoq

2Ṽ
Î1 + cos 2f cos 2u

2 D2
1−2a

4 ,

s35d

Wssq,uṼu . vsq/2d =
2s1/2d+aGs1 − 2ad

Ṽ1−2a
E

0

p/4

dfE
0

p/2

du
cos 2u

Î1 + cos 2f cos 2u

331 1

Scosf −
vsq

2Ṽ
Î1 + cos 2f cos 2u

2 D2
1−2a

− 1 1

Scosf +
vsq

2Ṽ
Î1 + cos 2f cos 2u

2 D2
1−2a

4 .

s36d

For uṼu,vr,sq/2 we obtain

Wrsq,uṼu , vrq/2d =
2s5/2d−a

svrqd1−2asinSp
1 + a

2
DGs1 − 2adE

0

p/4

dfE
0

p/2

du
cos2uscotuda

Î1 − cos 2f cos 2u

31 1

SÎ1 − cos 2f cos 2u

2
+

2Ṽ

vrq
sinfD1−2a +

1

SÎ1 − cos 2f cos 2u

2
−

2Ṽ

vrq
sinfD1−2a2 s37d

and
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Wssq,uṼu , vsq/2d =
2s3/2d−a

svsqd1−2aGs1 − 2adE
0

p/4

dfE
0

p/2

du
cos 2u

Î1 − cos 2f cos 2u

31 1

SÎ1 − cos 2f cos 2u

2
+

2Ṽ

vsq
sinfD1−2a −

1

SÎ1 − cos 2f cos 2u

2
−

2Ṽ

vsq
sinfD1−2a2 . s38d

The change in analytic structure occurring atuṼu
=vr,sq/2 is manifest in these expressions by the
factor of Î1±cos 2f cos 2u in the denominator. In the

uṼu,vr,sq/2 regime Î1−cos 2f cos 2u and the

fÎ1−cos 2f cos 2u /2±s2Ṽ /vr,sqdsinfg1−2a have singulari-
ties at the same point, leading to a strong(but still integrable)
singularity atf=u=0, which is absent foruṼu.vr,sq/2. To
understand the singularity one may expand for smallf ,u,
finding the leading behavior(see the Appendix),

Wr,s ,
1

a
JaS 2Ṽ

vr,sq
D suṼu , vr,sq/2d s39d

with Ja a function with an additional integrable divergence at

uṼu=vr,sq/2. The extra contribution arising from Eq.(39)
leads to steps in the CDE and SPE intensities as the fre-
quency is moved across resonance, with magnitude diverging
in the noninteracting limita→0.

Figure 4 shows, on a logarithmic scale the CDE and SPE

results calculated from Eqs.(35)–(38). For clarity of presen-
tation we have removed the prefactorsGs1
−2ad / svr,sqd1−2a and have expressed the dependence on la-
ser frequency via the ratio of the laser frequency measured

from resonanceṼ to the mode frequencyn (note that at fixed
momentum transferq the SPE and CDE mode frequencies
will differ ). Far-from resonance, the CDE intensity is seen to
be much larger than the SPE intensity, but close to reso-
nance, the two are comparable. The main panel of Fig. 5
shows the ratio of the SPE to the CDE absorption. We see
that the ratio is only appreciable if the incident photon en-
ergy is essentially on resonance. The ratio exhibits a deriva-
tive discontinuity (seen more clearly in the inset) at uVu
=n /2 (here n=vr,sq represents the resonance energy for
charge and spin modes, respectively); the on-resonance ratio
is about 0.5 independent of the Luttinger exponent.(Of
course the factors of velocity which have been removed from
the results will lead to an additional dependence ona.)

V. RPA CALCULATION

In order to compare our calculation to previous literature
we present the analog, for the model considered here, of the

FIG. 4. Logarithm of polarized-channel Raman scattering cross
section (normalized to appropriate mode velocity), IRRS, plotted
against incident laser frequency(normalized to mode excitation fre-
quencyn=vr,sq and measured from the average of incident photon
resonance energy and outgoing photon resonance energy with re-
spect to the resonance energyVrrs), for two different values of the
Luttinger exponent.a. The plotted intensities are coefficients ofd
functions describing coherent charge(CDE) and spin(SPE) final
states and are computed via Luttinger-liquid methods as described
in the text.

FIG. 5. Comparison of ratio ofd-coefficients for CDE and SPE
absorption for Luttinger(solid and long-dashed lines) and RPA-
Fermi liquid(dash-dot and short-dashed lines) model, normalized to
appropriate mode frequencies and plotted against incident laser fre-
quency(scale as in Fig. 4). Inset: same ratio, displayed in linear
scale.
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Fermi-liquid calculation discussed extensively in previous
works.15–18,23,30 The previous calculations neglect back-
scattering entirely, and treat the forward scattering part of the
interaction in the random-phase approximation(RPA); we
make the same approximations here. We obtain analytical
expressions apparently not given in previous literature. We
consider here a model with short-ranged interaction, param-
etrized by a constant amplitudeV. The CDE feature is then a
zero-sound collective mode with a velocity shifted from the
Fermi velocity by the interaction strength.

We evaluate the diagrams shown in Fig. 6. The analytic
expression corresponding to the diagram labeled 1 is

D1 = −To
vn

E dp

2p
Gd

2siV + in/2 + ivn,p + q/2d

3Gcsp + q,ivn + indGcsp,ivnd. s40d

Setting the valence-band velocity to zero, analytically con-
tinuing on the laser frequencyV and measuring it from reso-
nance and performing the frequency sum yields

D1 = −E dp

2p

1

in + «p − «p+q

3S fp − 1

sṼ + in/2 + «pd2
−

fp+q − 1

sṼ + in/2 + «p+qd2D , s41d

wherefp is Fermi distribution function. We next linearize the
conduction-band dispersion, perform thep integral (bearing
in mind that we must take the principal value), drop terms of
order vq/EF, and analytically continue onn. Unlike the
Luttinger-liquid expressions obtained in previous sections,

this expression as it stands is infinite in the rangeuṼu,nq/2.
Previous works23,30resolved this divergence by introducing a
phenomenological broadening parametrized by a quantity

L.35 We follow this procedure here, but emphasize that be-

cause the behavior in the regionuṼu,n /2 is determined en-
tirely by this phenomenological parameter, our results in this
region have, strictly speaking, no meaning. We obtain

D1 = Psn,qd1 tan−1S Ṽ + n/2

L
D − tan−1S Ṽ − n/2

L
D

L
2 .

s42d

Here

Psn,qd =
1

2pvF
S 1

n − vFq − id
+

1

n + vFq − id
D

=
n

pvF

1

n2 − vF
2q2 . s43d

The analytical expression corresponding to the diagram
labeled 2 is

D2 = sD22d2 V

1 + xV
s44d

with

D22 = −To
vn

E dp

2p
GdsiV + in/2 + ivn,p + q/2d

3Gcsp + q,ivn + indGcsp,ivnd, s45d

x = To
vn

E dp

2p
Gcsp + q,ivn + indGcsp,ivnd

=
svFqd2

pvF

1

n2 − vF
2q2 . s46d

The arguments leading to Eq.(42) may be repeated here. The
divergence is weaker; indeed the obtained expressions are

finite everywhere except atuṼu=n /2, where there is a loga-
rithmic divergence. Introducing the same broadening as
above yields

D22 = −E dp

2p

1

in + «p − «p+q
S fp − 1

sṼ + in/2 + «pd

−
fp+q − 1

sṼ − in/2 + «p+qd
D

= Psq,nd
1

2
lnFsṼ + n/2d2 + L2

sṼ − n/2d2 + L2
G . s47d

The total unpolarized RRS cross section, in this approxima-
tion, is thus

FIG. 6. Feynman diagrams considered in evaluation of RPA to
unpolarized RRS cross section. Diagram 1 gives the dominant con-
tribution to the SPE absorption. Excitonic interactions(such as
those shown as dash-dot lines in the lower left corner of this dia-
gram) are not considered in this paper. Diagram 2 gives the domi-
nant contribution to the CDE absorption.

WANG, MILLIS, AND DAS SARMA PHYSICAL REVIEW B 70, 165101(2004)

165101-10



IRRS= Psq,nd31 tan−1S Ṽ + n/2

L
D − tan−1S Ṽ − n/2

L
D

L
2 +

1

4
ln2FsṼ + n/2d2 + L2

sṼ − n/2d2 + L2
GVP

1 + xV
4

=
1

pvF

n

n2 − vF
2q2

31 tan−1S Ṽ + n/2

L
D − tan−1S Ṽ − n/2

L
D

L
2 +

nV

pvF

1

4
ln2FsṼ + n/2d2 + L2

sṼ − n/2d2 + L2
G

n2 − vr
2q2

4 s48d

with vr=vFÎ1+sV/pvFd. Observe that if the phenomeno-
logical broadening parameterL is set to 0 the RPA approxi-

mation to the RRS intensity diverges whenṼ= ±n /2, in
other words when the incoming or the outgoing photon is in
resonance with a transition of the system.

From these formulas the SPE and CDE intensities may
easily be obtained. We have

ICDE =
1

8vFn
S vr

vF
D2

ln2FsṼ + n/2d2 + L2

sṼ − n/2d2 + L2
Gdsn − qvrd,

s49d

ISPE=
1

2vF
31 tan−1S Ṽ + n/2

L
D − tan−1S Ṽ − n/2

L
D

L
2

−
1

4n
ln2S sṼ + n/2d2 + L2

sṼ − n/2d2 + L2
D4dsn − qvFd. s50d

The CDE/SPE ratio is plotted in the inset to Fig. 5 forL
=0.1n. We see from this inset that the ratio is generically
very small (smaller than the corresponding ratio in a Lut-

tinger liquid), but that for alluṼu,vr,sq/2, the divergence of
the SPE term(cut off here by a small value of the phenom-
enological parameterL) yields a large value of the ratio.

VI. DISCUSSION

In this paper we have presented a complete analytical
theory of resonant Raman scattering in Luttinger liquids, and
for comparison we have also given the analogous results for
what is referred to in the literature as the Fermi-liquid ap-
proximation. In this section we discuss the implications of
our results. In Sec. VI A we outline the essential assumptions
underlying the calculation and discuss how these can affect
the results and if they may be relaxed. In Sec. VI B we
compare the excitation spectra of the Luttinger-liquid model
and the standard Fermi-liquid model, and show why they
lead to qualitatively similar Raman spectra in many one-
dimensional systems.

Finally, in Sec. VI C we compare the near-resonance RRS
spectrum calculated in these two models and discuss the ex-

tent to which a Raman scattering has observed, or can be
expected to observe, the evidence for Luttinger-liquid behav-
ior in quasi-one-dimensional systems.

A. Assumptions

We note that in the calculation presented in this paper
both Luttinger-liquid and Fermi-liquid calculations require
three assumptions.

(i) The photon energyn and momentumq transferred to
the one-dimensional electron system are small in comparison
with the Fermi energy and Fermi momentum of the one-
dimensional electron system.

(ii ) The Raman process involves excitation from a one-
dimensional valence band to an empty state in a one-
dimensional conduction band, followed by decay of an elec-
tron from a filled state in the conduction band into the hole
state in the valence band.

(iii ) The excitonic correlations between conduction-band
states and the intermediate state(one hole in the valence
band and one additional electron in the conduction band)
may be neglected.

Assumption(i) is essentially a condition that the experi-
mental resolution is sufficient to reveal the low-energy phys-
ics of the system of interest. From the theoretical point of
view it could easily be relaxed at the expense of introducing
a more complicated description of the conduction band, i.e.,
considering the curvature of band structure about the Fermi
surface.

Assumption (ii ) is clearly applicable to strictly one-
dimensional systems such as carbon nanotubes(where the
valence band is clearly one dimensional) but may not be
applicable to quantum wire structures created by lithographic
or molecular-beam epitaxy(MBE) techniques on a three-
dimensional substrate. In this situation, valence-band carriers
may be able to move transverse to the wire because momen-
tum transverse to the wire is not conserved in the optical
absorption process. In this case the functionfsx,td in Eq.
(11) must be integrated over a range of transverse momenta,
leading to a broadening of the resonance. However, assump-
tion (ii ) may also be relaxed, if only the intermediate state
(of whatever origin) disperses only along the wire.

The crucial assumption is(iii ), neglect of excitonic corre-
lations. These are likely to play a crucial role in the QWR
structures by keeping the valence hole near the wire and
therefore allowing a sharp resonance to occur. Since we have
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neglected these excitonic correlations in the theory presented
in this paper at several points, it cannot be trivially modified
to include them in a fully self-consistent way. Therefore con-
struction of a self-consistent theory including excitonic ef-
fects in the Raman scattering process is an important open
issue in the field. We will briefly discuss the possible exci-
tonic effects to the Raman scattering spectroscopy in Sec.
VI C.

By combining the three assumptions given above with
standard second-order perturbation methods, we obtained re-
sults, presented in Sec. IV and Eqs.(35)–(38), for the reso-
nant Raman scattering intensities of a one-dimensional elec-
tronic system described by the Luttinger-liquid model. For
comparison, we also presented analytical expressions for the
Raman intensities of the previously discussed Fermi-liquid
model (in which the only electron-electron interaction con-
sidered is forward scattering in the density channel, treated in
the RPA). In the far-from resonance regime, we showed that
a perturbative treatment could be applied, and this was used
to provide a detailed characterization of the different features
of the spectrum, including CDE and SPE peaks and a con-
tinuum absorption and the dependence of the intensity of
these features on the difference of the laser frequency from
resonance. We also obtained simple, easily evaluated expres-
sions for the integrated intensities in the SPE and CDE peaks
for all values of the laser frequency, and from these we ob-
tained results for the ratio of SPE to CDE intensities. In the
following two sections, we will respectively discuss the re-
sults and physical interpretation of our theory applied in the
two different regions of interest: far-from resonance region
and near-resonance region.

B. Excitation and Raman spectra in Luttinger
and Fermi liquids

The Raman process creates a particle and a hole in the
conduction band, at a space-time separation controlled by the
difference of the laser frequency from a resonance condition.
The particle-hole pair generated by Raman scattering is in
general not an eigenstate of the conduction-band Hamil-
tonian, but decays into the true eigenstates. The important
question, therefore, is “what properties of the eigenstates are
revealed by Raman scattering.” In the one-dimensional con-
text one may sharpen this question to “what aspects of the
Raman spectrum reveal characteristic features of the
Luttinger-liquid physics expected to occur in one-
dimensional systems?” In order to answer this question pre-
cisely, it is necessary to discuss the eigenstates of one-
dimensional electronic systems.

We are concerned here with polarized channel Raman
scattering in systems with negligible spin-orbit coupling and
therefore must consider excitations which do not change the
total spin of the system. In a Fermi liquid with repulsive
interactions, there are two kinds of relevant states. One is the
zero sound(or plasmon) mode, referred to in the Raman
literature as the charge density excitation(CDE) mode.(In
principle there are other collective modes, but they are rarely
important in practice.) The CDE excitation typically has a
well-defined energy-momentum dispersion relationn

=vrsqduqu with velocity vrsqd greater than the Fermi velocity
vF in the long wavelength limitsq→0d.

The other class of states, referred to in the Raman litera-
ture as single-particle excitation(SPE), are the particle-hole
continuum states. In two- and three-dimensional systems,
these excitations exist in the range 0ønøvFq; in d=1 they
exist only in the range vFuqu−svFq2/2p0dø unuøvFuqu
+svFq2/2p0d with p0;fvF / s]2ep/]p2up=pF

dg being a measure
of the curvature of the quasiparticle dispersion. In any di-
mension, the SPE or continuum excitations make an impor-
tant contribution to the specific heat and to most response
functions. However, the contribution of the continuum exci-
tations to the structure factor(density response function) is
typically much smaller than that of the CDE(plasmon)
mode. In higher dimensionsd.1d the CDE contribution to
the structure factor is larger than the SPE contribution by a
factor of the dimensionless long wavelength interaction
strength, which for a charged Fermi liquid involves factors of
sqTF/qdd−1 arising from the long-ranged nature of the Cou-
lomb interaction(here qTF is the Thomas-Fermi screening
length).

In one-dimensional system the factor arising from the
Coulomb interaction is only logarithmic; however, the spe-
cial kinematics of one-dimensional systems lead to addi-
tional constraints. Indù2 the low-energy physics of nonor-
dered Fermi systems is described by Fermi-liquid theory,
which is essentially the RPA approximation but with interac-
tion vertices renormalized byfinite amounts by high-energy
processes. Ind=1 these renormalizations destabilize the
Fermi-liquid description entirely. However, the RPA may be
a reasonable intermediate energy-scale approximation, and
as explained in Sec. V has been used successfully to model
Raman scattering. In this context the terms RPA and Fermi
liquid are synonymous. Within the RPA the SPE contribution
to the structure factor is smaller than the CDE contribution
by a factor ofsq/p0d2. Therefore, in the linearized dispersion
limit sp0→`d, the SPE contribution to thed=1 structure
factor vanishes exactly within the RPA. Indeed this vanishing
can be shown via a Ward Identity39 to occur to all orders in
the interaction. We emphasize, however, that in the RPA to
the one-dimensional electron gas, the SPE excitations still
exist, and can be revealed either by considering response
functions other than the structure factor, or from the specific
heat. A specific example of a response function other than the
structure factor is provided by Raman scattering: far-from
resonance the leading contribution to the Raman vertex is the
density operator, but corrections, whose magnitude depends
on the difference of photon frequency from resonance, in-
volve other operators. A detailed discussion of these opera-
tors may be found above in the context of Eq.(11).

Now let us consider the Raman scattering spectrum in
Luttinger-liquid model, where two classes of elementary ex-
citation exist: charge and spin bosons. States of total spin
zero may be constructed from states of two or more spin
bosons, even if no charge bosons are present, and these may
make important contributions to many response functions
and to the specific heat. In the linearized dispersion limit,
states involving only spin bosons do not appear in the struc-
ture factor, because it couples only to the charge sector.30,40
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However, curvature in the dispersion leads to charge-spin
coupling and in particular to terms coupling a charge boson
to two spin bosons. Thus, just as in the Fermi-liquid case, if
nonlinearity in the underlying dispersion is neglected, only
the CDE mode is visible in the structure factor but if band-
energy curvature is included, SPE contributions(two or more
spin bosons at energyn=qvF) appear at ordersq/p0d2. Of
course such multispinon contributions also appear in re-
sponse functions other than the structure factor. Therefore
even though the interpretations are different, the off-
resonance Raman scattering spectra calculated within Fermi-
liquid model and Luttinger model are basically the same, for
the spin-unpolarized one-dimensional electron gas.

However, the situation changes when considering a 1D
spin-polarized electronic system. This could be realized in
practice by applying a magnetic field large enough to fully
spin polarize the conduction band. It is believed that a cor-
rect treatment(for example, via the bosonization method of
the Luttinger model) would predict that theonly elementary
excitation is a boson, which is roughly equivalent to the zero
sound or plasmon mode excitation of a Fermi liquid. Thus in
the spinless Luttinger-liquid case, in all response functions
and also in the specific heat, only superpositions of plasmons
would be observed, whereas in the so-called Fermi liquid
approximation one would observe features at both energies
as in the spinful case—one zero sound(or collective) mode
and one electron-hole continuum. In the language of Raman
scattering experiment, only the CDE mode would be visible
in the Luttinger-liquid case, no matter how closely the sys-
tem is tuned to resonance, whereas for a hypothetical 1D
Fermi liquid, excitation at the SPE energy would become
visible as the laser frequency is tuned to resonance(due to
the interband scattering matrix element).

To summarize this section: as long as the electron number
is not changed in the conduction band during the Raman
scattering process(i.e., off-resonance regime), the apparently
profound differences between a Luttinger and a Fermi liquid
produce only minor and quantitative differences in the exci-
tation spectrum of a spin-unpolarized system. In both mod-
els, one has two classes of excitation, which may be labeled
CDE and SPE, respectively, in the Raman scattering experi-
ment, where the latter is smaller by a factor ofsq/p0d2 due to
the weak nonlinearity of the band structure. However, for a
spin-polarized electron gas, there is an important difference
between a Luttinger and a Fermi liquid: in the Fermi-liquid
approximation a SPE branch of excitations still exists,
whereas in a Luttinger liquid it does not.

C. Physics of RRS spectrum—near resonance

The previous sections have shown that in the polarized
channel of RRS experiment(i.e., no spin flipping of final
electron configuration), the differences between the predicted
Raman spectra of a Luttinger-liquid and Fermi-liquid ap-
proximations to the one-dimensional electron gas are quan-
titative, not qualitative, as long as the photon energy is off-
resonance. However, a significant distinction between these
two models may arise from the Raman spectrum changes as
the laser frequency is brought closer to a resonance condi-

tion. As this occurs, operators other than the structure factor
begin to contribute to the Raman spectrum, and the nature
and coefficients of these operators may be used to distinguish
between the two different theoretical models.

In discussing the near-resonance behavior it is helpful to
refer to Fig. 6 which shows the diagrams commonly consid-
ered in the Fermi-liquid treatment of the RRS process. From
these diagrams one sees that in the Fermi-liquid approxima-
tion, the states created by the Raman process have nonvan-
ishing overlap with the two sorts of exact eigenstates(CDE
and SPE) of the system. Diagram 1 gives the dominant con-
tribution to the probability of creating a SPE excitation. The
direct overlap between the state created by the Raman pro-
cess and the exact eigenstate of the system means that in the
absence of excitonic correlations between the particle-hole
pair and the intermediate resonant state(sketched as dash-dot
lines in diagram 1 of Fig. 6), this diagram diverges strongly.
(The diagram might also diverge strongly even in the pres-
ence of excitonic effects: this point has not been investi-
gated.) Indeed one sees from Eq.(42) that very near reso-
nance the term diverges assṼ±n /2d−1 and(in the absence of
excitonic correlations or of the phenomenological broaden-
ing L) is infinite for uṼu,n /2. On the other hand, one sees
from diagram 2 that the coupling of the Raman process to the
CDE excitation goes through a range of virtual states(repre-
sented by the triangles in diagram 2); this broadens the reso-
nance effect so that the divergence as resonance is ap-
proached is only logarithmic and the result is finite for
uṼu,n /2. However, the one-dimensional kinematics lead for
uṼu.n /2 to a much greater CDE amplitude than a SPE am-
plitude, so that the SPE/CDE ratio only becomes of order
unity very close to the resonance condition. Further, for
uṼu,n /2 the Fermi-liquid approximation to the SPE inten-
sity is, strictly speaking, infinite, and must be regularized by
consideration of processes so far omitted from the approxi-
mation. At present there is no theory of this regularization,
which has been parametrized by a phenomenological broad-
ening L. Because they are entirely determined by the regu-
larization parameter, the Fermi-liquid results presented in
this paper in the near-resonance regime are probably mean-
ingless. We suspect that this issue also arises in the higher
dimensional calculations performed so far.

In the Luttinger-liquid approximation, the particle-hole
pair created in the Raman process has vanishing overlap with
any exact eigenstate. This has three consequences: first, a
continuum absorption arising from multiboson excitations is
predicted to lie in between the SPE and CDE peaks(actually,
this continuum would exist also in a Fermi liquid, but would
be much weaker). Also, away from resonance, the SPE/CDE
ratio is larger than in the Fermi-liquid approximation, and it
varies with a power related to the Luttinger liquid exponent

a. Finally, in the on-resonance regimeuṼu,n /2 both SPE
and CDE contributions are predicted to be finite, although

both exhibit a discontinuity whenuṼu=n /2. Fermi-liquid be-
havior can be recovered by taking noninteracting limitsa
→0d because the magnitude of the discontinuity isa−1 and
hence diverges in the noninteractingsa→0d limit.

We suggest that in the on-resonance regimeuṼu,n /2 nei-
ther the Fermi-liquid nor the Luttinger-liquid calculations are
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likely to be quantitatively reliable, because excitonic corre-
lations(neglected here) are likely to be important: near reso-
nance the intermediate state lasts so long that it must interact
with the conduction-band excitations, and these interactions
are likely to have a nontrivial interplay with the nonanalyt-

icities arising whenuṼu=n /2. Several qualitative features of
such excitonic effects can be expected: First, the attractive
interaction between the excited electrons above the Fermi
surface of conduction band and the hole in the valence band
can form a metastable intermediate state of excitons, which
should have strong binding energy due to the geometrically
tight confinement potential in one-dimensional quantum wire
system. Therefore the assumption(ii ) discussed in Sec. VI A
can be further relaxed and one may treat the valence-band
hole to be a 1D quasiparticle as what we assumed in this
paper. Second, the existence of excitonic metastable interme-
diate state may change the position of resonance since the
binding energy of a 1D exciton can be of order of several
meV.41 A recent RRS experiment31 in a two-dimensional
quantum well system apparently observed two resonances.
Finally, the scattering matrix element have to be calculated
by considering the overlap between the exciton state and the
electron-hole continuum state, which will certainly broaden
the resonance effects near the resonance condition. The spec-
tral weight distribution as a function of photon energy trans-
fer n at a given momentum transferq will also be changed
due to such inhomogeneous broadening. But so far we could
not speculate if the Luttinger-liquid properties of a one-
dimensional electronic system can be unambiguously ob-
served in the RRS spectrum even after including the full
excitonic effects. A more complete theory to include such
nontrivial effects is necessary for the future study.

VII. SUMMARY

In this paper we have used the full Luttinger-liquid model
to analytically and numerically calculate the RRS spectrum
for both polarized and depolarized spectroscopy, and have
presented for comparison a Fermi-liquid calculation. We ob-
tained results for both short-ranged(screened Coulomb) in-
teractions and for the more physically relevant case of the
long-ranged Coulomb interaction. We clarified the difference
between the Fermi-liquid and Luttinger-liquid results, and
argued that proper treatment of excitonic interactions(ne-
glected in all treatments so far) is essential for obtaining
reliable results. Our results in Figs. 2 and 3 show that the
RRS spectra of both short-ranged and long-ranged interac-
tions are qualitatively similar, except that in the unscreened
Coulomb case the momentum dependent charge velocity
makes the phase space of multiboson excitations to be highly
restricted, which shift the multiboson excitations to higher
energy than the plasmon energyv=qvq, causing such un-
usual broadening. The SPE-CDE ratio is generically larger in
a Luttinger liquid than in a Fermi liquid, except on-
resonance, where excitonic effects probably invalidate either
calculation.
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APPENDIX: EVALUATION OF d-FUNCTION
CONTRIBUTIONS

1. Overview

This appendix presents the additional transformations
needed to put Eqs.(33) and (34) into forms convenient for
further discussion and numerical evaluation. We have to deal
with an expression of the form(note that for simplicity, we
defineV to be the light frequency with respect to the reso-
nance energy throughout this appendix)

W=E
0

` dt1eisV+i«dt1

t1
1+a E

0

` dt2e−isV−i«dt2

t2
1+a Ist1,t2d sA1d

with «→0+ being an infinitesinal converging factor and

Ist1,t2d =E
−`

`

dR e−iqRFst1,t2,Rd sA2d

andF given by

F =1
v2st1 + t2d2

4
− sR+ i«d2

v2st1 − t2d2

4
− sR+ i«d22

b

− 1, sA3d

where for the charge casev=vr and b=s1+ad /2, while in
the spin case,v=vs=vF andb=1/2. As inSec. III we have
assumed that the valence-band velocity is much smaller than
the Fermi velocity in the conduction band. The analytic
structure of theF function means that we can write(note we
have also rescaledR)

Ist1,t2d = 2 sinspbdE
A

B

dRsinSqR

2
DF2sB,A,Rd sA4d

with

F2st1,t2,Rd = SB2 − R2

R2 − A2Db

sA5d

andB= t1+ t2 andA= ut1− t2u.
By making the following changes of variables:R

→Îu;u→v+A2;v→ÎB2−A2 sinu and restoring the explicit
forms of B andA we obtain

Ist1,t2d = 2 sinspbdt1t2E
0

p/2

du

3

scosud1+2bssinud1−2b sin
vq

2
Ît1

2 + t2
2 − 2t1t2cos 2u

Ît1
2 + t2

2 − 2t1t2cos 2u
.

sA6d

2. Evaluation, large V

If V.vq/2 then it is convenient to rotate thet integrals
via
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t1 → it1, sA7d

t2 → − it2, sA8d

getting

W=E
0

` dt1e−Vt1

t1
1+a E

0

` dt2e−Vt2

t2
1+a Ist1,t2d sA9d

with

Ist1,t2d

= 2 sinspbdt1t2E
0

p/2

du

3

scosud1+2bssinud1−2b sinh
vq

2
Ît1

2 + t2
2 + 2t1t2cos 2u

Ît1
2 + t2

2 + 2t1t2cos 2u
.

sA10d

It is then useful to define

t1 = t cosf, sA11d

t2 = t sinf, sA12d

so that

W= 2 sinspbdE
0

p/2

dfE
0

p/2

duE
0

` dt

t2ae−Vtscosf+sin fd

3

scosud1+2bssinud1−2b sinh
vqt

2
Î1 + sin 2f cos 2u

Î1 + sin 2f cos 2u
.

sA13d

Thet integral may now be done. It is convenient to shift the
origin of thef integral byp /4 and symmetrize inf and to
combine the two terms arising in the spin term, getting

Wr =

2s3/2d+a sinSps1 + ad
2

DGs1 − 2ad

V1−2a

3E
0

p/4

dfE
0

p/2

du
cos2uscotuda

Î1 + cos 2f cos 2u

331 1

Scosf −
vrq

2V
Î1 + cos 2f cos 2u

2
D2

1−2a

− 1 1

Scosf +
vrq

2V
Î1 + cos 2f cos 2u

2
D2

1−2a

4 ,

sA14d

Ws =
2s1/2d+aGs1 − 2ad

V1−2a E
0

p/4

dfE
0

p/2

du
cos 2u

Î1 + cos 2f cos 2u

3 31 1

Scosf −
vFq

2V
Î1 + cos 2f cos 2u

2
D2

1−2a

− 1 1

Scosf +
vFq

2V
Î1 + cos 2f cos 2u

2
D2

1−2a

4 .

sA15d

This formula has integrable singularities atf=u=p /2 and
u=p /2 and is convenient for numerical evaluation.

3. Evaluation, small V

If V,vq/2 then the rotation cannot be made and we
should instead define

t1 = t cosf, sA16d

t2 = t sinf. sA17d

Transformations similar to those leading to Eq.(A13) then
yield

WrsVd =
2s5/2d−a

svrqd1−2asinSp
1 + a

2
DGs1 − 2ad

3E
0

p/4

dfE
0

p/2

du
cos2uscotuda

Î1 − cos 2f cos 2u

3 1 1

SÎ1 − cos 2f cos 2u

2
+

2V

vrq
sinfD1−2a

+
1

SÎ1 − cos 2f cos 2u

2
−

2V

vrq
sinfD1−2a2

sA18d

and

WssVd =
2s3/2d−a

svsqd1−2aGs1 − 2ad

3E
0

p/4

dfE
0

p/2

du
cos 2u

Î1 − cos 2f cos 2u

3 1 1

SÎ1 − cos 2f cos 2u

2
+

2V

vsq
sinfD1−2a

−
1

SÎ1 − cos 2f cos 2u

2
−

2V

vsq
sinfD1−2a2 .

sA19d
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We observe that unlike Eqs.(A14) and (A15) these expres-
sions have a double singularity at smallf ,u and indeed lead
to RRS spectra of quite different magnitudes. To see this
point more clearly, consider the integrand,Ich of Eq. (A18) as
f ,u→0. We obtain

Ich = S1

u
Da 1

Î2Îf2 + u21 1

SÎf2 + u2 +
2V

vrq
fD1−2a

+
1

SÎf2 + u2 −
2V

vrq
fD1−2a2 . sA20d

Changing variables tou=z cosc andf=z sinc we have

E df u du Ich =E z dz dc
1

Î2z2−ascoscda

31 1

S1 +
2V

vrq
sincD1−2a

+
1

S1 −
2V

vrq
sincD1−2a2 . sA21d

Integration overz gives an answer proportional to 1/a.
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