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Abstract

In this paper, we review recent development in the theory of resonant inelastic light (Raman) scattering in one-dimensional

electron systems. The particular systems we have in mind are electron doped GaAs based semiconductor quantum wire

nanostructures, although the theory can be easily modified to apply to other one-dimensional systems. We compare the

traditional conduction-band-based non-resonant theories with the full resonant theories including the effects of interband

transitions. We find that resonance is essential in explaining the experimental data in which the single particle excitations have

finite spectral weights comparable to the collective charge density excitations. Using several different theoretical models (Fermi

liquid model, Luttinger liquid model, and Hubbard model) and reasonable approximations, we further demonstrate that the

ubiquitously observed strong single particle excitations in the experimental Raman spectra cannot be explained by the spinless

multi-spinon excitations in the Luttinger liquid description. The observability of distinct Luttinger liquid features in the Raman

scattering spectroscopy is critically discussed.
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1. Introduction

One-dimensional (1D) electron systems, where electron

dynamics is constrained to be along a single direction

(chosen as the x axis in the rest of this paper where

necessary) due to the quantum mechanical confinement of

the carrier system imposed by suitable externally applied

electrostatic potentials along y and z directions (leaving the

x direction to be the only direction of free-electron-like

motion characterized by a 1D wavevector k), have been

achieved in the electron-doped GaAs quantum wire

structures by combining the state of the arts semiconductor

materials growth with extremely clever nanolithographic

fabrication technique [1]. In these 1D semiconductor

quantum wire structures the non-interacting 3D electron

wavefunction can be described, to a very good level of

accuracy, using the effective mass approximation [2–4] as

Cðr ¼ ðx; y; zÞÞ ¼ ~Cjðy; zÞeikx=
ffiffiffi
Lx

p
; where Lx is the plane

wave normalization length along the wire direction, x; and
~Cjðy; zÞ is the bound wavefunction for electron motion in the

quantized transverse ðy–zÞ direction with j denoting a

particular bound state [2] for the y–zmotion. The transverse

bound states (usually called ‘subbands’ in the semiconduc-

tor literature [2,5]) characterized by the discrete index j

( ¼ 0,1,2,… with 0 being the ground state lying lowest in

energy near the conduction band minimum of GaAs) are

typically separated by a few meV in energy with their

separation (as well as the carrier density in the system) being

somewhat tunable through various gate voltages applied

from outside. For low temperature (#1 K), kBT p ðE1 2 E0Þ
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where Ej is the jth subband energy for transverse motion and

therefore ðE1 2 E0Þ; the lowest intersubband energy separ-

ation, is the low-lying excited state energy, the quantum

wire system is by definition, a strictly one-dimensional

quantum mechanical electron system at low carrier densities

[i.e. for EF , ðE1 2 E0Þ] so that only the lowest quantum

level, the ground subband, is occupied by electrons. Even in

a situation where EF . ðEj 2 E0Þ for a few values of j; the

semiconductor quantum wire system is a ‘multisubband’ 1D

electron system [5] as long as the intersubband scattering

between different subbands is relatively weak (which is

usually the case).

Such 1D semiconductor quantum wires, particularly in

their strict 1D one-subband [i.e. EF , E1 2 E0] limit, are

examples of interacting 1D electron systems, the so-called

Tomonaga–Luttinger liquids (‘Luttinger liquids’), which

are of great intrinsic and fundamental interest in condensed

matter physics [6–9]. In particular, Luttinger liquids (LL)

are fundamentally different from Fermi liquids (i.e. inter-

acting 2D and 3D electron systems such as normal metals

and two-dimensional electron systems confined in semi-

conductor heterostructures) in the sense that the one-to-one

correspondence between the interacting (‘Fermi liquids’)

and the non-interacting (‘Fermi gas’) systems, which is the

basis of the very successful Landau Fermi liquid (FL) theory

in two- and three-dimensional electron systems, categori-

cally breaks down for 1D Luttinger liquids. As a result, one-

dimensional electron systems do not have a Fermi surface

defined by a finite jump of momentum distribution, nk; at

Fermi wavevector at zero temperature even in the presence

of weak interactions (more precisely, if one defines the

Fermi surface to be a singularity of nk; at lkl ¼ kF; then 1D

interacting electron systems can still have a Fermi surface

due to the infinite slope of nk at lkl ¼ kF), i.e. interaction

effects are non-perturbative in one-dimensional electron

systems.

Luttinger liquids (i.e. interacting 1D electron systems)

are characterized by the absence of long wavelength low

energy single particle (i.e. electron–hole) excitations which

dominate the low energy spectra of 2D and 3D systems and

by the existence of spin–charge separation, i.e. separate

branches of low energy excitations in Luttinger liquids can

carry spin but no charge (‘spinons’) or can carry charge but

no spin (‘holons’) in contrast to higher dimensional systems

where the single-particle excitations necessarily carry both

spin and charge. The zero-temperature momentum distri-

bution function in Luttinger liquids does not have the usual

discontinuity at k ¼ kF indicating the existence of a Fermi

surface, but instead has a power-law behavior nðk2 kFÞ ,
1=22 sgnðk2 kFÞlk2 kFl

a
; where the exponent (the so-

called Luttinger exponent) is non-universal.

In this paper we review our recent theoretical work on

the inelastic resonant light (‘Raman’) scattering studies of

1D semiconductor quantum wires, using both the Fermi

liquid and the Luttinger liquid approaches. Resonant Raman

scattering (RRS) has been a very successful tool for

studying the elementary electronic excitation spectra in

doped semiconductors. In particular, the mode dispersion

(i.e. the frequency as a function of wavevector) and the

spectral weight (i.e. the oscillator strength) of low energy

(from a fraction of an meV to tens of meV) electronic

excitations can be directly obtained via resonant Raman

scattering (in the 105–106 cm21 wavevector range). Since

the interesting and important elementary electronic exci-

tations in GaAs quantum wire (1D) and quantum well (2D)

structures lie precisely in this frequency–wavevector range,

resonant Raman scattering spectroscopy has been an

effective tool for studying electronic excitation spectra in

GaAs based low dimensional electron systems over the last

twenty-five years [5,10–12,15]. In addition, various selec-

tion rules involving the relative polarization of the incident

and scattered photons in the Raman spectra (the so-called

polarized or the depolarized spectra) allow one to study

charge density or spin density excitations in the system,

making the resonant Raman scattering spectroscopy a rather

powerful tool for studying intra- and inter-subband

electronic excitations in 1D and 2D electronic systems

including the strongly correlated fractional quantum Hall

regime [13].

The Raman scattering spectra, within the simple linear

response theory, is directly proportional to the dynamical

structure factor of the interacting electron system which, at

long wavelength, has significant spectral weight only at

collective excitations, if no inter-subband resonant scatter-

ing involved [5,16–18]. Depending on the polarization

configuration of the experimental set up, the Raman

scattering spectra should directly measure either the

collective charge density excitation (in the polarized or

the non-spin–flip configuration) or the collective spin

density excitation (in the depolarized or the spin–flip

configuration) [10,11,14,15]. Within the simple linear

response theory [5,16–18], the Raman scattering spectra

in the two configurations is simply proportional to the

imaginary part of the screened (for the charge density

excitation (CDE) in the polarized configuration) or

unscreened (for the spin density excitation (SDE) in the

depolarized channel) polarizability function. At very small

wavevectors that can be probed in the Raman scattering

experiments, only the collective modes should have

appreciable spectral weight in the Raman scattering spectra.

This fact, i.e. that only collective modes (either CDE in the

polarized spectra or SDE in the depolarized spectra) can

manifest themselves in the inelastic light scattering spectra

of semiconductor structures applies to systems of any

dimensionality, 3D, 2D or 1D electron systems [5,17–19].

Of course, in principle, the incoherent single particle

excitations (electron–hole pairs) can be also observed in

the Raman scattering experiment of two- and three-

dimensional system with small (but finite) momentum

transfer, due to the existence of quasi-particle excitations. In

one-dimensional electron system, on the other hand, only

collective charge and spin modes are expected to be
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observed since the single particle excitations are absent in

the LL theory as we mentioned above.

A real intriguing aspect of the resonant inelastic light

scattering spectroscopy in semiconductor structures has,

however, been the persistent and ubiquitous presence of a

‘single-particle excitation’ (SPE) peak in the Raman

scattering spectra in sharp contradiction with the simple

theoretical description provided above. This single particle

excitation peak, which is usually fairly weak (but orders of

magnitude stronger than that given by the simple electronic

response function argument given above), is almost always

present in the resonant Raman scattering spectra in addition

to the expected peaks associated with the collective

excitations [11,12,14,15,20,21]. A very interesting aspect

of this phenomenon is the fact that collective mode spectral

features in the resonant Raman scattering spectra seem to be

rather well-described by the simple response theory, which

at the same time predicts orders of magnitude weaker values

for the single particle spectral weight (in 2D and 3D) than

that observed experimentally. In 1D semiconductor quan-

tum wire structures, where the Luttinger liquid behavior

manifestly precludes the existence of low-lying single

particle excitations, the observed existence of SPE features

in the Raman scattering spectra [11,14,21] raises very

serious conceptual questions regarding our basic under-

standing of the elementary excitation spectra in 1D electron

systems.

In this review we discuss how this conceptual problem

has recently been resolved theoretically by showing that a

full understanding of the existence of single particle

excitation like spectral features in the resonant Raman

scattering spectra necessarily requires going beyond the

simple non-resonant single band (i.e. conduction band)

linear response theory and considering the full ‘two-step’

resonant aspect of the experiment (Fig. 1(a)) where the

valence band plays a crucial role [22]. For completeness we

will first review the theories of non-resonant Raman

scattering using 1D FL model, LL model, and lattice

Hubbard model, respectively. We then discuss the theories

of resonant Raman scattering including the two-step

scattering process. Finally, we discuss how these results

are related to the existing experimental data and their

implication to the Luttinger liquid properties in 1D electron-

doped semiconductor quantum wire systems.

In Fig. 1(a) we depict the schematic diagram [23] for the

two steps involved in the resonant Raman scattering

process: an electron in the valence band is excited by the

incident photon into the conduction band above Fermi

surface, leaving a valence band hole behind (step 1), and

then an electron from inside the conduction band Fermi

surface recombines with the hole in the valence band (step

2), emitting an outgoing photon with an energy and

momentum (Stokes) shift. (In principle, these two steps

could occur in different orders). The net result is an

elementary electronic excitation created in the conduction

band through the intermediate valence band states. The non-

resonant approximation to RRS ignores the intermediate

valence band states as shown by the step 3 in Fig. 1(a). Note

that the resonant process depends on the incident photon

energy, while the non-resonant approximation depends only

on the energy difference between the incident and the

scattered photons. This difference turns out to be crucial in

the RRS theory as shown below. Total electron spin is

conserved in the final scattering processes since we are

considering only the polarized geometry (i.e. photon

polarization is not changed). We restrict ourselves to the

non-spin–flip polarized RRS, where the CDE dominates the

non-resonant linear response spectra.

2. Non-resonant Raman scattering theory

In the presence of an external photon field the interaction

between the electron gas and the radiation field is described

by the following Hamiltonian:

H ¼ He þ
XN

i

2
e

mic
pi·Ai þ

e2

2mic
2
A

2
i

" #

ð1Þ

where Ai ¼ Aðxi; tÞ is the vector potential of photon. xi and
pi are the position and momentum operators of ith electrons,

and c is the speed of light.mi is the effective electron mass in

the semiconductor bands (mi can be different if considering

interband scattering). He is the Hamiltonian of electrons

interacting with Coulomb potential without the radiation

field. Fig. 1(b) and (c) correspond to the scattering processes

induced by the linear ðp·AÞ term and the quadratic ðA2Þ term
respectively in the second quantization representation. One

can simply neglect the p·A term in Eq. (1) if only the non-

resonant Raman scattering spectroscopy is considered,

where the incident photon frequency is far away from the

band gap energy [24,25]. The resulting Raman scattering

intensity therefore is equivalent to the imaginary part of the

Fig. 1. (a) Schematic representation of the two-step RRS in the

direct gap two band [c(v): conduction (valence) band] model.vi and

vf are the initial and final frequencies of the external photons. (b)

and (c) are the Feynman diagrams of the electron–photon scattering

process described by p·A and A·A terms respectively in the

interacting Hamiltonian (see text). Solid and wavy lines represent

the electron and photon Green’s functions respectively.
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time-ordered density correlation function in the linear

response theory [16,26]:

Im i
ð1

21

dteivtkT½n†ðk; tÞnðk; 0Þ�l0
� �

ð2Þ

where k· · ·l0 is the ground state expectation value, and nðk; tÞ
is the electron density operator. In the rest of the this section,

we will compare the results of Eq. (2) calculated by different

theoretical models.

2.1. Fermi liquid model

In the Fermi liquid model [16], the elementary

excitations of an interacting electronic system are quasi-

particles, which have the same quantum numbers as free

electrons but with an effective mass and renormalized single

particle parameter. It is well-known that the Fermi liquid

model is a very good approximation in two and three

dimensional systems, but fails in one dimensional systems

due to strong fluctuations. However, it has also been noticed

that [19,27] the collective plasmon modes calculated by the

standard random phase approximation (RPA) within the FL

model is exactly the same as the one obtained by Luttinger

liquid model (see below). Its energy dispersion is vrðkÞ ¼
vFlkl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2VcðkÞ=pvF

p
; where vF is Fermi velocity and

VcðkÞ / lnð1=kdÞ is the 1D Coulomb interaction with d

being the characteristic confinement length in the transverse

dimension. Therefore it is instructive to compare the RRS

spectrum calculated in the FL model within RPA to the

results obtained by other exactly solvable models in 1D

electron system (see below).

In Fig. 2, we show the typical non-resonant Raman

scattering spectra calculated in the FL model within RPA

(solid lines). It shows a strong CDE spectral weight at the

plasmon mode energy, and a much weaker (three orders in

magnitude) weight in the single particle excitation (SPE)

energy,v ¼ kvF: The almost vanishing weak presence of the

SPE peak results from the quasi-particle excitations in the

FL model. The dashed lines in the same figure are results

calculated by including vertex corrections (within Hubbard

approximation [19,28]) in the theory to go beyond the RPA

approximation. We find that the simple non-resonant vertex

correction still gives qualitatively the same result with a SPE

spectral weight orders of magnitude weaker than the CDE.

Including the effects of non-parabolicity of the electron

band energy and/or the effects of the breakdown of electron

momentum by scattering with impurity potential can

enhance the SPE weight slightly (less than one order of

magnitude) but still does not change the picture qualitatively

[19]. Thus, possible adjustments and improvements of the

theory staying within the conduction band non-resonant

Raman scattering picture are not capable of explaining the

experimental observation of a strong presence of the SPE

spectral feature in the RRS spectra [14].

2.2. Luttinger liquid model

The Luttinger liquid model [6–9] is thought to provide a

generic low energy description for 1D electron systems,

which are characterized by the LL fixed point in the

renormalization group sense. The standard and exactly

solvable LL model is the 1D electron gas with a linear

dispersion ðEk ¼ rvFðk2 rkFÞÞ around Fermi points ð^kFÞ
at each branch ðr ¼ ^1Þ and with short-ranged forward

interaction [6,7]. It is well-known [7] that the exactly

diagonalized LL Hamiltonian consists of two independent

elementary excitations: charge bosons (holons) and spin

bosons (spinons), the so-called spin–charge separation. The

former is essentially equivalent to the spinless charge

density excitations of the FL model with the same plasmon

velocity, while the latter occurs in the depolarized (spin–

flip) scattering channel at the Fermi velocity, and is akin to

the spin density excitation mode of the FL. Therefore, in the

non-resonant polarized Raman scattering spectroscopy we

consider in this paper, the LL model has only the charge

boson (plasmon) excitations, and does not have any single

particle weight due to the breakdown of Landau Fermi

liquid in 1D system. However, including the non-linearity of

the band energy may lead to situation where the charge

mode and the spin mode sectors interact with each other and

cause possible multiboson excitation above the Fermi

surface. It has been proposed [29] that a spin singlet

excitation (SSE) of two bound spinons (of total spin zero)

may be responsible for the observed single particle

excitation in the Raman scattering experiments. It is

therefore important to study how such multi-boson exci-

tations affect the polarized spectrum in an exactly solvable

model with a non-linear band energy. We therefore consider

the 1D Hubbard model in Section 2.3 in this context,

considering in details its excitation spectra. Although the

lattice Hubbard model does not really apply to continuum

semiconductor quantum wire systems, generic LL

Fig. 2. Dynamical structure factor of a 1D electronic systems

obtained by the standard (non-resonant) RPA calculation at k ¼
0:1kF: The electron densities used in the calculation is

6.5 £ 105 cm21. Finite impurity scattering ðg ¼ 1023EFÞ has been
applied to broaden the peaks.

D.-W. Wang et al. / Solid State Communications 131 (2004) 637–645640



properties (e.g. the excitation spectra and spectral weights)

should be independent of the model.

2.3. Hubbard model

The exactly solvable 1D single band Hubbard model

(HM) contains a hopping matrix element between neighbor-

ing sites, t, and a spin-dependent on-site interaction, U. The

full Hamiltonian is

H ¼ 2t
X

i;s

c
†
iþ1;sci;s þ H:c:

� �

þ U
X

i

ni"ni# ð3Þ

where ci;s and ni;s are respectively the fermion creation

operator and the density operator for site i and spin s:

Among the many accurate and useful methods to study the

1D HM, we use the Bethe–ansatz method [30–32] to obtain

the ground state and the low-lying excitation spectra. Since

the Bethe–ansatz wavefunctions are not particularly useful

in calculating the correlation functions, we use the

Lanczos–Gagliano (LG) diagonalization method [19,33]

to directly calculate the spectral weights of these elementary

excitations. Our results obtained by this technique are

consistent with the quantum Monte Carlo calculations [34]

where appropriate. We note that analytic low energy

behaviors of some correlation functions of 1D Hubbard

model have been calculated in Ref. [43].

In Fig. 3(a), we show the energy–momentum dispersion

obtained from the poles of the imaginary part of the charge

density correlation function together with the results

calculated by Bethe–ansatz equations. The center of each

open diamond represents the position of the pole, and its

area is proportional to the spectral weight of that excitation.

We find that the charge density excitations (often these

excitations are called holons or particle-hole excitations in

the Bethe–ansatz literature [8,31]) cover almost exactly the

same region including the energy minimum at 4kF except for

the lower-lying peaks around 2kF; where the singlet spinon

just matches those peaks. In Fig. 3(b), we show the

imaginary part of the charge density correlation function

of the same system at k ¼ 2p=9: It shows that singlet spinons

have a relatively small but non-negligible weight (different

from the results of FL and LL models), compared with the

weight of the dominant charge density excitations (holons).

Their relative spectral weight ratio is less than 0.1. We have

also studied the dispersions and spectral weights of different

filling factors and/or different interaction strengths (for more

details, see Ref. [19]), but do not see any possibility to

obtain a reasonable fit of the ‘two peak’ RRS structure

observed in Ref. [14]. Therefore, we conclude that although

the non-parabolicity of the electron conduction band and the

spin-dependent interaction contained in the Hubbard model

enhance the spectral weight of the singlet spinon excitations

(which can be interpreted as the SPE feature in the RRS

experiments), the present results obtained without resonance

effects cannot explain the experimental data in the RRS

experiments. The obtained SPE-like RRS feature cannot be

explained by staying within a single band LL model.

3. Resonant Raman scattering theory

We now consider the full resonance situation (step 1 and

2 in Fig. 1) of a Raman scattering process by including the

valence band explicitly [20,22,23,35]. When the incident

photon energy is near the E0 þ D0 direct gap, the second

order perturbative contribution of the p·A term in Eq. (1)

becomes important and comparable to the first order

contribution of the A2 term, leading to an electron interband

transition between the conduction band and the valence

Fig. 3. (a) Energy-momentum dispersion and (b) the spectrum of

charge density correlation function of 1D HM for 6 electrons in 18

sites withU=t ¼ 3: k ¼ 2p=9 for the spectrum (b). Holon excitations

here are equivalent to the charge density excitations in the Raman

scattering experiments. The area of each diamond (square) in (a) is

proportional to the spectral weight of each charge (spin) excitation

peak.
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band. The finite time duration between the first step and the

second step of the scattering process gives a non-trivial

contribution to the scattering matrix element. The transition

rate in the second order perturbation theory can be obtained

to be [36] (we assume the electron–photon coupling vertex

to be a constant for simplicity)

W ¼ lim
T!1

1

T

X

p1 ;p2 ;s1 ;s2

ðT=2

2T=2
dt1

ðt1

2T=2
dt2

ðT=2

2T =2
dt01

£

ðt01

2T=2
dt02e

i �vðt022t01þt12t2Þeivðt
0
2þt012t12t2Þ=2eiE

v
p1
ðt012t02ÞeiE

v
p3
ðt12t2Þ

£kcp1þq=2;s1
ðt02Þc†p12q=2;s1

ðt01Þcp22q=2;s2
ðt1Þc†p2þq=2;s2

ðt2Þl0
ð4Þ

where we have chosen the backward scattering channel

ki ¼ 2kf ¼ q=2 and vi;f ¼ �v^ v=2; without any loss of

generality. Ev
p is the band energy of electrons in the valence

band. This result can be evaluated within the Fermi liquid

model and the Luttinger liquid model independently and we

present these results respectively in the following sections.

In Eq. (4) and the following formula in the FL model, we

keep the vector form of the momentum indices because they

apply equally well to two- and three-dimensional systems.

3.1. Fermi liquid model

As mentioned above, in the FL model, the single particle

energy is assumed to be well-defined, so that one can easily

integrate out the time difference between the absorption and

the emission of the external photon and obtain [36]

Wðq;v;VÞ ¼
ð1

21

dteivtkN†ðq; tÞNðq; 0Þl0 ð5Þ

where the resonant ‘density’ operator, Nðq; tÞ; is defined to

be Nðq; tÞ ¼
P

p;s Aðp; qÞc†pþq=2;sðtÞcp2q=2;sðtÞ with the

matrix element Aðp; qÞ

Aðp; qÞ ¼ 1

2Vþ ð1þ jÞðEc
p 2 EFÞ þ Ec

q=4þ il
ð6Þ

Here V ; �v2 Eg 2 ð1þ jÞEF is the mean photon energy

relative to the resonance energy, and j ; mc=mv is the ratio

of the carrier effective mass in conduction and valence

bands; EF ¼ Ec
kF
¼ k2F=2mc is the Fermi energy of the

conduction band electrons. l is a phenomenological broad-

ening parameter we introduce to include roughly all possible

broadening effects during the resonance scattering process.

(A microscopic evaluation of l seems to be essentially

impossible at the present time [37].)

Comparing Eq. (2) with Eq. (5), we find that the

resonance effect on the conduction band electrons is in the

matrix element Aðp; qÞ; which arises from the time

difference between the two steps of Raman scattering. In

the following discussion we define ‘off resonance’ as l ~Vl .

EF and ‘near resonance’ as l ~vlp EF: Off resonance the

spectral weight decreases as l ~Vl
22
; while near resonance the

singular properties of Aðp;qÞ strongly enhance the spectral

weight non-trivially. The calculation of the RRS spectrum is

therefore reduced to the evaluation of the correlation

function of Eq. (5), which can be easily calculated within

the RPA approximation [36].

In Fig. 4, we show a typical result of the resonance

Raman scattering spectra in the polarized channel. We

find that the resonance effects strongly enhance the SPE

spectral weight near resonance ðlVl # 0:1EFÞ; making

the SPE weight even larger than the CDE spectral

weight. Off resonance ðl ~Vl . 0:1EFÞ; the SPE weights

become much smaller than the CDE weight very similar

to the non-resonance situation. We note that the Raman

energy shift is not affected by resonance effects and

hence the one-band non-resonant linear response theory

still well-describes the spectral peak energy dispersions.

This agrees well with the existing RRS experimental

date [14,15,21].

3.2. Luttinger liquid model

The general formula of Raman scattering spectra, Eq. (4),

can also be evaluated within the LL model. Using the space-

time translational symmetry, Eq. (4) can be simplified by

Fig. 4. Raman scattering spectrum near resonance calculated in the

FL model. Finite impurity scattering ðgÞ has been included to

broaden the resonance peak properly. Other system parameters are

the same as used in Fig. 2. Note that the scales of each plot are

indicated in the right hand sides.
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representing the fermion operators in the coordinate space:

Wðq;v;VÞ ¼
ð

dRdTeiðvT2qRÞkÔ†ðR; TÞÔð0; 0Þl0 ð7Þ

where

ÔðR;TÞ ¼
X

r;s

ð

dx
ð1

0
dtfðx; tÞcr;sðRþ x=2; T þ t=2Þ

£c†
r;sðR2 x=2; T 2 t=2Þ

ð8Þ

crs is the electron operator for the left ðr ¼ 21Þ and the right
ðr ¼ þ1Þ fermion branch of spin index s: The retardation

function, fðx; tÞ is

fðx; tÞ ¼ ei �vt

L

X

p

eiðE
v
p t2pxÞ ¼ eiðVþvvFkFÞtdðxþ rv

v
FtÞ ð9Þ

where we have used the linearized valence band energy

around the Fermi wavevector, and vvF is the associated

valence band velocity. Eqs. (8)–(9) are the fundamental

results of the RRS theory in the LL model. They show that

the RRS process creates an electron–hole pair separated in

space by x and in time by t; with the amplitude for a given

space–time separation controlled by the function fðx; tÞ: Far
from resonance, fðx; tÞ is short ranged in both x and t, so that
Ô becomes similar to the ordinary density operator and W

becomes the charge density correlation function [35,36]

(e.g. Eq. (2)). As the mean photon energy is tuned closer to

the resonance condition, fðx; tÞ becomes longer ranged, and

then Ô becomes non-local in both space and time. Similar to

the FL model, this non-locality will be seen to give rise to

the interesting resonance effects, by allowing the light

to couple to something other than the dynamical structure

factor, making the situation qualitatively different from the

non-resonant one-band situation.

Although in principle Eq. (7) can be reduced further by

using the bosonization method and then calculated numeri-

cally, it is more instructive to consider their leading order

contributions from the one-boson and two-boson excitations

[35]. The former is directly related to the usual plasmon

mode excitation (i.e. CDE) in the FL-RPA theory, and the

latter is associated with the singlet two-spinon excitations at

v ¼ qvF: The analytical results for these two leading order

contributions can be also obtained [35,38], and one finds

that the spectral weight of the charge boson mode (i.e. CDE)

decreases as lVl
2a22

at off resonance [35,39] where a [

½0; 1Þ is the Luttinger liquid exponent which is positive for

repulsive interaction. In Fig. 5, we show the calculated

polarized LL RRS spectra including one and two boson

contributions for different resonance conditions. One

observes that near resonance the ‘SPE’ peak (now it is

composed by two spinon excitations) is noticeable, but still

has rather weak spectral weight compared with the CDE

(charge boson) peak. This is because any resonance

enhanced single particle excitation during the RRS process

will be immediately separated into spin and charge channels

in the LL model due to the spin–charge separation. The

angular momentum conservation imposed selection rules for

non-spin–flip scattering processes automatically suppress

the single spin-boson contribution, so that only the singlet

spinon excitations (composed by at least two spinons) can

contribute to the spectral weight. Therefore, the strongly

suppressed ‘SPE’ mode in the polarized spectrum near

resonance may possibly be a characteristic LL signature in

the semiconductor quantum wire systems.

We also have studied the transition rate, Eq. (7), by

summing all higher order results beyond the leading one and

two boson contributions. We find that [38] the spectral

weight of the total charge boson excitation (i.e. CDE) is still

much larger than the total singlet spinon excitation (SSE) in

the parameter regime of the existing experiments. The ratio

(CDE/SSE) becomes close to unity only near the non-

interacting limit, but increases when the electron–electron

interaction becomes stronger. We have also considered the

situation of the long-ranged Coulomb interaction rather than

the short-ranged interaction extensively used in the standard

LL model. We find that the SSE spectral weight is further

suppressed by the long-ranged Coulomb interaction, show-

ing that the weak singlet spinon excitations in the polarized

RRS spectroscopy are generic features of the LL model.

Therefore we conclude that the experimental RRS results

obtained so far in the literature [11,14,21] are not decisive

Fig. 5. Calculated polarized RRS spectra for various resonance

condition, ~V; in LL model. One- and two-boson contributions have

been plotted separately in order to show their relative contributions.

The Fermi velocity is the same as used in Fig. 4, while the short-

ranged interaction strength is chosen to a ¼ 0:3:
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signatures of Luttinger liquids in the semiconductor

quantum wires since the SSE spectral weight seems to

remain somewhat weak in the LL theory compared with the

RRS observations (and the SSE is really the only available

candidate for the SPE seen in the RRS spectra within the LL

model).

4. Discussion

As we have mentioned briefly in the context of Eq. (9),

the most significant feature of an RRS process is the

retardation effect between the two steps of scattering (see

Fig. 1), which is completely absent in the non-resonant

theory [19]. Such retardation effects can be studied within

the FL model in all dimensions [36] or within the LL model

in the one-dimensional system [35]. The polarized RRS

spectra calculated in both models (FL and LL) are very

similar far from resonance: the main contribution is from the

collective CDE plasmon mode (or charge boson) excitation

at plasmon energy, v ¼ vrðqÞ; but a relatively small (but

finite) single particle excitation (or the singlet spinon

excitation in LL model) can also appear at energy, v ¼
lqlvF:However, close to the resonance, the results calculated

by these two models are quite different: The SPE weight in

the FL model can become comparable to the collective CDE

mode weight, whereas the weight of SSE in the LL model is

always smaller than the charge boson weight [37,38].

Therefore, a crucial question is the extent to which

Raman scattering experiments reveal LL features charac-

teristic of the one dimensional physics. The differences

between a Luttinger liquid and a Fermi liquid are most

evident in the single electron problem, which is measurable

in principle by photoemission [40] or tunneling [41]

experiments but is unfortunately not directly measurable

by non-resonant Raman scattering, which involves the

creation of particle-hole pairs in the conduction band.

However, the situation can be different when considering

the resonance feature explicitly, because only single

electron (not charge or spin bosons) excitations between

the conduction band and valence band are possible.

Therefore, from the perspective of single particle properties,

we suggest that the RRS process near the resonance

condition can in principle be also a tool to experimentally

distinguish the Luttinger liquid behavior from the Fermi

liquid behavior. We note that far away from resonance, the

photon frequency dependence of the spectral weight of the

CDE mode is different in these two models: it scales as

lVl
22

in the FL theory, but decreases slower as lVl
2a22

in

the LL theory [39].

The LL calculations predict a much smaller relative

spectral weight in the SPE mode compared with the CDE

mode than that observed in the existing experiments. This

disagrees with the conclusion in Ref. [22], where the

resonance matrix elements are not self-consistently treated

in the Luttinger liquid theory [35]. It is possible that the

experiments are not yet probing the low energy limit where

the Luttinger liquid model is fully applicable. This can be

attributed to, for example, the finite size effects of the wire,

finite band curvature for excitations about the Fermi surface,

and/or finite temperature cut-off, etc. All of which may

suppress the LL features in the experiment making it

indistinguishable from the FL theory results.

5. Summary

In this paper, we review the various theories for the

resonant Raman scattering experiment, a powerful tool to

study the elementary electronic excitations in low-dimen-

sional semiconductor structures. In addition to the known

collective plasmon (charge boson) excitations, the Luttinger

liquid can in principle have an additional singlet spinon

excitation which could mimic the single particle excitation

behavior in the Fermi liquid model. The polarized RRS

spectra calculated in the FL model and the LL model,

however, are different in the relative weights of these

excitations with the FL model in general showing much

better agreement with experiment. This may be because the

strong interband scattering invariably present in the resonant

process mixes the conduction band and the valence band

states together, leading to an ‘imperfect’ one-dimensional

system for electron excitations near the conduction band

Fermi surface (i.e. electrons can be excited from below the

conduction band Fermi surface to above the Fermi surface

via the mediation of the valence band). However, in our

present theory, we do not, include excitonic effects

(interaction between conduction band electrons and valence

band holes) in calculation, which might be crucial during the

Raman scattering process near resonance conditions. There-

fore, further theoretical and experimental studies are

required for the unambiguous demonstration of the

Luttinger liquid behavior in the RRS spectra of the

semiconductor quantum wire structures. This somewhat

unclear RRS situation, where the Fermi liquid model seems

to produce apparent better quantitative agreement with the

experimental observations in GaAs quantum wires, is in

sharp contrast with the tunneling spectroscopic transport

studies of GaAs quantum wires [41] which are well-

explained by the Luttinger liquid theory [42].

This review is a brief summary of our recent works in the

Raman scattering theory of one-dimensional electronic

systems (Refs. [19,23,35,36,38]). Readers can find more

details and references therein.
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D.-W. Wang et al. / Solid State Communications 131 (2004) 637–645644



Pinczuk, H.U. Baranger, H.L. Stormer, Appl. Phys. Lett. 61

(1992) 1956.

[2] W.Y. Lai, S. Das Sarma, Phys. Rev. B 33 (1986) 8874.

[3] (a) Q.P. Li, S. Das Sarma, Phys. Rev. B 43 (1991) 11768. (b)

Q.P. Li, S. Das Sarma, R. Joynt, Phys. Rev. B 45 (1992)

13713.

[4] (a) S. Das Sarma, D.-W. Wang, Phys. Rev. Lett. 84 (2000)

2010. (b) D.-W. Wang, S. Das Sarma, Phys. Rev. B 64 (2001)

195313.

[5] S. Das Sarma, Elementary excitations in low-dimensional

semiconductor structures, in: D.J. Lockwood, J.F. Young

(Eds.), Light Scattering in Semiconductor Structures and

Superlattices, Plenum, New York, 1991, p. 499.

[6] (a) S. Tomonaga, Prog. Theor. Phys. 5 (1950) 544. (b) J.M.

Luttinger, J. Math. Phys. NY. 4 (1963) 1154. (c) F.D.M.

Haldane, J. Phys. C 14 (1981) 2585.

[7] J. Voit, Rep. Prog. Phys. 58 (1995) 977.

[8] H.J. Schulz, in: V.J. Emery (Ed.), Correlated Electron

Systems, World Scientific, Singapore, 1993.

[9] G.D. Manhan, Many Particle Physics, Plenum, New York,

1990.

[10] A. Pinczuk, B.S. Dennis, L.N. Pfeiffer, K.W. West, Phil. Mag.

B 70 (1994) 429 and references therein.

[11] A. Schmeller, A.R. Goi, A. Pinczuk, J.S. Weiner, J.M. Calleja,

B.S. Dennis, L.N. Pfeiffer, K.W.West, Phys. Rev. B 49 (1994)

14778.

[12] (a) J.E. Zucker, A. Pinczuk, D.S. Chemla, A.C. Gossard, Phys.

Rev. B 35 (1987) 2892. (b) G. Danan, A. Pinczuk, J.P.

Valladares, L.N. Pfeiffer, K.W. West, C.W. Tu, Phys. Rev. B

39 (1989) 5512–5515.

[13] (a) I. Dujovne, A. Pinczuk, M. Kang, B.S. Dennis, L.N.

Pfeiffer, K.W. West, Phys. Rev. Lett. 90 (2003) 036803. (b) A.

Pinczuk, J.P. Valladares, D. Heiman, A.C. Gossard, J.H.

English, C.W. Tu, L. Pfeiffer, K. West, Phys. Rev. Lett. 61

(1988) 2701. (c) A. Pinczuk, B.S. Dennis, L.N. Pfeiffer, K.

West, Phys. Rev. Lett. 70 (1993) 3983.
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