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We reexamine dipolar motion of condensate atoms in one-dimensional optical lattices and harmonic
magnetic traps including quantum fluctuations within the truncated Wigner approximation. In the
strong tunneling limit we reproduce the mean field results with a sharp dynamical transition at the
critical displacement. When the tunneling is reduced, on the contrary, strong quantum fluctuations lead
to finite damping of condensate oscillations even at infinitesimal displacement. We argue that there is a
smooth crossover between the chaotic classical transition at finite displacement and the superfluid-to-
insulator phase transition at zero displacement. We further analyze the time dependence of the density
fluctuations and of the coherence of the condensate and find several nontrivial dynamical effects, which
can be observed in the present experimental conditions.
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The study of Bose-Einstein condensates of ultracold
atoms has been growing rapidly in recent years [1].
Loading bosonic atoms into an optical lattice and enhanc-
ing the laser intensity, it is possible to strongly suppress
the kinetic energy of the atoms resulting in a superfluid-
to-Mott-insulator (SF-MI) quantum phase transition
[2,3]: in the strong tunneling limit the condensate is in
the superfluid phase with finite phase stiffness, while it is
driven to the Mott-insulator phase and loses the phase
coherence because of quantum fluctuations if the tunnel-
ing becomes small enough. Typical interference patterns
obtained in time-of-flight experiments cannot provide
sufficient information to see a sharp transition boundary
[3,4].

In one-dimensional systems the condensate dynamics
has been observed in a dipolar motion experiment [5],
where the center-of-mass (c.m.) of the condensate oscil-
lates after a sudden displacement of the magnetic trap
with respect to the optical lattice. This dynamics can be
described by the mean field Gross-Pitaveskii equations
(GPE) in the strong tunneling regime [5,6]. When the
displacement is beyond a certain critical value, the con-
densate oscillations are overdamped [7] and the motion
becomes completely decoherent, indicating a classical
localization transition [8,9]. Such a transition was re-
cently observed experimentally [10]. It is plausible that
as the quantum fluctuations increase, there is a smooth
crossover between the quantum (SF-MI) and the classical
transitions. However, we emphasize that the first one is a
second order transition characterized by completely re-
versible phase coherence if the system is driven to the
insulating phase and then back to the SF [3]. On the other
hand, the classical transition is irreversible [9] due to the
chaotic excitations inside the condensate cloud.

Motivated by this interesting and important question,
in this Letter we investigate the quantum fluctuation
effects on the c.m. motion of a condensate in a parabolic
0031-9007=04=93(7)=070401(4)$22.50 
potential in a one-dimensional optical lattice using the
truncated Wigner approximation (TWA). In the strong
tunneling (or weakly interacting) regime, we reproduce
the sharp dynamical transition of a mean field calculation
[9] with a critical displacement proportional to the square
root of the tunneling amplitude. When the tunneling is
weak the quantum fluctuations strongly modify the dy-
namics of the condensate in the following ways: (i) the
c.m. motion is damped even for an infinitesimal initial
displacement; (ii) the oscillations become overdamped at
a critical displacement, Dc, which is below the classical
value at the same tunneling; (iii) the condensate dipolar
motion is frictionless from one end to another with the
period independent of damping, while the superfluid
fraction and the phase coherence drop when the conden-
sate passes through the center-of the harmonic well. (iv)
We further show that at a given damping, the loss of
coherence is less for smaller displacements (or stronger
quantum fluctuations). So as we increase quantum fluctu-
ations the localization transition becomes more reversible.
Our results hence suggest that there is a smooth crossover
between the classical localization transition and the
quantum superfluid-to-insulator (SF-IN) transition [11]
as the displacement goes to zero.

The truncated Wigner approximation [12] has been
well known in quantum optics for a while. Recently, it
was applied to the systems of interacting bosons [13,14].
In Ref. [14] it was argued that TWA is equivalent to the
semiclassical approximation and naturally appears in the
quantum expansion of the time evolution of the system.
The idea behind TWA is that the expectation value of an
observable � can be found according to

h��t�i �
Z
d 0d 

?
0 P� 0;  

?
0 ��cl� �t�;  

?�t�; t�; (1)

where  and  ? denote bosonic fields obeying classical
discrete Gross-Pitaevskii equations of motion [15,16]:
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with the initial conditions  �t0� �  0 and  ?�t0� �  ?0 .
The parameters J, K, and U in Eq. (2) denote the tunnel-
ing constant, the harmonic trap curvature, and the on-site
interaction, respectively. The function P� 0;  

?
0 � is a

Wigner transform of the initial density matrix, and can
be interpreted as the probability of having particular
initial conditions [17]. Finally �cl is the Weyl symbol of
the operator � evaluated on the classical fields  �t� and
 ?�t�. It is important to realize that TWA considerably
improves Bogoluibov’s theory, especially if the classical
dynamics becomes unstable [14]. The way we implement
TWA in this Letter is outlined in Ref. [14].

In a dipolar motion experiment, the condensate is
initially (t < 0) prepared in the superfluid ground state.
At t � 0 the trap position is suddenly displaced by the
distance D0 from the origin and the condensate starts to
move. To find the Wigner transform P� 0;  �

0� of the
interacting ground state, we start from the noninteracting
Hamiltonian (U � 0), where the function P� 0;  �

0� can
be trivially computed, and then adiabatically increase U
to the actual value [14]. We check that the increase of the
interaction is slow enough so that the final result is not
affected by this procedure. The further implementation of
Eq. (1) is based on the Monte Carlo averaging of the
�cl� �t�;  

?�t�; t� over the different initial conditions
weighted by the probability P� 0;  

�
0�.

In Fig. 1 we show the calculated dynamical phase
diagram in terms of the inverse tunneling 1=J and the
displacementD0. The contours correspond to the constant
damping of the c.m. oscillations, �  ln�D0=D1�, where
0 2 4 6
10

FIG. 1 (color online). Dynamical phase diagram for UN �
50, and K � 0:02 (the occupancy of the central site, N0, is
approximately 5% of the total number of bosons, N). The solid
and the dashed lines correspond to damping � � 0:11 and � �
0:36, respectively. The large separation between the two curves
for stronger quantum fluctuations (smaller N) implies broad-
ening of the transition. The inset shows the typical temporal
c.m. oscillations for � � 0:36 (dashed line) and � � 2:1 (solid
line).
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D0 and D1 are the c.m. positions at t � 0 and t � T1 (see
the inset). The solid and the dashed lines correspond to
the damping of � � 0:11 and 0:36, respectively [18]. The
top two curves correspond to the Gross-Pitaevskii result
(Dc /

���
J

p
), where the transition is so sharp that they

almost coincide. When we increase quantum fluctuations
reducing the total number of bosons N (but keeping the
product UN the same, which is equivalent to fixing the
chemical potential [19]), we find: (i) for a given J, the
damping of the oscillations occurs at a smaller displace-
ment than in the classical case, and the transition be-
comes broader for smaller N. (ii) If the tunneling is small
enough (say J	1 > 10 for N � 500), then even an infini-
tesimal displacement results in considerable damping of
the c.m. motion. Although because of the time-
consuming computation we are able to trace only � �
0:11 contour for N � 500 to zero, it is clear that such a
behavior should be generally true for any given �, if J
becomes small enough. For the parameters chosen in
Fig. 1, the SF-IN transition [11] occurs at J	1

c � N0=U�
103. This is much larger than the range of tunneling
where we perform the calculations so that the results we
obtained in this Letter within TWA are expected to be
fairly reliable.We anticipate that contours of larger damp-
ing will terminate much closer to the SF-IN transition. In
Fig. 2 we show the damping of the c.m. motion as a
function of the inverse tunneling at D0 � 5. Because of
the finite size effects, GP solution also has some finite
damping close to the transition point (� � 1). Clearly
the damping becomes broader and the transition point
shifts to the lower tunneling when quantum fluctuations
are enhanced. To affirm the quantum effects in the ther-
modynamic limit, we also show the results (dotted lines)
for a twice as large system (K ! K=4 andN ! 2N, keep-
ing the same chemical potential [19]). The displacement
was also scaled by a factor of 2 in order to fix the same
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FIG. 2 (color online). Damping (thin lines) and the oscilla-
tion frequency (thick lines) vs inverse tunneling for D0 � 5.
Dotted lines show damping for a twice as large system with the
displacement also scaled by a factor of 2 (see the text).
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condensate maximum velocity. We find that the damping
of the GP solution becomes a sharper function of the
tunneling (but diverges at the same tunneling amplitude)
while the quantum c.m. motion is destroyed at even larger
tunneling. This result reflects the fact that the GP solution
has only one length scale associated with the condensate
size. In the quantum case there appears another scale,
associated with generation of quasiparticles out of the
condensate. Therefore, the finite damping of the c.m.
motion shown in Figs. 1 and 2 exists even in the thermo-
dynamic limit if the condensate velocity (proportional to
D

����
K

p
) is kept finite. In Fig. 2, we also show the depen-

dence of the oscillation frequency [18] (!) on tunneling.
Surprisingly, we find that ! does not deviate from the GP
result even for the relatively strong damping as long as the
c.m. motion remains underdamped.

In Fig. 3 we show the standard deviation of the boson

density, �nN	1
�����������������������������������P
j�hN

2
j i	hNji

2�
q

, and the phase co-

herence, C�N	1Maxq�
P
jlh 

y
j  li;e

i�j	l�q�, as a function
of time for N � 1000, D0 � 5 and different tunneling
amplitudes. We first note that both �n and C only slightly
depend on time if the condensate is near the turning
points (i.e., at time=period � 0:5; 1; 1:5; . . . ), while they
change significantly when the condensate has its maxi-
mum velocity at the center-of the parabolic well
(time=period � 0:25; 0:75; 1:25; . . . ). The sharp increase
of the density fluctuations (and the sharp loss of the
coherence) can be interpreted as fast generation of the
incoherent quasiparticles with a simultaneous decrease of
the superfluid fraction. Combining this with the fact that
the oscillation frequency does not deviate from its clas-
sical (GP) value even for the strong damping, we argue
that the whole c.m. motion can be interpreted within
Landau’s two-fluid model [20]: the superfluid component
oscillates frictionlessly and is well described by GP equa-
FIG. 3 (color online). Phase coherence (main) and density
fluctuations (insert) versus time for the same displacement
(D0 � 5) and different tunneling constants. Note that both
quantities have been rescaled to be the same at t � 0 for the
convenience of comparison.

070401-3
tions, while the normal fluid component has a strong
damping and becomes localized near the center of the
parabolic well. The former ensures the same oscillation
frequency as the classical (GP) value, while the latter
causes the damping of the amplitude of the c.m. motion.
The generation of quasiparticles continues in each cycle
of the oscillations until the coherent motion stops (Fig. 3).
If the initial superfluid fraction is too small due to the
large quantum depletion, the quasiparticle generation can
be so efficient that the c.m. motion becomes overdamped
(� � 1).

We can qualitatively understand quantum effects on the
dynamical transition using a schematic plot of the proba-
bility distribution of the phase difference between two
nearest sites as shown in Fig. 4. Given the same tunneling
amplitude [Fig. 4(a)], the classical distribution of phase
gradients peaks at the c.m. momentum, v. In the mean
field picture, the c.m. motion of the condensate is fric-
tionless [9] if v is smaller than the critical value, vc �
�=2, while it is completely destroyed if v > vc. If we
include quantum fluctuations, then the local phase gra-
dient distribution becomes broader, and therefore there is
a finite probability to have a large phase difference in a
given link even if v < vc, which results in the finite
damping of the c.m. motion. Similarly, at a given v
[Fig. 4(b)] smaller values of J lead to a broader distribu-
tion of the phase gradient, and hence to larger damping.

Now let us look closer to the connection between the
classical transition at finite displacement and the quan-
tum SF-IN transition [11] at zero displacement. In Fig. 5,
we show the phase coherence as a function of time for
different initial displacements but at the same damping,
� � 0:36. We note that the coherence saturates at a finite
value, which is closer to the initial one for stronger
quantum fluctuations (smaller J and D0) as shown in
the inset. These results suggest that along the � � 1
contour the coherence loss should also approach zero if
the displacement gets smaller [21], indicating a smooth
crossover between the dynamical irreversible transition at
finite displacement and the reversible quantum phase
transition at zero displacement. We note that such a dipo-
lar motion can be also used to investigate the superfluid-to
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FIG. 4. Schematic figures of the distribution of the phase
gradient for the classical (solid) and quantum (dashed) initial
states for (a) the same tunneling and different displacements,
and for (b) the same displacement and different tunneling. The
sharp peak distribution for the classical case indicates that the
local velocity of the condensate does not fluctuate; �=2 is the
critical phase gradient for the classical transition.
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FIG. 5 (color online). Phase coherence (renormalized to the
same value at t � 0) versus time for different initial displace-
ment D0 (or the associate tunneling J as indicated) with the
same damping � � 0:36 of N � 1000 (i.e., along the dashed
line with circles of Fig. 1). The inset shows the loss of coherence
[�C�t � 0� 	 C�t � 1��=C�t � 0�] of these data as a function
of the displacement. Clearly smaller D0 (and hence J) results in
a smaller loss of coherence of the condensate.
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Bose glass insulating phase when a bound random poten-
tial is applied [22].

Our analysis also implies that in uniform systems
quantum fluctuations lead to the damping of the conden-
sate current state even if the velocity is below the GP
critical value [9]. A similar effect was predicted for the
current decay in quasi-one-dimensional superconductors
due to thermal fluctuations [23], and more recently for the
atomic system with a moving defect [24]. We will inves-
tigate mechanisms of the current decay in uniform sys-
tems in separate publications. The results predicted in this
Letter can be directly tested experimentally. For ex-
ample, it should be possible to observe the damping of
the condensate motion at small displacements (Fig. 2) and
the ladderlike structure in the coherence or in the number
variance (Fig. 3) as a function of time.

In summary, we studied the effects of quantum fluctu-
ations on the dynamical properties of atomic condensates
in 1D optical lattices with a parabolic confinement po-
tential. We showed that the quantum fluctuations are very
important even far from the superfluid-to-insulator tran-
sition boundary. We further demonstrate that the dynami-
cal localization transition, which has a purely classical
origin, can be smoothly connected with the static quan-
tum SF-MI phase transition. Our results give a number of
predictions on the condensate dynamics which can be
directly tested in experiments.
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Demler, B. Halperin, M. Lukin, and P. Zoller. This work
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