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We study the quantum phase diagrams of Bose-Fermi mixtures of ultracold atoms confined to one dimension
in an optical lattice. For systems with incommensurate densities, various quantum phases, e.g., spin- or
charge-density waves, pairing, phase separation, and the Wigner crystal, are found to be dominant in different
parameter regimes within a bosonization approach. The structure of the phase diagram leads us to propose that
the system is best understood as a Luttinger liquid of polarons �i.e., atoms of one species surrounded by
screening clouds of the other species�. Special fillings, half filling for fermions, and unit filling for bosons, and
the resulting gapped phases are also discussed, as well as the properties of the polarons and the experimental
realization of these phases.
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I. INTRODUCTION

In recent years the experimental control of trapped ultra-
cold atoms has evolved to a level that allows one to probe
sophisticated many-body effects, in particular the regime of
strong correlations. One of the most prominent achieve-
ments, the realization of the superfluid to Mott insulator tran-
sition of bosonic atoms in an optical lattice �1,2�, triggered
both experimental and theoretical research into quantum
phase transitions of ultracold atoms in optical lattices. The
advances in trapping and cooling techniques, as well as the
manipulation of atom-atom interactions by Feshbach reso-
nances �3�, created the possibility to study many-body sys-
tems in the quantum degenerate regime in a widely tunable
environment. Of particular interest are those systems that
resemble solid state systems, for example, mixtures of ultra-
cold bosonic and fermionic atoms �4�, which have recently
become accessible through the development of sympathetic
cooling �5�. On the theoretical side several phenomena have
been proposed in the literature such as pairing of fermions
�6�, formation of composite particles �7�, and spontaneous
breaking of translational symmetry in optical lattices �8,9�.
However, the approach used in most of these studies, which
relied on integrating out the bosonic degrees of freedom and
then using a mean-field approach to investigate many-body
states �6�, becomes unreliable in the regime of strong inter-
actions, in particular, in low-dimensional systems. A nonper-
turbative and beyond-mean-field investigation is therefore of
high interest.

In one-dimensional �1D� systems, on the other hand,
many physical problems can be solved exactly by various
mathematical methods because of the restricted phase space
and higher order geometric symmetry. One of the most suc-
cessful examples is the Luttinger liquid model for 1D elec-
tron systems �10�. The pioneering work of Tomonaga �11�,
Luttinger �12�, and Haldane �13,14� along with many others
has produced an essentially complete understanding of the
low-energy physics of these systems �within the so-called
bosonization approach�. Recently these theoretical methods
were also applied to systems of ultracold atoms �15–17�,
where the bosonic or fermionic atoms are confined in a

highly elongated magnetic-optical trap potential and ap-
proach an ideal 1D or quasi-1D system. Such 1D or quasi-1D
elongated trap potentials can be easily prepared either in a
traditional magnetic-optical trap �18�, magnetic waveguides
on microchips �19�, or in an anisotropic optical lattice �20�.
However, since there is no true long-range order in a homo-
geneous 1D system in the thermodynamic limit, the one-
dimensional “quantum phases” we will refer to in this paper
are actually understood in the sense of quasi-long-range or-
der �QLRO�, i.e., the correlation function of a given order
parameter �O�x�� has an algebraic decay at zero temperature
�O�x�O�0����x�−2+�, where �¯� is the ground state average,
x is the distance, and � is the scaling exponent associated
with that order parameter. As a result, the dominant quantum
phase is determined by the largest scaling exponent ��0
�i.e., the slowest algebraic decay of the correlation functions
of a given order parameter�. At the phase boundaries that
appear in the phase diagrams in this paper, the scaling expo-
nent of the corresponding type of order becomes positive,
i.e., the corresponding susceptibility switches from finite to
divergent.

In this paper we extend and elaborate on our previous
work �15� on one-dimensional �1D� Bose-Fermi mixtures
�BFM�. We give a detailed derivation of the effective low-
energy Hamiltonian of a 1D BFM within a bosonization ap-
proach �14,16�. After diagonalizing this Hamiltonian we cal-
culate the long-distance behavior of the single particle
correlation functions. We introduce a fermionic polaron
�f-P� operator, constructed out of a fermionic operator with a
screening cloud of bosonic atoms, and determine the single-
particle correlation function, as well as the correlation func-
tions of various order parameters, which are used to con-
struct the phase diagram. For a BFM of one species of
fermions with one species of bosons, we find a charge-
density wave �CDW� phase that competes with the pairing
phase of fermionic polarons �f-PP�, giving a complete de-
scription of the system as a Luttinger liquid of polarons.
When the boson-fermion interaction strength is stronger than
a critical value, we observe the Wentzel-Bardeen �WB� in-
stability region, where the BFM undergoes phase separation
�PS� for repulsive interaction or collapse �CL� for attractive
interaction.
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We also study several special cases when the density of
the fermions or the bosons is commensurate with the lattice
period. The low energy effective Hamiltonian of these cases
cannot be diagonalized but instead has to be studied by using
a renormalization group �RG� method. We obtain a charge
gapped phase for half filling of the fermions and for unit
filling of the bosons, and study how these phases are affected
by the presence of the other species.

We also apply the bosonization method in an analogous
approach to spinful fermions mixed with a single species of
bosonic atoms. We find a rich quantum phase diagram, in-
cluding spin- or charge-density waves �SDW or CDW�,
triplet/singlet fermionic polaron pairing, and a regime show-
ing the Wentzel-Bardeen instability. The similarity with the
known phase diagram of 1D interacting electronic systems
�10� again suggests that a 1D BFM is best understood as a
Luttinger liquid of polarons. We also discuss the close rela-
tionship between the polarons constructed in the bosoniza-
tion approach in this paper and the canonical polaron trans-
formation usually applied in solid state physics.

This paper is organized as follows. In Sec. II, we present
the microscopic description of a BFM and its bosonized rep-
resentation. In Sec. III, we calculate the scaling exponents of
single particle correlation functions as well as the correlation
functions of various order parameters. Quantum phase dia-
grams obtained by comparing these different scaling expo-
nents are presented in the antiadiabatic regime, i.e., the pho-
non velocity is much larger than the Fermi velocity. In Sec.
IV, we present the results of two commensurate filling re-
gimes: half filling of fermions and unit filling of bosons. In
Sec. V, we study a BFM of spinful fermions with SU�2�
symmetry and determine the rich phase diagram of this sys-
tem. In Sec. VI, we discuss questions regarding the experi-
mental realization of the quantum phase diagrams presented
in this paper, and we summarize our results in Sec. VII. In
Appendix A we give a more technical derivation of the scal-
ing exponents of various operators. In Appendix B we dis-
cuss the notion of polarons used in this paper, and compare it
to those used in solid state systems. The effects of a local
impurity in the system are discussed in Appendix C.

II. BOSONIZED HAMILTONIAN AND
EXACT DIAGONALIZATION

In this section we derive and discuss the effective low
energy Hamiltonian of a 1D BFM in the limit of large
bosonic filling ��b�� f, where �b/f is the bosonic and fermi-
onic filling fraction� and fast bosons �vb�v f, where vb is the
bosonic phonon velocity, and v f is the Fermi velocity�. We
also mention how this study can be extended to the regime of
comparable velocities �v f �vb�.

We consider a BFM in an anisotropic optical lattice,
where the lattice strengths for bosons �b� and fermions �f�
can be expressed as Vb�f��r�=	�=x,y,zVb�f�,� sin2�klr�� with
kl=2� /� being the laser wave vector and � being the wave
vector of the laser fields. Throughout this paper we will use
� /2=1 �which corresponds to the lattice constant of the op-
tical lattice� as the natural length scale. In order to create an
effectively 1D lattice, we consider Vb�f�,
 �Vb�f�,�, where

Vb�f�,
 =Vb�f�,x is the lattice strength along the longitudinal
direction and Vb�f�,�=Vb�f�,y =Vb�f�,z is along the transverse
direction, so that the single particle tunneling between each
1D tube is strongly suppressed. We note that independent
tuning of the optical lattice strength for these two species of
atoms can be achieved even when only a single pair of lasers
provides the standing beam in each direction. This can be
done due to the fact that the strength of an optical lattice for
a given atom is proportional to �R

2 / ��−	E� �21�, where �R

is the Rabi frequency �which is proportional to the laser in-
tensity�, � is the laser frequency, and 	E is the resonance
energy of that atom—therefore for two different species of
atoms �different 	E�, their effective lattice strengths can be
tuned independently over a wide range, by simultaneously
changing the laser intensities via �R and the laser frequency
�.

A. Hamiltonian

For sufficiently strong optical potentials the microscopic
Hamiltonian is given by a single band Hubbard model �1�

H = − 	
�ij�

�tbbi
†bj + tf f i

†f j� − 	
i

�
 fnf ,i + 
bnb,i�

+
Ub

2 	
i

nb,i�nb,i − 1� + Ubf	
i

nb,inf ,i, �1�

where nb,i�bi
†bi and nf ,i� f i

†f i are the boson and fermion
density operators and 
b/f are their chemical potentials. The
tunneling amplitudes tf/b and the particle interactions Ub and
Ubf can be calculated from the lattice strengths and the
s-wave scattering lengths

tb�f� = �4/���V̄b�f�,

3/4 Eb�f� exp�− 2V̄b�f�,


1/2 � , �2�

Ub = �8/��1/2�2�abb/��Eb�V̄b,
V̄b,�
2 �1/4, �3�

Ubf = �8/��1/2�2�abf/��Ebf�V̄bf ,
V̄bf ,�
2 �1/4. �4�

We defined V̄b�f�,
/�=Vb�f�,
/� /Eb�f� and V̄bf ,
���

= �4V̄b,
���V̄f ,
���� / ��V̄b,
���
1/2 + V̄f ,
���

1/2 �2�. Eb�f�= �2� /��2 /2mb�f�

are the recoil energies of the two atomic species, and Ebf is
given by Ebf = �mb+mf� / �4mbmf�2� /��2�.

For the convenience of the subsequent discussion we also
give the Hamiltonian in momentum space

H = Hb
�0� + Hf

�0� + Hbf . �5�

Here, Hb
�0� refers to the bosonic sector without the coupling

to the fermions, and is given by

Hb
�0� = 	

k

��b,k − 
b�bk
†bk +

Ub

2L 	 �b,k
† �b,k. �6�

L is the 1D system length. �b,k is given by �b,k=−2tb cos k,
and �b,k is defined as �b,k=	pbp+k

† bp. The free fermionic
sector—without the coupling to the bosons—is given by
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Hf
�0� = 	

k

�� f ,k − 
 f�fk
†fk, �7�

where � f ,k is given by � f ,k=−2tf cos k. The interaction be-
tween these two sectors can be written as

Hbf =
Ubf

L
	

k

� f ,k
† �b,k �8�

with � f ,k=	pfp+k
† fp.

B. Low-energy effective Hamiltonian

To determine the effective low-energy Hamiltonian, we
first consider the effective Hamiltonian of weakly interacting
bosons Hb

�0� without coupling to the fermions. Following the
standard Bogoliubov transformation �21,22�, we obtain the
following effective low-energy Hamiltonian for the bosonic
sector:

Hb
�0� → 	

k�0
b,k�k

†�k, �9�

where the �k are the Bogoliubov phonon operators and
b,k=���b,k−�b,0���b,k−�b,0+2Ub�b� is the phonon disper-
sion. The phonon operators �k are related to the original
boson operators by �k=ukbk−vkb−k

† , where uk
2=1+vk

2

= ��b,k−�b,0+Ub�b+b,k� /2b,k and ukvk=−Ub�b /2b,k are
the coefficients of the Bogoliubov transformation �21�. We
note that, although this transformation is considered as a
treatment of the quadratic fluctuations around a mean-field
approximation, it is still applicable to 1D systems where no
true condensate exists even at zero temperature �see Ref.
�23��. In the long wavelength limit, we have b,k=vb�k�,
where vb=�2tbUb�b is the phonon velocity.

For the fermionic sector we proceed along the lines of the
Luttinger liquid formalism, established in solid state physics
�10–13�. We linearize the noninteracting fermion band en-
ergy around the two Fermi points �at ±kf, with kf being the
Fermi wave vector, kf =�� f�, and split the fermion operator
into a right �R� and a left �L� moving channel. One can show
that such a linearized band Luttinger model �12� is effec-
tively equivalent to a bilinear bosonic Hamiltonian in the
low-energy limit

Hf
�0� → 	

k�0
v f�k�Bk

†Bk, �10�

where Bk is a bosonic �density� operator defined as Bk

� i�2�
kL 	pfR,k+p

† fR,p for k�0 and Bk�−i� 2�
�k�L	pfL,k+p

† fL,p for
k�0. fR/L,k are the right/left movers and

v f = 2tf sin�kf� �11�

is the Fermi velocity.
Finally we will address the interaction between the

bosonic and the fermionic atoms. In the low-energy limit,
there are two kinds of scattering to be considered. One is the
scattering by exchanging small momentum in both the fer-
mionic and the bosonic sector. The other one is the scattering
by exchanging a momentum of 2kf to reverse the direction of
a fermion moving in 1D. For the first term, only the long

wavelength density fluctuations are important so the corre-
sponding interaction can be expressed by the same transfor-
mation used above

Hbf
�1� → 	

k�0
g�k���k

† + �−k��Bk + B−k
† � , �12�

where g and Kb are given by

g = Ubf
�Kb/2� , �13�

Kb = ��2tb�b/Ub. �14�

Kb is the Luttinger parameter for bosons as will be discussed
further in the next section.

For the second case, low-energy excitations occur in the
backward scattering channel, and therefore cannot be in-
cluded in Eq. �12�, shown above. Such a backward scattering
term, in general, leads to a nonlinear and nondiagonalizable
term in the Hamiltonian. We therefore consider a certain pa-
rameter regime in which the backward scattering term be-
comes tractable. In this and the next section �Sec. III�, we
will consider a BFM with large bosonic filling �i.e., �b�� f�,
and fast boson limit �i.e., vb�v f�. Experimentally, this limit
can be achieved by choosing tb� tf, and �b1–3, for typical
atomic interactions. For simplicity, we will also assume that
both the bosonic and the fermionic filling fraction are not
commensurate to the lattice period or to each other. We will
show that the Hamiltonian of such a system can be solved
exactly even in the presence of backward scattering.

In the limit of large bosonic filling and fast boson veloc-
ity, it is easy to see that the backward scattering of fermions
is mainly provided by the forward scattering of bosons �be-
cause 2kf =2�� f �2kb=2��b�, so that the effective interac-
tion Hamiltonian in this channel can be written as

Hbf
�2� →

1
�L

	
�k��2kf

g2kf
��k

† + �−k�	
p

fp+k
† fp, �15�

where the coupling is given by gk=Ubf��b��b,k

−�b,0� /2�b,k�1/2. The next step is to separate the noninter-
acting phonon field �9� into a low energy and high energy
part H=	�k��kf

k�k
†�k+	�k��kf

k�k
†�k and then integrate out

the latter for �k��2kf, together with the backward scattering
term in Eq. �15�. Since we assume vb�v f, we can obtain an
effective interaction between fermions within an instanta-
neous approximation. After some algebra, we can obtain
such an effective fermion-fermion interaction to be

Hf
�1� = −

1

L

g2kf

2

2kf

	
�k��2kf

	
p

fp
† fp+k	

q

fq+k
† fq

=
1

L

g2kf

2

2kf

	
�=±

	
k�2�kf

	
p,q�−�kf

f p
† fqfq+k

† fp+k

=
1

L

g2kf

2

2kf

	
k��0

�nR,k�nL,k� + nL,k�nR,k�� , �16�

where nR/L,k�	pfR/L,p+k
† fR/L,p is the density operator for the

right-left moving electrons. We therefore find that the origi-
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nal backward scattering obtained by integrating out the bo-
son field now becomes a forward scattering term with repul-
sive interaction between the left and right movers. Therefore
we can apply the bosonization approach for Luttinger liquids
used in Eq. �10� and obtain

Hf
�1� = 	

k�0
G�k��BkB−k + Bk

†B−k
† � , �17�

where

G =
g2kf

2

2kf

. �18�

Therefore the sum of the terms given in Eqs. �9�, �10�, �12�,
and �17� is our final effective low-energy Hamiltonian within
the limit of large bosonic filling and fast boson velocity. The
total Hamiltonian then becomes

H = 	
k�0

b,k�k
†�k + 	

k�0
v f�k�Bk

†Bk

+ 	
k�0

g�k���k
† + �−k��Bk + B−k

† �

+ 	
k�0

G�k��BkB−k + Bk
†B−k

† � , �19�

which is bilinear in two different bosonic operators and
therefore can be diagonalized exactly. For the convenience of
later discussion and calculating the correlation functions, in
the next section we will use Haldane’s bosonization repre-
sentation to express the effective Hamiltonian shown above.

C. Effective Hamiltonian in Haldane’s
bosonization representation

We now bosonize both fermions and bosons on equal
footing by introducing the phase and density fluctuation op-
erators �14,16� through the definitions

f�x� = �� f + � f�1/2 	
m=−�

�

e�2m+1�i�fei�f , �20�

b�x� = ��b + �b�1/2 	
m=−�

�

e2mi�bei�b, �21�

where we use x to denote a continuous coordinate if there is
no lattice potential in the longitudinal direction or a discrete
coordinate in the presence of a lattice. �b/f�x� and �b/f�x� are
respectively the density and phase fluctuations with �b/f
���b/fx+��xdy�b/f�y� accounting for the discreteness of
atoms along the 1D direction. The density and phase fluctua-
tions satisfy the commutation relations

��b/f�x�,�b/f�x��� = i��x − x�� . �22�

The advantage of using the density-phase fluctuation repre-
sentation for the boson-fermion mixture is that it treats the
fermions and bosons in the same way. We do not have to use
a Bogoliubov transformation for the bosonic field and a Lut-
tinger liquid formalism for fermions separately as has been

done above. As has been established in the literature �e.g.,
Refs. �14,16��, the effective low-energy Hamiltonian of the
bosonic and the fermionic sector can be written in terms of
the fields �b/f and �b,f as

Hb
�0� =

vb

2
� dx�Kb

�
��x�b�2 +

�

Kb
�b

2� , �23�

Hf
�0� =

v f

2
� dx�Kf

�
��x� f�2 +

�

Kf
� f

2� , �24�

where we have Kf =1 due to the absence of s-wave short-
range interaction between fermionic atoms. Note that for in-
termediate values of the bosonic interaction Ub, the phonon
velocity vb and the Luttinger exponent Kb are renormalized
by higher order terms. They can be obtained by solving the
model exactly via the Bethe ansatz and are found to be very
well approximated by

vb =
�s

mb
*
���1 −

��

2�
�1/2

�25�

and

Kb =
�

��
�1 −

��

2�
�−1/2

, �26�

where mb
* is the effective boson mass in the presence of the

lattice potential �24� and �s��b is the superfluid fraction.
��mb

*Ub /�s is a dimensionless parameter, characterizing the
interaction strength of the 1D boson system. To leading order
in the interaction �in the weakly interacting limit �→0�, vb
and Kb are the same as before.

The density and phase fluctuations, defined in Eqs. �20�
and �21�, can be related to the bosonic operators �k and Bk by
�see Ref. �16��

�b�x� =
1

2�
	
k�0

�2�Kb

L�k�
sgn�k�eikx��k + �−k

† � , �27�

�b�x� =
1

2 	
k�0

� 2�

L�k�Kb
sgn�k�eikx��k − �−k

† � , �28�

� f�x� =
1

2�
	
k�0

�2�Kf

L�k�
sgn�k�eikx�Bk + B−k

† � , �29�

� f�x� =
1

2�
	
k�0

� 2�

L�k�Kf
sgn�k�eikx�Bk − B−k

† � , �30�

which can also be seen by comparing Eqs. �23� and �24� with
Eqs. �9� and �10�.

The long wavelength limit of the boson-fermion interac-
tion and the backward scattering Hamiltonian shown in Eqs.
�12� and �17� can also be expressed in terms of the density
and phase fluctuation operators as follows:

Hbf
�1� = Ubf � dx�b� f , �31�
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Hf
�1� =

2G

2�
� dx��2� f

2 − ��x� f�2� . �32�

Therefore the total low-energy effective Hamiltonian is given
by the sum of Eqs. �23�, �24�, �31�, and �32�:

Heff = Hf
�0� + Hb

�0� + Hbf
�1� + Hf

�1�, �33�

which can be diagonalized easily as described below.
Before solving the effective Hamiltonian, we note that

similar problems have been investigated in the context of
electron-phonon interactions in one-dimensional solid state
physics in the literature, both with �25,26� or without �27,28�
backward scattering of electrons. In the previous studies, the
backward scattering of fermions was treated in bosonized
form before integrating out the phonon field. The resulting
effective interaction obtained after integrating out the high
energy phonon field is of the form �25�

Hf
�1� �� � d2rd2r�D0�r − r��cos�2� f�r��cos�2� f�r��� ,

�34�

where r= �x ,v f�� is a space vector in 1+1 dimensions and
D0�r−r�� is the phonon propagator. �Note that the symbol of
density and phase fluctuations used in this paper and in Eq.
�34� is different from Ref. �25�.� The instantaneous approxi-
mation of the phonon propagator is given by D0�r−r��
���r−r��. However, Eq. �34� does not seem to reduce to a
bilinear term as shown Eq. �32�. Such superficial disagree-
ment can be resolved by taking the normal ordered form of
cos�2�� carefully, as treated by Sankar in Ref. �29�. In our
treatment we keep the fermionic form after integrating out
the phonon field and rearranging the order of fermions before
using bosonization, which is a technically simpler and unam-
biguous procedure. It shows that within the instantaneous
limit the 1D BFM system �and the related electron-phonon
system� can be described by a bilinear bosonized Hamil-
tonian, which then can be diagonalized exactly, even in the
presence of backward scattering.

We note that the generic form of the effective Hamil-
tonian �33� extends beyond the parameter regime assumed in
this section. If we drop the assumption of fast bosons
�vb�v f�, and rather assume these velocities to be compa-
rable, a renormalization argument of the type presented in
Ref. �25� shows that the resulting Hamiltonian can also be
written as Eq. �33�. Then, however, the expressions for the
effective parameters shown in this section would not hold
anymore, and would need to be replaced by parameters re-
sulting from the RG flow.

D. Diagonalized Hamiltonian

We now go on to diagonalize the full effective low-energy
Hamiltonian �33� by using the following linear transforma-
tion �27�:

�b = �1�A + �2�a, �b = �1�A + �2�a,

� f = �1�A + �2�a, � f = �1�A + �2�a, �35�

where �A/a and �A/a are the density and phase operators of
the two eigenmodes, and the coefficients are given by

�1 = e�� ṽ f

vA
cos �, �2 = e�� ṽ f

va
sin � ,

�1 = e−��vA

ṽ f

cos �, �2 = e−��va

ṽ f

sin � ,

�1 = − e��vb

vA
sin �, �2 = e��vb

va
cos � ,

�1 = − e−��vA

vb
sin �, �2 = e−��va

vb
cos � . �36�

Here we have e�= ��v f −2G� / �v f +2G��1/4, e�=�Kb, and
tan 2�=4g̃�vbṽ f�1/2 / �vb

2− ṽ f
2�. The diagonalized Hamiltonian

H =
1

2 	
j=a,A

v j� dx��� j�x�2 +
1

�
��x� j�x��2� �37�

has the eigenmode velocities vA and va given by

va/A
2 =

1

2
�vb

2 + ṽ f
2� ±

1

2
��vb

2 − ṽ f
2�2 + 16g̃2vbṽ f , �38�

where ṽ f ��v f
2−4G2�1/2 and g̃�ge�, e� is given by

e�= ��v f −2G� / �v f +2G��1/4.
From Eq. �38� we note that when the fermion-phonon

coupling g �proportional to Ubf� becomes sufficiently strong,
the eigenmode velocity vA becomes imaginary, indicating an
instability of the system to phase separation �PS� or collapse
�CL�, depending on the sign of Ubf �17,30�. This is the so-
called Wentzel-Bardeen instability, and has been studied be-
fore in 1D electron-phonon systems �17�.

III. SCALING EXPONENTS AND QUANTUM
PHASE DIAGRAMS

In this section, we will calculate the scaling exponents of
various quasi-long-range order parameters to construct the
quantum phase diagram. The diagonalized form of the
Hamiltonian, which we presented in Sec. II D, allows an ex-
act calculation of all correlation functions �see Appendix A�.
For the later discussion, we define the following “scaling
exponents” to mimic the ones in standard single component
bosonic �16� or fermionic systems �10�:

K� � �1
2 + �2

2, K�
−1 � �1

2 + �2
2, �39�

K� � �1
2 + �2

2, K�
−1 � �1

2 + �2
2, �40�

K�� � �1�1 + �2�2, K��
−1 � �1�1 + �2�2. �41�

Note that since va�vA according to Eq. �38�, we have
K���0 and K��

−1�0. From Eq. �35� it is apparent that K� and
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K�
−1 are the scaling exponent associated with the fermion

density and phase fluctuations, respectively, and K� and K�
−1

are associated with the boson density and phase fluctuations.
K�� and K��

−1 are related to fluctuations of mixed components,
and appear in the scaling exponents of products of fermionic
and bosonic operators.

A. Single particle correlation functions and polaron operators

In this section we consider the single particle correlation
functions of the system. For the bare bosonic and fermionic

particles we find �b�x�b†�0����x�−�1/2�K�
−1

and �f�x�f†�0��
�cos�kfx��x�−�1/2��K�+K�

−1�, as discussed in Appendix A. The
scaling exponents that appear in these correlation functions
have been renormalized by the coupling between the bosons
and the fermions.

Motivated by the polaronic effects in electron-phonon
systems, we next consider a class of operators that seems to
be most appropriate as the elementary operators of the sys-
tem. In BFMs each atom will repel �attract� the atoms of the
other species in its vicinity, due to their mutual interaction,
resulting in a reduced �enhanced� density around that atom.
To describe particles dressed with screening clouds of the
other species we introduce the following composite operators
�polarons�:

f̃��x� � e−i��b�x�f�x� , �42�

b̃��x� � e−i��f�x�b�x� , �43�

with � and � being real numbers, describing the size of the
screening cloud. The correlation functions of these new fer-
mionic and bosonic operators can be calculated to be �see
Appendix A�

� f̃��x� f̃�
†�0�� � cos�kfx��x�−�1/2��K�+K�

−1−2�K��
−1+�2K�

−1�, �44�

�b̃��x�b̃�
†�0�� � �x�−�1/2��K�

−1+�2K�
−1−2�K��

−1�. �45�

Treating � and � as variational parameters, we observe that
the exponents of the correlation functions are minimized
�i.e., the correlation functions have the slowest decay at long
distances� by taking �c=K� /K�� and �c=K� /K��. To gain
some insight into the quantity �c we consider the limit of
weak boson-fermion interaction �Ubf →0� and obtain ap-
proximately �c�Ubf /Ub �for further discussion, see Appen-
dix B�. This result can be interpreted by a simple density
counting argument as follows: we imagine a single fermionic
atom interacting with −� bosons in its vicinity. The potential
energy of such a configuration can be estimated as
−Ubf�+Ub�2 /2, which is minimized by taking �=Ubf /Ub.
Since the polaronic cloud size is not a well-defined quantum
number, �c and �c need not be integers and depend on the
boson-fermion interaction strength continuously.

Taking the optimal values of �c and �c in Eqs. �42� and
�43� and using the two identities K�

−1=K�
−1−K�K��

−2 and
K�

−1=K�
−1−K�K��

−2, we can show that

� f̃�c
�x� f̃�c

† �0�� � cos�kfx��x�−�1/2��K�+K�
−1�, �46�

�b̃�c
�x�b̃�c

† �0�� � �x�−�1/2�K�
−1

. �47�

In other words, the long-distance �low energy� behavior of
both the fermionic-polaron �f-P, defined in Eq. �42� with
�=�c� and the bosonic-polaron �b-P, defined in Eq. �43� with
�=�c� are characterized by a single scaling parameter, K�

and K�, respectively, in contrast to the scaling behavior of the
bare atoms. As we will see in the next section, the many-
body correlation functions of operators composed of such
fermionic polarons also scale with the same single parameter
K� leading to the conclusion that the 1D BFM system is best
understood as a Luttinger liquid of polarons, instead of bare
fermions.

B. Correlation functions of order parameters

It is well established that there is no true off-diagonal
long-range order in 1D systems, due to strong fluctuations.
Therefore, in this paper, the ground state is characterized by
the order parameter that has the slowest long distance decay
of the correlation function �10�, i.e., in the sense of QLRO.
Transforming to momentum-energy space, this is equivalent
to finding the most divergent susceptibility in the low tem-
perature limit: if, at T=0, the correlation function of a certain
order parameter O�x� decays as �O�x�O†�0���1/ �x�2−� for
large x, the finite T susceptibility will diverge as ��T�
�1/T�. Here we defined the scaling exponent �, which is
positive for a quasi-long-range ordered state �i.e., ��T� di-
verges for T→0�, and negative if no such order is present.
Across a phase boundary the susceptibility will switch from
finite to divergent. Since we are interested here in the limit of
high phonon velocity �vb�v f�, only the fermionic degrees of
freedom need to be considered for the low-energy �long-
distance� behavior of the correlation functions. The bosonic
sector is always assumed to be in a quasicondensate state.
�We will relax these assumptions below.�

Similar to a LL of spinless fermions, we first consider the
order parameters of the CDW phase, defined as OCDW
= fL

†�x�fR�x�, and of the p-wave pairing phase, given by
OBFP= fL�x�fR�x�, where the abbreviation BFP stands for bare
fermion pairing. The scaling exponents for the CDW and the
BFP phase can be calculated �see Appendix A� to be

�CDW = 2 − 2K�, �48�

�BFP = 2 − 2K�
−1. �49�

In Fig. 1�a�, we show the calculated scaling exponents for
CDW and BFP phases as a function of the long-wavelength
fermion-phonon coupling strength g, which is proportional to
Ubf. The other parameters are given by Kb=5, vb /v f =3, and
G /v f =0.1. One can see that CDW ordering becomes domi-
nant ��CDW�0� for g /v f �0.55, while bare fermion pairing
is dominant ��BFP�0� when g /v f �0.65. In the intermediate
regime �0.55�g /v f �0.65� none of these two phases have
quasi-long-range order, and therefore one might conclude
that in this regime the system displays a metallic phase. A
similar result has been discussed in the context of 1D
electron-phonon systems �25,26,31�.
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However, as mentioned in our earlier publication �15�, the
above analysis is incomplete. An indication for this is given
by how a single impurity potential affects the transport of the
1D BFM �see Appendix C�. Following the renormalization
group analysis by Kane and Fisher �32�, we show that a
single weak impurity potential is relevant when �CDW
=2−2K��0 and becomes irrelevant whenever the system is
outside the CDW regime, i.e., when �CDW=2−2K��0. This
result is inconsistent with the previous CDW-metal-BFP sce-
nario, because a metallic state would not be insensitive to an
impurity potential in 1D. More precisely, the fact that the
impurity potential becomes irrelevant even outside the BFP
phase indicates that there is another superfluidlike ordering,
which cannot be described by the pairing of bare fermions
only.

Above observation motivates a further search for the ap-
propriate order parameters. Among the many types of opera-
tors that can be considered, we find that the operator Of-PP

= f̃ L,�c
�x� f̃R,�c

�x�, which describes a p-wave fermionic po-
laron pairing phase �f-PP�, shows dominant scaling outside
of the CDW regime. In Fig. 2 we give an illustration of the
two phases that occur in BFMs with spinless fermions.

As shown in Appendix A, the scaling exponent of the
fermionic polaron pairing phase can be calculated to be

� f-PP = 2 − 2��c
2K�

−1 + K�
−1 − 2�cK��

−1� = 2 − 2K�
−1, �50�

where we used the same polarization parameter �c as in the
previous section, and the same algebraic relation between the
scaling quantities as for the derivation of Eq. �46�. Note that
the expression �50� is dual to the scaling of the CDW opera-
tor �48� and, hence, both the CDW phase and the f-polaron
phase are governed by a single Luttinger parameter K�,
which also appears in the single particle correlation function
of f polarons as shown in Eq. �46�. The fact that the scaling

exponents �46�, �48�, and �50� are the ones of a Luttinger
liquid of 1D fermion with parameter K� indicates that the 1D
BFM system should be understood as a Luttinger liquid of

polarons. We note that f̃ L,�c

† f̃R,�c
= fL,�c

† fR,�c
, as can be seen

from the definition of f̃ , Eq. �42�. Therefore, the scaling ex-
ponent of OCDW is not affected by the screening cloud. In
Fig. 1�a� we also show the scaling exponent of the new type
of order parameter Of-PP. We note that � f-PP is always larger
than �BFP, showing that BFP cannot be the most dominant
quantum phase in the whole parameter regime of a BFM.
Furthermore, the scaling exponents shown in Fig. 1�a� dem-
onstrate that divergencies of the CDW and f-PP susceptibili-
ties are mutually exclusive and cover the entire phase dia-
gram up to the phase separation �PS� regime, which can also
been seen directly from the scaling exponents in Eqs. �48�
and �50�. This explains why a single impurity can be irrel-
evant when the system is in the regime between the CDW
phase and the BFP phase, as discussed above.

In Fig. 2 we show a schematic representation of a CDW
and an f-PP phase. In Fig. 1�b� we show a global phase
diagram of a BFM by considering the FP coupling �g� and
the effective fermion-fermion interaction �G� as independent
variables. The shading density indicates the strength of the
phonon cloud of the f-polaron pairing phase 2�c. We find
that for a fixed effective backward scattering between fermi-
ons, i.e., G=const, CDW phase, f-PP phase, and phase sepa-
ration regimes become dominant successively when the
long-wavelength fermion-phonon coupling �g� is increased.

C. Polaronic effects on bosons

The polaronic construction, demonstrated and discussed
in the previous sections for the fermionic atoms, can also be
done for the bosonic atoms, see Eq. �43�. In Fig. 1�a�, we
also show the calculated scaling exponent of the bare boson
condensation field OBB�x�=b�x� and that of the bosonic po-

laron �b-polaron� condensation field Ob-P�x�= b̃�x�. In one-
dimensional systems, the elementary excitations of the fer-
mions are Luttinger bosons �10�, which can provide the

/ vfg
/ v

f
G

g / vf 0.5 1.0

0.1

0.05
0

3

0.4 0.8

1

0

2

PS

CDW

CDW

b−P

BB

f−PP

(a) (b)

α

f−PP

BFP

FIG. 1. �a� Scaling exponents of various order parameters as a
function of longitudinal FP coupling g for a BFM with spinless
fermions. Parameters are chosen to be vb /v f =3, Kb=5, and
G /v f =0.1. Different curves correspond to the 2kf-CDW, f-polaron
pairing field �f-PP�, bare fermion pairing field �BFP�, b-polaron
operator �b-P�, and bare boson �BB� operator. Note that operators
constructed with polarons �i.e., b-P and f-PP� always have larger
exponents than their counterparts constructed with bare atoms. �b�
Global phase diagram of the same system in terms of effective
forward scattering between fermions G and the fermion-phonon
coupling g for vb /v f =5 and Kb=10. Three different phases CDW,
f-PP, and phase separation �PS� are dominant successively from
weak to strong fermion-phonon coupling strength.

f−PP

CDW

FIG. 2. Illustration of the two phases that occur in a BFM with
spinless fermions CDW and f-PP. In the CDW phase the system
develops a 2kf density modulation in both the fermionic and the
bosonic liquid. In the f-PP phase, fermionic polarons pair up and
form a superfluid state.
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bosonic screening clouds around the bosonic atoms, leading
to a higher scaling exponent than the bare bosons as shown
in Fig. 1�a�. However, in the fast boson limit �vb�v f� that
we consider here, the dressing of the bosonic atoms is very
weak �i.e., �BB�b-P� unless the system is close to the phase
separation region.

D. Phase diagram in terms of experimental parameters

In the last sections we derived and discussed the
T=0-phase diagram of BFMs. We will now give two plots of
the same phase diagram in terms of parameters that are ex-
perimentally more accessible. In the first example �depicted
in Fig. 3�a��, we assume that the lattice strengths Vf/b,�/
 can
be tuned independently, and we keep the densities � f and �b,
and the boson-boson scattering length abb constant. We now
vary the boson-fermion scattering length abf and the lattice
strength Vb,
 of the laser that is parallel to the system direc-
tion and couples to the bosons. This lattice strength mostly
affects the bosonic tunneling tb: For small Vb,
, the tunneling
amplitude is large, and therefore the phonons are fast. For
large Vb,
 the phonons are slow and the system develops
CDW QLRO. For large values of abf the system experiences
the Wentzel-Bardeen instability, as shown in Fig. 1�b�.

As a second example we will now discuss a 87Rb-40K
mixture in an anisotropic optical lattice created by a set of
Nd:YAG lasers. In Fig. 3�b� we show a phase diagram for a
mixture of bosons and spinless fermions as a function of the
scattering length between bosons and fermions �abf �in units
of a0�� and the strength of the longitudinal optical lattice for
fermionic atoms �Vf ,
 /Ef�. We assume that the lasers are far
detuned from the transition energies, and that the optical lat-
tices for the bosons and the fermions are created by the same

set of lasers. In this setup, the bosonic and fermionic lattice
strengths are now constrained to the ratio Vb,
/��� /Eb

=1.65Vf ,
/��� /Ef for a laser wavelength of 830 nm �33�. We
chose negative values for the boson-fermion scattering
length, because for most combinations of hyperfine states the
scattering length between 87Rb and 40K is negative. Due to
the different scaling of vb and v f with Vb,
 /Eb and Vf ,
 /Ef the
ratio of vb /v f varies going along the vertical axis. The lower
portion of the diagram corresponds to slower bosons �com-
pared to the fermions� and the upper part to faster bosons.
For relatively weak boson-fermion interactions and strong
confinement the system is again in the CDW phase, in which
the densities of fermions and bosons have a 2kf modulation.
In the case of very strong boson-fermion interactions the
system is again unstable to a Wentzel-Bardeen instability,
which now leads to collapse �CL� �17,30�, rather than phase
separation. The two regimes are separated by an f-PP phase
with an increasing value of the polarization parameter �c for
stronger interaction.

IV. PHASE DIAGRAMS IN OTHER
PARAMETER REGIMES

In the previous two sections we have considered BFMs in
the limit of large bosonic filling ��b�� f� and fast bosons
�vb�v f�. We also assumed that both the fermionic filling and
the bosonic filling are incommensurate to each other and to
the lattice, so that higher harmonics of the bosonization rep-
resentation could be neglected. We will now consider two
cases in which these assumptions are relaxed in different
ways. In Sec. IV A, we consider a BFM with fermions at half
filling. At this particular fermionic filling, phonon-induced
Umklapp scattering can open a charge gap. In Sec. IV B we
consider the case when the boson filling fraction is unity, so
that the system can undergo a Mott insulator transition. A
further discussion of commensurate mixtures is given in Ref.
�34�.

A. Charge-gapped phase for half filling of the fermions

In this section we still assume the system to be in the
regime of slow fermions �v f �vb� and large bosonic filling
��b�� f�, but the fermionic filling is set to be at half filling,
i.e., � f =1/2. In this situation, the derivation given in Eq.
�16�, leading to the backscattering term Eq. �32�, has to in-
clude Umklapp scattering, which involves a momentum
transfer of 4kf =4�� f =2�. Similar to the derivation of Eq.
�32�, Umklapp scattering can be obtained to be

Huk = −
1

L

g2kf

2

2kf

	
�=±

	
k�2�kf

	
p,q��kf

f p+k
† fpfq+k

† fq. �51�

In bosonized representation, this expression becomes

Huk = −
2g3

�2���2 � dx cos�4� f�x�� . �52�

g3 is the Umklapp parameter given by g3=
g2kf

2

2kf

, which is

equal to the backscattering parameter G. Since this is a non-
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FIG. 3. �a� Phase diagram for a mixture of bosonic and spinless
fermionic atoms in a 1D optical lattice, for the first example dis-
cussed in Sec. III D. Shading in the f-PP phase describes the
strength of the bosonic screening cloud �2�c, see Eq. �42�� around a
pair of fermions. �L and ER are the lattice period and recoil energy,
respectively. Other parameters used for this figure are �see text for
notations�: �b=4, � f =0.5, Vb,�=Vf ,�=20ER, Vf ,
 =2ER, boson-
boson scattering length abb=0.01�L. �b� Phase diagram for a mix-
ture of bosonic and spinless fermionic atoms in a 1D optical lattice,
for the second example in Sec. III D. Shading in the f-PP phase
describes the absolute value of the strength of the bosonic screening
cloud ��2�c � � around a pair of fermions. Other parameters used for
this figure are �see text for notations� �b=3, � f =0.2, Vf ,� /Ef =20,
Vb,� /Eb=1.65Vf ,� /Ef, boson-boson scattering length abb=100a0,
where a0 is the Bohr radius.
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linear term that cannot be diagonalized, we use a scaling
argument to study its effect. Such a renormalization flow
argument at tree-level corresponds to a systematic expansion
around g3=0. The scaling dimension of this term is 4K�, so
the flow equation for g3 is given by

dg3

dl
= �2 − 4K��g3. �53�

Therefore, the Umklapp term is relevant for K��1/2. When
g3 becomes relevant, the fermion excitations become gapped
due to the strong repulsion mediated by the 2kf phonons. As
indicated in Fig. 4, we find that such a charge gap �CG�
opens in the large G regime.

B. Mott insulator transition for bosons at unit filling

In this section we determine how the Mott insulator �MI�
transition in the bosonic sector is affected by the presence of
the incommensurate fermionic liquid. However, the results of
this section equally apply to a boson-boson mixture because
the dynamical properties of fermions and bosons in 1D are
very similar. The starting point for our discussion is not the
single band Hubbard model �Eq. �1��, but a continuous 1D
system, to which we add a weak 2kb-periodic external poten-
tial

H2kb
=� dxV2kb

cos 2�b. �54�

So the entire system is described by

H = Hb
�0� + Hf

�0� + Hbf
�1� + H2kb

. �55�

For simplicity we neglect the fermion backward scattering
term. We again use a scaling argument to determine the ef-
fect of the nonlinear term �54�. This term has a scaling di-
mension of K�, and its flow equation is therefore given by

dV2kb

dl
= �2 − K��V2kb

. �56�

The condition for the Mott insulator transition is therefore
K��2. Since we always have K��Kb, the presence of the
other atomic species tends to “melt” the Mott insulator. This
can also be seen in Fig. 5: For g=0 we obtain a Mott insu-
lator for Kb�2 and a superfluid for Kb�2. However, when
we increase the fermion-phonon coupling g the Mott insula-
tor regime shrinks and even vanishes entirely before phase
separation is reached. This is reasonable because the cou-
pling to the second species of atoms induces an attractive
interaction, which tends to decrease the tendency of the
bosons to form a Mott insulator at unit filling.

V. SPINFUL SYSTEM

In this section we consider BFMs that have fermions with
two internal hyperfine states. We assume the fermionic sector
to be SU�2� symmetric, that is, the two Fermi velocities and
their filling fraction are equal, as well as their coupling to the
bosonic atoms. We again consider the limit of fast bosons
vb�v f.

A. Hamiltonian

Analogous to the Hamiltonian of a BFM with spinless
fermions, Eq. �33�, we describe the two internal states with
the fields �↑,↓ and �↑,↓. In terms of these fields, the fermi-
onic sector is described by a Hamiltonian of the form

Hf
0 =� dx� 	

i=↑,↓

v f

2
�Kf

�
��x�i�2 +

�

Kf
�i

2� + U↑↓�↑�↓

+
2U↑↓

�2���2 cos�2�↑ − 2�↓�� , �57�

where �→0+ is the intrinsic cutoff of the bosonization rep-
resentation. The parameter U↑↓ describes the s-wave scatter-

G
 / 

v f

g / vf
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FIG. 4. Phase diagram of a BFM with spinless fermions at half
filling. All parameters are as in Fig. 1�b�. For large G a charge gap
�CG� appears due to the Umklapp scattering.
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FIG. 5. Phase diagram of a BFM with unit bosonic filling. For
small Kb and small g the bosons undergo a Mott insulator transition.
In this diagram we only indicated the phases of the bosons. The
fermions will be in an f-PP phase throughout the diagram.
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ing between two spin states. The last term is the backscatter-
ing term, which occurs because the two fermionic spin states
have equal filling. The bosonic sector is of the same form as
before:

Hb
0 =

vb

2
� dx�Kb

�
��x�b�2 +

�

Kb
�b

2� . �58�

Analogous to Eq. �31�, the long wavelength density fluctua-
tions of the fermions and the bosons are linearly coupled:

Hbf
�1� = Ubf � dx�b��↑ + �↓� . �59�

Finally, we also integrate out the 2kf phonons of the bosonic
superfluid, leading to the following interaction between fer-
mions:

Hf
1 = 	

i=↑,↓

2G

2�
� dx��2�i

2 − ��x�i�2�

−
8�G

�2���2 � dx cos�2�↑ − 2�↓� . �60�

The total low-energy Hamiltonian is then given by

H = Hf
0 + Hb

0 + Hbf
�1� + Hf

1, �61�

which can be separated into spin and charge sectors H=H�

+H�, by introducing the following linear combinations:

��/� =
1
�2

��↑ ± �↓�, ��/� =
1
�2

��↑ ± �↓� . �62�

Note that H� coupled to the bosonic field is of the same form
as a BFM with spinless fermions that we discussed earlier
and can be diagonalized by a rotation similar to Eq. �35�:

�b = �1�A + �2�a, �b = �1�A + �2�a,

�� = �1�A + �2�a, �� = �1�A + �2�a. �63�

The diagonalized Hamiltonian of the charge sector has the
same form as Eq. �37�:

H� =
1

2 	
j=a,A

v j� dx��� j�x�2 +
1

�
��x� j�x��2� �64�

and, similarly, the eigenmode velocities vA and va are of the
same form as Eq. �38�:

va/A
2 =

1

2
�vb

2 + v�
2� ±

1

2
��vb

2 − v�
2�2 + 16g̃�

2vbv�, �65�

where we defined v���ṽ�
2−4G�

2�1/2 and g̃��g�e�, with e�

= ��ṽ�−2G�� / �ṽ�+2G���1/4, g� by g�=�2g. ṽ� is given by
ṽ�=v f +G, G�=G+G↑↓ /2. G↑↓ is given by G↑↓=U↑↓ /2�. All
of these parameters and expressions can be immediately ob-
tained by transferring the results from the spinless BFM
case.

The quadratic part of the spin part of the Hamiltonian can
be diagonalized by using

�� = �K��̃�, �� = 1/�K��̃�, �66�

where �K��e�� and tanh 2��=−2G� / ṽ�, with ṽ�=v f −G↑↓,
G�=G−G↑↓ /2, and v�=�ṽ�

2 −4G�
2 . The transformed spin

sector then becomes a sine-Gordon model

H� =
1

2
v�� dx�����x�2 +

1

�
��x���x��2�

+
2g1�

�2���2 � dx cos��8K���� . �67�

Here, g1�=U↑↓−4�G is the effective backward scattering
amplitude for fermions.

B. Renormalization flow

In this section, we deal with the spin Hamiltonian by per-
forming an RG calculation, similar to the calculation in Sec.
IV. As discussed in Ref. �10�, and as is well established in the
literature, the RG flow at one loop is given by

dK�

dl
= −

K�
2

2
�g1,�

�v�
�2

, �68�

dg1,�

dl
= �2 − 2K��g1,�. �69�

These equations are a systematic expansion around the non-
interacting fixed point at g1,�=0 and K�=1. In Fig. 6, we
show the linearized flow generated by these equations, in the
vicinity of this fixed point. For K��1, the parameters of the
system flow towards the fixed point �g1,�=0,K�=1�,
whereas for K��1, they flow towards the strong coupling
fixed point �g1,�→ ±� ,K�=0�. The nature of spin excita-
tions of the ground state follows from the well known prop-
erties of the sine-Gordon model for SU�2� symmetry. When
the initial g1� is positive the system has gapless spin excita-
tions, i.e., g1�→0 and K�→1 and when the initial g1� is

g
1,

Kσ

FIG. 6. Linearized renormalization flow of the parameters g1,�

and K� in the vicinity of the SU�2� symmetric fixed point at g1,�

=0 and K�=1. Systems with SU�2� symmetry are forced to be on
the separatrix from the upper right quadrant to the lower left quad-
rant. If the initial parameters of such a system correspond to a point
in the upper right quadrant the system flows to the noninteracting,
SU�2� symmetric fixed point at the origin. For initial parameters in
the lower left quadrant the system flows towards a strongly inter-
acting fixed point and opens a spin gap.
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negative the system has a spin gap, i.e., g1�→−� and
K�→0.

C. Scaling exponents

Now we will determine the scaling exponents of the order
parameters that can show QLRO in the phase diagram. The
order parameters of a standard SU�2� symmetric LL of fer-
mions are the charge-density wave �CDW�, spin-density
wave �SDW�, singlet and triplet pairing �of bare fermions�,
and Wigner crystal �WC� operator. When such a system is
coupled to a bosonic superfluid we again need to replace the
pairing of bare fermions by pairing of polarons �analogous to
Sec. III, see also Appendix A�. First we consider the 2kf
mode of the CDW operator �OCDW=	sfs,L

† fs,R� and of the
SDW operator �OSDW=	s,s�fs,L

† �̂s,s�fs�,R�. In bosonized form
these correspond to OCDW,2kf

�exp��2i��+�2i��� and
OSDW,2kf

�exp��2i��+�2i���. Their scaling exponents are
given by

�CDW = 2 − K� − K�, �70�

�SDW = 2 − K� − K�
−1. �71�

For the polaron pairing phase, both singlet �SPP� �OSPP

= f̃↑,Lf̃↓,R− f̃↓,Lf̃↑,R� and triplet �TPP� �OTPP= f̃↑,Lf̃↑,R� pairing
need to be considered. In bosonized form, these operators are
given by OSPP,k=0�exp�−2i�c�b+�2i��+�2i��� and
OTPP,k=0�exp�−2i�c�b+�2i��+�2i���, with scaling expo-
nents

�SPP = 2 − �K�
−1 + K�� , �72�

�TPP = 2 − �K�
−1 + K�

−1� . �73�

These expressions were obtained by using �c=K� / ��2K���,
and the identity K�

−1=K�
−1−K�K��

−2, as we did for spinless
BFMs. Again, we can see that these many-body order param-
eters have scaling parameters controlled by two parameters
only, K� and K�, indicating that the spinful BFM system can
also be understood as a LL of polarons.

We now discuss how these scaling exponents behave in
different parameter regimes. We consider the case in which
the spin sector flows towards the Gaussian fixed point
K�=1. Therefore, SDW and CDW as well as TPP and SPP
are degenerate at the level of algebraic exponents. However,
by taking into account logarithmic corrections �10�, SDW
and TPP turn out to have slower decaying correlation func-
tions and are therefore dominant. As a result, in the gapless
phase there are two regimes of QLRO: SDW �CDW� and
TPP �SPP�, where the brackets refer to subdominant order-
ing. For large G, the system is in the spin-gapped phase,
because g1,� is negative now, and therefore becomes rel-
evant. The system then flows to the strong coupling fixed
point and K�→0, according to the RG flow.

D. Phase diagram

In Fig. 7 we show two examples for different values of
U↑,↓. In Fig. 7�a� we show the phase diagram for U↑,↓ /v f

=−0.8�, and in Fig. 7�b� for U↑,↓ /v f =0.8�. As described
above, the system develops a spin gap for g1��0. The phase
transition occurs at 4�G=U↑,↓. In Fig. 7�b�, this corresponds
to G /v f =0.2; in Fig. 7�a�, the entire phase diagram is in the
gapped phase, because U↑,↓�0, and G can only be positive.

E. Wigner crystal

Apart from these phases the system can also show Wigner
crystal �WC� ordering. Within the WC phase, the fermionic
atoms crystallize in an alternating pattern of spin-up and
spin-down atoms, giving rise to a 4kf-density modulation.
The Wigner crystal order parameter is given by OWC
=	sfR,s

† fR,−s
† fL,−sfL,s�exp��8i��� and has the scaling expo-

nent

�WC = 2 − 4K�. �74�

Within the gapless phase �K�=1�, the Wigner crystal phase
can become dominant for K��1/3, which can be achieved
for large values of G.

VI. EXPERIMENTAL ISSUES

In this paper we have calculated the phase diagrams of
different types of BFMs in various parameter regimes. In this
section we will discuss issues concerning the experimental
realization of our systems.

Throughout the paper we concentrated on infinite systems
at zero temperature T=0. The realization of 1D Luttinger
liquids of ultracold atoms will of course be in a finite lattice
�around 100 sites� and at finite temperature. At finite tem-
perature the correlation functions become approximately
�O�x�O�0����� sinh�x /����−2, where ��v f /kBT is the ther-
mal correlation length. For a finite system of length L=N�L
�N being the number of lattice sites�, the T=0 properties of
the system are visible for ��L. This corresponds to a tem-
perature regime of T�Tf /N, with Tf being the Fermi tem-
perature. So for a system with N=100, T�0.01Tf is re-
quired.

Another issue is the experimental signature of the differ-
ent phases. Here we present several approaches that can be
used to detect the quantum phases discussed above. To detect
the CDW phase, one can perform a standard time-of-flight
�TOF� measurement. In the CDW phase the fermion density
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FIG. 7. Phase diagrams for a mixture of bosonic and S=1/2
fermionic atoms with vb /v f =5 and Kb=10. In �a� U↑↓ /v f =−0.8�
and in �b� U↑↓ /v f =0.8�. Parentheses �¯� indicate subdominant
phases.
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modulation will induce a 2kf density wave in the boson field
in addition to the zero momentum condensation so that the
CDW phase can be observed as interference peaks at mo-
mentum k=2kf in a TOF measurement for bosons, whereas
the f-PP phase will show a featureless superfluid signature.
We note that the boundary of an atomic trap and other inho-
mogeneities in a realistic experiment can pin the CDW phase
and generate a true density modulation. One may also use a
laser stirring experiment �35� to probe the phase boundary
between the insulating �pinned by trap potential� CDW and
the superfluid f-PP phase: a laser beam is focused at the
center of the cloud to create a local potential, and is then
moved oscillatory in the condensate. If the system is in the
pairing phase, the laser beam can be moved through the sys-
tem without dissipation, which would manifest itself as heat-
ing, if only its velocity is slower than some critical value
�35�. At the f-PP–CDW phase boundary this critical velocity
goes to zero, reflecting a transition to the insulating �CDW�
state. This scenario follows from the RG analysis of a single
impurity potential �32�, as described in Appendix C. To
probe the boundary of phase separation one can measure the
dipolar collective oscillations of the system, generated by a
sudden displacement of the harmonic trap potential with re-
spect to the lattice potential �36�. When the system is near
the PS boundary, fermion-boson interaction will reduce the
frequency of the dipolar mode essentially to zero, because
the two atomic species become immiscible.

As the most promising approach we propose to study the
noise correlations of TOF measurements, as discussed in
Ref. �37�. This type of measurement treats particle-particle
correlations �i.e., pairing fluctuations� and particle-hole cor-
relations �i.e., CDW and SDW fluctuations� on equal footing,
and therefore reflects the formal duality of these two types of
phases accurately. Furthermore, this approach seems to be
well suited for the study of Luttinger liquids, because it gives
signatures of the various fluctuations in the system that
dominate in different regimes of the phase diagram.

VII. CONCLUSION

In summary, we used bosonization to investigate the
quantum phase diagrams of 1D BFMs. Interactions between
atoms can lead to interesting phenomena such as spin- and
charge-density waves and singlet and triplet pairing of at-
oms. We introduced polarons, i.e., atoms of one species sur-
rounded by screening clouds of other species, and argued
that the rich phase diagrams of BFMs can be naturally inter-
preted as Luttinger liquid phase diagrams of such polarons.
We also considered several commensurate filling cases and
obtained gapped phases in some parameter regimes. We dis-
cussed several techniques for probing our results experimen-
tally.
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APPENDIX A: SCALING EXPONENTS

In this section we will derive the scaling exponents of a
number of operators that were considered in the search for

the phase diagram. In Appendix A 1, we discuss BFMs with
spinless fermions and in Appendix A 2 BFMs with spinful
fermions.

1. Spinless fermions

For the case of spinless fermions, a broad class of opera-
tors O�x� �16� can be written in terms of the Luttinger fields
as

O�x� � exp� 	
j=b,f

�i� j,1� j + i� j,2� j�� �A1�

or a sum of products of this type. � j,1/2 are arbitrary real
parameters. To derive the correlation function of such an
operator we first write �b/f and �b/f in terms of the eigen-
fields �A/a and �A/a, as given by the transformation �35�. The
correlation function of the above given general operator
CO�x�= �O�x�O�0�� then behaves for large distances as

CO�x� � �x�−�̃ cos��� f ,1� f + �b,1�b��x� , �A2�

with the scaling exponent �̃ given by

�̃ =
1

2
��b,1

2 K� + � f ,1
2 K� + 2�b,1� f ,1K�� + �b,2

2 K�
−1 + � f ,2

2 K�
−1

+ 2�b,2� f ,2K��
−1� . �A3�

From this general expression we can deduce the scaling ex-
ponents discussed in this paper, by specializing the operator
O�x� to various cases.

2. Spinful fermions

For the case of spinful fermions, we consider an operator
O�x� given by

O�x� � exp� 	
j=b,�,�

�i� j,1� j + i� j,2� j�� . �A4�

To determine the correlation function of this operator, we
proceed as in the previous section. First, we use the linear
transformation �63�, to write ��/b in terms of the fields �A/a.
Since the density or boson sector of the Hamiltonian is just a
sum of Gaussian models in terms of these fields, the scaling
exponents can be determined as in Appendix A 1. For the
spin sector we use the RG results discussed in Sec. V B: If
the nonlinear term is irrelevant the system is described by a
Gaussian model with K�=1. If the nonlinear term is relevant
we have K�→0, i.e., any overlap of the operator with the
phase field �� will make the correlation function short
ranged, whereas the field �� acquires ordering.

The correlation function of the operator O�x�, CO�x�
= �O�x�O�0��, can be determined to be

CO�x� = �x�−�̃ cos��� f ,1� f + �b,1�b��x� . �A5�

The scaling exponent �̃ is given by

�̃ =
1

2
��b,1

2 K� + ��,1
2 K� + 2�b,1��,1K�� + �b,2

2 K�
−1 + ��,2

2 K�
−1

+ 2�b,2��,2K��
−1��,1

2 K� + ��,2
2 K�

−1� . �A6�

In Tables I and II, we first give the scaling of the single
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TABLE I. Table of Luttinger exponents and characteristic wave vectors of various operators composed of
boson and fermion operators. m and n are arbitrary integer number resulting from the higher order harmonics
of the bosonization representations.

Operator O�x� Wave vector q Exponent �̃ Remarks

b 2mkb
1
2 ��2m�2K�+K�

−1�
f �2n+1�kf

1
2 ��2n+1�2K�+K�

−1�
f†f 2nkf 2n2K� n�0

f f 2nkf 2n2K�+2K�
−1

b†b 2mkb 2m2K� m�0

�b†�m1 2mkb
1
2 ��2m�2K�+m1

2K�
−1�

�f�2n1 2nkf
1
2 ��2n�2K�+ �2n1�2K�

−1�
b†bf†f 2mkb+2nkf

1
2 ��2m�2K�+ �2n�2K�−2�2m��2n�K��� m ,n�0

�b†�m1f†f 2mkb+2nkf
1
2 ��2m�2K�+ �2n�2K�−2�2m��2n�K��+m1

2K�
−1� n�0

�b†�m1�f�2n1 2mkb+2nkf
1
2 ��2m�2K�+ �2n�2K�−2�2m��2n�K���
�+m1

2K�
−1+ �2n1�2K�

−1−2m1�2n1�K��
−1�

�b†�m1�f�2n1+1 2mkb+ �2n+1�kf
1
2 ��2m�2K�+ �2n+1�2K�−2�2m��2n+1�K���
�+m1

2K�
−1+ �2n1+1�2K�

−1−2m1�2n1+1�K��
−1�

f̃ �2n+1�kf 2− 1
2 ��2n+1�2K�+K�

−1�

f̃ f̃ 2nkf 2n2K�+2K�
−1

b̃ 2mkb 2− 1
2 ��2m�2K�+K�

−1�

TABLE II. Table of Luttinger exponents and characteristic wavevectors of various order parameters
composed by boson and fermion operators for spinful system. m, n, and l are arbitrary integer number
resulting from the higher order harmonics of the bosonization representations.

Operator O�x� Wave vector q Exponent �̃ Remarks

b 2mkb
1
2 ��2m�2K�+K�

−1�
f↑/↓ �2n+1�kf �n+ 1

2
�2�K�+K��+ 1

4 �K�
−1+K�

−1�
fs
†fs 2nkf �n2K�+n2K�� n�0

f↑
†f↓ 2�n+m�kf ��n+m�2K�+ �n−m−1�2K�+K�

−1� n�0

fsfs 2nkf �n2K�+n2K�+K�
−1+K�

−1�
f↑f↓ 2�n+ l+1�kf ��n+ l+1�2K�+K�

−1+ �n− l�2K��
f↑
†f↓

†f↓f↑ 2�n+m�kf ��n+m�2K�+ �n−m�2K��
b†b 2mkb 2m2K� m�0

�b†�m1 2mkb �2m2K�+ 1
2m1

2K�
−1�

�fs�2n1 2nkf �n2�K�+K��+n1
2�K�

−1+K�
−1��

�fs�2n1+1 �2n+1�kf ��n+ 1
2

�2�K�+K��+ �n1+ 1
2

�2�K�
−1+K�

−1��
�b†�m1�fs�2n1 2mkb+2nkf �2m2K�+n2K�−2�2mnK��+n2K��

�+ 1
2m1

2K�
−1+n1

2K�
−1−�2m1n1K��

−1+n1
2K�

−1�
�b†�m1�f�2n1+1 2mkb+ �2n+1�kf �2m2K�+ �n+ 1

2
�2K�−�2m�2n+1�K��+ �n+ 1

2
�2K��

�+ 1
2m1

2K�
−1+ �n1+ 1

2
�2K�

−1−�2m1�n1+ 1
2

�K��
−1

+ �n1+ 1
2

�2K�
−1�

�b†�m1�f↑f↓� 2mkb+2�n+ l+1�kf �2m2K�+ �n+ l+1�2K�−2�2m�n+ l+1�K��

+ �n− l�2K�+ 1
2m1

2K�
−1+K�

−1−�2m1K��
−1�

b̃ 2mkb
1
2 ��2m�2K�+K�

−1�

f̃↑/↓ �2n+1�kf �n+ 1
2

�2�K�+K��+
1

4
�K�

−1+K�
−1�

f̃ s f̃ s
2nkf �n2K�+n2K�+K�

−1+K�
−1�

f̃↑ f̃↓ 2�n+ l+1�kf ��n+ l+1�2K�+K�
−1+ �n− l�2K��
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particle operators b and f↑/↓, as well as the standard order
parameters of a LL of spinful fermions, i.e., fs

†fs and f↑
†f↓ �the

2kf modes of these operators correspond to CDW and SDW
ordering, respectively�, the pairing operators f↑f↓ �singlet�
and fsfs �triplet�, and the order parameter of the Wigner crys-
tal f↑

†f↓
†f↓f↑. Apart from these standard order parameters of

LL theory, we consider a wide class of operators of the form
�f↑

†�mf↑
n�f↓

†�pf↓
q�b†�rbs.

APPENDIX B: POLARON EFFECTS

In this subsection we will verify that the conventional
construction of polaron operators based on the canonical po-
laron transformation �CPT� �38� is equivalent to the con-
struction within the bosonization approach presented in Sec.
III A of this paper. We will also discuss the behavior of the
polarization parameter �c. The CPT operator is given by

U� = e−�	k�0�Fk�knf ,k
† −H.c.�, �B1�

where �k is the phonon annihilation operator and nf ,k is the
fermion density operator. Fk is given by Fk= 1

2
� 2�

Kb�k�L , and �

specifies the strength of the phonon dressing.
The sum over the wave vector k is over the regime of

acoustic modes. When applied to a fermion operator, the
CPT gives

U�
−1f�x�U� = f�x�e−�	k�0�Fk�ke−ik·r−H.c.�, �B2�

which is the standard expression for a fermionic polaron op-
erator �38�. In terms of Luttinger bosons the fermion density
nf ,k is given by

nf ,k = �kL/2��Bk + B−k
† � , �B3�

and therefore U� becomes

U� = e−��/2�Kb�	k�0�Bk+B−k
† ���−k−�k

†�. �B4�

When applied to a fermion operator, this transformation
gives

U�
−1f�x�U� = f�x�e−i��b �B5�

because U�
−1� fU�=� f −��b, which can be seen from the

operator representation �28� and �30�, and by applying the
Baker-Hausdorff formula. The superficial difference between
Eqs. �B2� and �B5� can be overcome by a trivial phase shift
�k→ i sgn�k��k. As discussed in this paper, �c=K� /K�� is the
most appropriate choice for the fermionic polarons, because
the correlation function of such polarons has the slowest al-
gebraic decay. In Fig. 8 we plot this polarization parameter
�c in comparison to the value of “complete dressing” �0:

�0 =
2g

vb

�Kb. �B6�

To obtain this quantity, which is the “size” the polarization
would have if the fermions were static, we set the Fermi
velocity to zero �v f =0�, so that the Hamiltonian of the sys-
tem becomes:

H = 	
k�0

vb�k��k
†�k + 	

k�0
g�k���k

† + �−k��Bk + B−k
† � . �B7�

In this limit of infinitely heavy fermions, a term of the type
�17� does not exist. In Eq. �B7� the linear term simply shifts
the bosonic modes by an amount �g /vb��Bk+B−k

† �. As we can
see from Eq. �B4� this corresponds exactly to the polariza-
tion �0, Eq. �B6�. However, for finite hopping, or finite mass
of the fermions, this value is reduced, because the polariza-
tion cloud cannot entirely “follow” the fermionic atoms. For
Ubf →0 one finds

�c/�0 → vb

vb + v f
. �B8�

In Fig. 8 we show �c plotted for different sets of parameters.
It smoothly interpolates between the small interaction limit
�B8� and the static limit �B6�. The static limit is achieved in
the vicinity of phase separation because the fermionic effec-
tive mode velocity vA goes to zero when the system ap-
proaches separation. This corresponds to infinitely heavy fer-
mions, and therefore to the static limit.

APPENDIX C: RG FLOW OF AN IMPURITY TERM

We consider the following local impurity term in our
Hamiltonian:

Himp =� dxV�x�f†�x�f�x� �C1�

with V�x� strongly spatially peaked around at x=0. This term
leads to an additional term in the action given by

Simp = 	
m

vm

2
� d� exp�2im� f� , �C2�

where vm is the Fourier transform of the potential V�x�
around 2mkf. The RG flow of these terms at one loop, as
discussed in Refs. �32,39�, is given by

g/vf

λ 
 /λ c

0

0.4 0.8

1

0

0.5

III

III

FIG. 8. Plot of the “dressing” parameter �c compared to com-
plete dressing �0, for Kb=5 and G /v f =0.1 as a function of g /v f.
With vb /v f =2,3 ,5 for I–III.
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dvm

dl
= �1 − m2K��vm. �C3�

Therefore, such an impurity term is relevant exactly for
K��1, and irrelevant outside of the CDW phase. The physi-

cal interpretation of this result is as follows: In the CDW
regime a local impurity “pins” the charge ordering of the
system. Outside of the CDW phase, the irrelevance of an
impurity term in the system is an indication of a superfluid
phase, which must be provided by polaron pairing.
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