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We consider theoretically the formation and stability of quasi-one-dimensional many-body excitons
in GaAs quantum wire structures under external photoexcitation conditions by solving the dynamically
screened Bethe-Salpeter equation for realistic Coulomb interaction. In agreement with several recent
experimental findings the calculated excitonic peak shows weak carrier-density dependence up to (and
even above) the Mott transition density, nc � 3 3 105 cm21. Above nc we find considerable optical
gain demonstrating compellingly the possibility of a one-dimensional quantum wire laser operation.

PACS numbers: 78.55.–m, 71.35.Cc, 73.20.Dx, 78.66.Fd
An exciton, the bound Coulombic (“hydrogenic”) state
between an electron in the conduction band and a hole in
the valence band, is an extensively studied central concept
in semiconductor physics. Recent interest has focused on
low dimensional excitons in artificially structured semi-
conductor quantum well or wire systems where carrier con-
finement may substantially enhance the excitonic binding
energy leading to novel optical phenomena. In this Let-
ter we consider the formation, stability, and optical prop-
erties of one-dimensional (1D) excitons in semiconductor
quantum wires, a problem which has attracted a great deal
of recent experimental [1–3] and theoretical [4–6] atten-
tion. Our motivation has been a number of recent puzzling
experimental observations [1,2], which find the photolu-
minescence emitted from an initially photoexcited semi-
conductor quantum wire plasma to be peaked essentially
at a constant energy independent of the magnitude of the
photoexcitation intensity. This is surprising because one
expects a strongly density-dependent “redshift” in the peak
due to the exchange-correlation induced band gap renor-
malization (BGR) (i.e., a shrinkage of the fundamental
band gap due to electron and hole self-energy corrections),
which should vary strongly as a function of the photoex-
cited electron-hole density [7–9]. This striking lack of
any dependence of the observed photoluminescence peak
energy on the photoexcitation density has led to the sug-
gestion [1,2] that the observed quantum wire photolumi-
nescence may be arising entirely from an excitonic [as
opposed to an electron-hole plasma (EHP)] recombination
mechanism. The effective excitonic energy is a constant
(as a function of carrier density) in 1D quantum wires
due to a near exact cancellation between the redshift aris-
ing from the self-energy correction induced BGR and the
blueshift arising from screening induced excitonic bind-
ing weakening. In this Letter, focusing on the photoex-
cited quasiequilibrium regime, we provide a quantitative
theory for this problem by solving for the first time the
full many-body dynamical Bethe-Salpeter equation for 1D
excitons. We include both self-energy renormalization and
0031-9007�00�84(9)�2010(4)$15.00
vertex correction (arising from the Coulomb interaction)
on an equal footing under high photoexcitation conditions.
(Note that since the many-body Bethe-Salpeter equation is
far more complex than the single-exciton Wannier equa-
tion, several commonly used excitonic concepts, such as
exciton radius, binding energy, or Mott transition, become
imprecise and ambiguous in our full theory. For simplic-
ity, however, we use these terminologies to qualitatively
interpret our results.) We find that in agreement with ex-
perimental observations, our calculated effective excitonic
energy (indicating the luminescence peak frequency) re-
mains essentially a constant (with an energy shift of less
than 0.5 meV) as a function of 1D carrier density n for
n , nc � 3 3 105 cm21 with the system making a Mott
transition from an insulating exciton gas of bound electron-
hole pairs (n , nc) to an EHP (n . nc) at n � nc. For
n . nc we find strong optical gain in the calculated ab-
sorption spectra.

For our results to be presented here, the many-body
exciton is given by the so-called Bethe-Salpeter equation
[10] for the two-particle Green’s function which is shown
diagrammatically in Fig. 1. The many-body diagrams
shown in Fig. 1 correspond to a rather complex set of two-
component (electrons and holes) coupled nonlinear inte-
gral equations which must be solved self-consistently with
the bare interaction being the Coulomb interaction. These
equations are notoriously difficult to solve without making
drastic approximations, and, in fact, have never before
been solved in the literature in any dimensions. We use the
parabolic band effective mass approximation considering
the highest valence and the lowest conduction band only.
In carrying out the full many-body dynamical calculation
for the Bethe-Salpeter equation we are forced to make
some approximations. Our most sophisticated approxi-
mation uses the fully frequency dependent dynamically
screened electron-hole Coulomb interaction in the single
plasmon-pole approximation, which has been shown to
be an excellent approximation [11] to the full random
phase approximation [RPA, see Fig. 1(c)] for 1D quantum
© 2000 The American Physical Society
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wire dynamical screening. For the self-energy correction
we use the single-loop GW diagram shown in Fig. 1(b).
Ward Identities then fix the vertex correction, entering
Fig. 1(a), to be the appropriate ladder integral equation.
After considerable algebra [10] the reduced form of the
Bethe-Salpeter equation for the electron-hole two-particle
Green’s function, Geh, (spin, s, has been included in the
summation over momentum, k) becomes
Geh�k, k0, v� � G0
eh�k, k0, v�
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Here V � v 2 me 2 mh 1 id and fi , Gi , ´i , ei , and
mi are the Fermi function, one-particle Green’s function,
noninteracting kinetic energy, interacting kinetic energy
(including self-energy), and chemical potential of electron
(i � e) or hole (i � h), respectively. The dynamically
screened Coulomb potential, V �k, v�, is approximated as
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v
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�, where vk is the effective
plasma frequency of the system in RPA and the strength
v0 is determined by satisfying the f-sum rule [11]. The
1D bare Coulomb interaction, V �k�, is calculated by aver-
aging the real 3D Coulomb interaction through the wave
functions of electrons and holes over the transverse 2D
section of a real 70 Å GaAlAs-GaAs T -junction quantum
wire system [1]. (We emphasize the importance of using
the real Coulomb interaction in the calculation. Various
model interactions, such as the delta function one used
in Ref. [6], are not particularly meaningful from either a
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FIG. 1. Many-body Feynman diagrams used in the theory with
the single (double) solid line representing the bare (dressed)
electron (e) or hole (h) Green’s function, the single (double)
wavy line representing the bare (dressed) Coulomb interaction:
(a) the excitonic Bethe-Salpeter equation; (b) the single-loop
self-energy (in the so-called GW approximation) defining the
dressed Green’s function; (c) the RPA dressing of the Coulomb
interaction (treated in the plasmon-pole approximation in our
calculation). The interaction includes e-e, h-h, and e-h terms.
theoretical perspective or in understanding experimental
data.) This expression of V �k, v� enables us to perform
the frequency summations in Veff analytically, making the
numerical calculations in Eq. (1) tractable. The effective
BGR, Deh, is given by

Deh�k, v� �
X
k0

��1 2 fe�ee,k0� 2 fh�eh,2k0��

3 Veff�k, k0, v� 2 V �k 2 k0�	dss0 .
(4)

In our calculation, both real and imaginary parts of self-
energy are included in the Green’s function, Gi , and there-
fore the broadening and lifetime effects in our results are
intrinsically theoretically calculated quantities and not ar-
tificially introduced phenomenological fitting parameters.

Before solving the full Bethe-Salpeter equation, it is in-
structive to study the excitonic and EHP effects separately
by treating the influence of the plasma on the excitonic
states as a perturbation [10]. Using an effective Hamil-
tonian derived from the Bethe-Salpeter equation, we can
obtain the exciton energy by minimizing the energy expec-
tation value variationally through a 1s excitonic trial wave
function (see Fig. 2). The effective Hamiltonian treats
EHP as a perturbative effect and is written as Hpp0�vn� �
H0

pp0 1 H 0
pp0�vn�, where H0 is for the single electron-hole

pair and the perturbation H 0 is

H 0
pp0�vn� � Deh�p, vn�dpp0 1 V �p 2 p0�

2 �1 2 fe�ee,k� 2 fh�eh,2k��Veff�k, k0, vn� ,
(5)

for the nth eigenstate of energy vn. Note that the varia-
tional calculation, which follows the procedure described
in [10], is quantitatively valid only when the exciton-
plasma hybridization is not particularly strong. For the
purpose of comparison we also show as an inset in Fig. 2
the purely one-electron static screening result where
2011
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FIG. 2. Shows variationally calculated exciton energy and
BGR of the EHP as a function of photoexcitation carrier density.
The heavy lines are the exciton energy and the light lines are
the BGR correction obtained from the self-energy diagram
[Fig. 1(b) with 1(c)] neglecting the excitonic binding effect.
We compare the results of the full dynamical screening (solid
lines) and quasistatic (dashed lines) approximations as described
in the text. The Mott transition occurs at the density (nc)
where the heavy and the light lines cross indicating the exciton
merging with the band continuum. The inset shows the exciton
binding energy in the statically screened interaction neglecting
BGR effects.

the electron-hole interaction is modeled by the density-
dependent statically screened interaction, and all many-
body effects (e.g., BGR) are ignored. The quasistatic
approximation, which is formally described in Ref. [10],
shown as dashed lines in Fig. 2, involves making the
screened exchange plus Coulomb hole approximation in
the self-energy diagrams neglecting the correlation hole
effect. (Note that in the pure Hartree-Fock approxima-
tion one neglects screening altogether.) Comparing the
three (static, quasistatic, and dynamic) approximations one
could see the importance of dynamical effects in the highly
photoexcited quantum system. The large blueshift of
static screening (inset) could not be canceled by the many-
body self-energy effects within the same static screening
approximation, and therefore totally disagree with the
experimental findings. Inclusion of dynamical many-body
effects, shown in the results in the main part of Fig. 2,
qualitatively modifies the situation: (1) for density be-
tween 104 and 105 cm21 the exciton energy has a few meV
redshift in the quasistatic approximation and almost no
shift (less than 0.5 meV blueshift) in the dynamical screen-
ing approximation; (2) the Mott transition density for the
quasistatic approximation is about 105 cm21, while it is
about 3 3 105 cm21 for the dynamical theory; (3) below
nc our variational solution corresponds to a quasi-1D 1s
excitonic wave function with a radius of about 100–500 Å
[12], and this description is approximately valid until
nc, above which the calculated excitonic wave function
is completely delocalized (with a very large radius) and
the EHP becomes the dominant state of the system.

In Fig. 3, we show our calculated absorption and gain
spectra by solving the full Bethe-Salpeter equation in the
2012
FIG. 3. Calculated absorption and gain spectra for various pho-
toexcitation densities by solving the full Bethe-Salpeter equa-
tion: (a) the quasistatic approximation, and (b) the dynamical
approximation. Negative absorption indicates gain.

quasistatic and the dynamical screening approximations.
The integral equation for the two-particle Green’s func-
tion, Eq. (1), is solved by the matrix inversion method.
The dynamical screening approximation, together with the
logarithmic singularity of the 1D Coulomb interaction,
produces a multisingular kernel with multiple momentum-
dependent singularities which have never been solved
in the literature before. The usual singularity-removal
method is ineffective here. This fact forces us to use a
rather large matrix (about 1500 3 1500 in a Gaussian
quadrature) in the matrix inversion method in order to get
good overall accuracy. Some important features of the
optical spectra shown in Fig. 3 are (1) there are generally
two absorption peaks in the low density (n , 104 cm21)
spectra, one is the exciton peak at 1537 meV and the other
one is the band edge peak at, for example, 1547.5 meV
for n � 102 cm21 in Fig. 3(b). The exciton peak has
much larger oscillator strength than the band edge peak.
(2) At low densities (n , 104 cm21) the exciton peak
does not shift much (�1537 meV) with increasing carrier
density (in either approximation), indicating the effective
constancy of the exciton energy; (3) at higher densities,
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however, the quasistatic approximation produces a redshift
in the excitonic peak by a few meV, consistent with the
result shown in Fig. 2 which is obtained variationally.
However, also consistent with the results shown in Fig. 2,
the excitonic peak of the full dynamical screening ap-
proximation is almost a constant (with only a 0.5 meV
blueshift) up to nc. (4) Below the Mott density, the ex-
citonic oscillator strength decreases rapidly as the carrier
density increases in the quasistatic approximation; how-
ever, it remains almost a constant with increasing carrier
density in the dynamical screening approximation, indi-
cating the interesting prospect of excitonic lasing in 1D
quantum wires. (5) In the dynamical screening approxi-
mation, considerable excitonic gain is achieved for n . nc

without any observable energy shift in the spectrum. We
find [12] that at very high densities (n . 106 cm21) the
excitonic features in the absorption spectra are smeared
out by the EHP continuum, and the BGR induced redshift
is observed. In Fig. 4, we show the absorption spectra
at n � 0.8 3 105 cm21 for various temperatures. The
absorption peak has a clear redshift in energy as the
temperature increases, and the oscillator strength is also
weakened, together with the broadened absorption peak,
in the high temperature spectra. This result is consistent
with very recent experimental results [13].

We note that our dynamical screening Bethe-Salpeter
equation results are in excellent qualitative and quantita-
tive agreement with the recent experimental findings [1,2].
In particular, the effective constancy of the exciton peak as
a function of the photoexcited carrier density as well as the
possibility of excitonic absorption and lasing well into the
high density regime (even for n . nc � 3 3 105 cm21)
turns out to be characteristic features of the full dynamical
theory (but not of the static and the quasistatic approxima-
tion). A full dynamical self-consistent theory as developed
in this Letter is thus needed for an understanding of the re-
cent experimental observations. We also note that in the re-
cent literature the Mott density for 1D GaAs quantum wire
systems has often been quoted as nc � 8 3 105 cm21

which is substantially higher than our dynamical theory re-
sult, nc � 3 3 105 cm21. The higher value of nc follows
from the simplistic estimates based on Hartree-Fock type
energetic calculations, which neglect dynamical screening
effects completely and consequently strongly (and incor-
rectly) overestimate the stability of the bound excitonic
state. The actual nc has never been experimentally mea-
sured since there is no simple or direct method of measur-
ing the density of a photoexcited e-h plasma.

In summary, our main accomplishments reported in this
Letter are the following: (1) The first fully dynamical
theory of a photoexcited electron-hole system in semicon-
ductors which treats self-energy, vertex corrections, and
dynamical screening in a self-consistent scheme based on
the GW self-energy and ladder-bubble vertex-polarization
diagrams within a realistic Coulomb interaction-based
Bethe-Salpeter theory; (2) a reasonable qualitative and
quantitative agreement with the recent experimental
FIG. 4. The absorption and gain spectra for various tempera-
tures at the photoexcitation density n � 0.8 3 105 cm21, cal-
culated by the full dynamical Bethe-Salpeter equation.

observations of an effectively (photoexcitation density-
independent) constant exciton peak, which in our dynami-
cal theory arises from an approximate cancellation of
self-energy and vertex corrections in the Bethe-Salpeter
equation; (3) an effective 1D quantum wire Mott transition
density of nc � 3 3 105 cm21 which is below earlier
estimates based on less sophisticated approximations;
(4) the concrete theoretical demonstration of the possi-
bility of excitonic gain and lasing in 1D quantum wire
structures in the density range of n . 3 3 105 cm21

where considerable optical gain is achieved in our calcu-
lated absorption spectra.
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