
554

PHYSICAL REVIEW B, VOLUME 64, 193307
Coulomb Luttinger liquid
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Accurate expressions, valid in experimentally relevant regimes, are presented for the effect of a long-ranged
Coulomb interaction on the low-energy properties~momentum distribution function, density of states, electron
spectral function, and 4kF correlation function! of one-dimensional electron systems. The importance of
plasmon dispersion~as opposed to exponent! effects in the spectral function is demonstrated.
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The low-energy behavior of one-dimensional~1D! elec-
tron systems is known not to be consistent with Fermi liq
theory.1 However, the theoretically well-established2 and ex-
tensively studied3 Luttinger liquid ~LL ! model of one-
dimensional physics4 is, strictly speaking, not applicable t
electronically conducting one-dimensional systems such
quantum wires ~QWR’s!,5 carbon nanotubes,6 organic
conductors,7 and doped chain or ladder compounds,8 because
the electrons in these compounds interact via the Coulo
force, which is long ranged, whereas the standard Luttin
model assumes a short-ranged interaction. The long rang
the Coulomb interaction leads to a scale dependence o
Luttinger exponents and velocities,9 which have been studie
by several authors9,10 on the assumption that it is well ap
proximated by its leading (ln1/2) divergence. As we show
this approximation is not accurate in any physically relev
regime. One exception is a very interesting recent renorm
ization group treatment11 which found an effective exponen
very similar to ours but did not discuss the implications
physical quantities. Some numerical results have a
appeared,12 but a general understanding of the experimen
implications of the Coulomb interaction is lacking.

In the present paper we use direct analytical and num
cal evaluation of the relevant bosonization expressions
determine the momentum distribution function, tunneli
density of states, and spectral function for 1D electron s
tems interacting via the physically relevant Coulomb int
action at zero temperature. We define an important but
viously overlooked energy scale, present an accu
expression for the scale-dependent exponent, show how
scale-dependent velocity affects the spectral function,
qualitatively discuss the 4kF correlation function. Our results
should apply directly to 1D QWR’s~Ref. 5! and nanotubes.6

We consider a 1D electron system with a noninteract
dispersion«p which we linearize near the Fermi point, d
fining a bare velocityvF . We here assume that the on
important interaction is the Coulomb interaction in the fo
ward scattering channel and neglect umklapp scattering
other interactions. This is a good approximation for QW
and nanotube systems.@For organic and doped spin cha
materials a modification, discussed below Eq.~2!, is needed.#
The Hamiltonian is~here we do not write the spin inde
explicitly!
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r ,p

vF~p2rpF!cr ,p
† cr ,p1

1

L (
r ,q

Vc~q!@r r~q!r r~2q!

1r r~q!r2r~2q!#, ~1!

wherecr ,p
† is the electron creation operator andr r(q) is the

density operator describing density fluctuations at mom
tum q and branchr 561 for the right~left! movers. For 1D
systemsVc(q)→ ln(1/q) as q→0 and becomes 1/q for q
larger than some scaleq0 set by the geometry and the wav
function size. A reasonable approximate form, which we w
use in our subsequent analysis, is

Vc~q!5
pvFV0

2
lnFq01q

q G , ~2!

where V0 is a dimensionless measure of the interact
strength andq0

21 is the length scale parameter.V0 andq0 are
system-dependent factors. For a cylindrical quantum wire
radiusa, V054e2/p«0vF andq0;2.5/a, wheree is the elec-
tron charge and«0 is the background dielectric constan
about 10 for GaAs. These values give the correct lo
wavelength limit and are within 10% of the correct 1/q co-
efficient at large momentum. In carbon nanotubesV0 is of
the same form as in QWR’s but«0;1.46 and q0;2.97/R,
whereR is the radius of the tube. For organics or doped s
chains, additional short-ranged exchange interactions ma
important. The usual arguments2 show that these interaction
lead, at low energies, to an additive constant term inVc(q).

Equation ~1! may be bosonized as usual2,3; the charge
excitations are plasmons with dispersionvq5qvq , and ve-
locity vq[vFA112Vc(q)/pvF is

vq5vFA11V0lnFq01q

q G . ~3!

~Note that we have lim
q→`

vq;qvF1V0q0/2ÞqvF for the

Coulomb interaction.! The electron Green functionGr(x,t)
[^c r(xt)c r

†(00)& is

Gr~x,t !5 lim
e→0

eirk Fx

2p

i exp@2F r~x,t !#

x2rvFt1 i e
, ~4!

where the phase functionF r(x,t) is
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F r~x,t !5
1

2E0

`dp

p
e2ep~eip(x2rvFt)2eip(x2rvpt)!

12 sinh2~up!@12cos~px!e2 irpvpt#. ~5!

The exponent parameterup is defined by

e22uq5A11V0lnS q01q

q D;AV0ln1/2S qs

q D , ~6!

whereqs[q0e1/V0 and the last approximation is good at lon
wavelengths,q!q0.

We now use Eqs.~4!–~6! to study electronic quantities
We begin with the momentum distribution function

nr~dp!5
2 i

2pE2`

`

dx
e2 idpx

rx2 i e
exp@2F r~x,0!#, ~7!

wheredp[p2rkF . In a noninteracting Fermi gas,nr(dp)
5u(2rdp). For a short-ranged LL, the generally accept
result13 is that in the vicinity of the Fermi momentum, 0.
2nr(dp);sgn(rdp)3$C1udpu1C2udpug% with g a LL ex-
ponent andC1 and C2 two constants. The first term is th
noncritical background coming from high energies, while t
second~critical! term comes from low energies where L
physics is important. For the long-ranged interacting mo
we now consider, attention to the singularity structure of
noninteracting electron Green function leads to~let dp.0
and r 511)

n~dp!5
1

2
2

1

pE0

`dx

x
sin~dpx!exp@2F~x,0!#

5
1

2
1C18dp1C28S dp

q0
D gq(dp)

1higher orders, ~8!

where again the nonsingularC18 term is from the integration
over smallx, while the singularC28 term comes from inte-
gration over largex and is a weak function of ln1/2(1/dp).
The scale dependent exponentgq(dp) is found to be

gq~q!;
1

2 S 1

3
e22uq1e2uq21D

;
AV0

6
ln1/2S qs

q D1
ln21/2~qs /q!

2AV0

2
1

2
. ~9!

Figure 1 shows results obtained by numerically evaluat
Eq. ~8! for typical QWR parameters. An enhanced curvatu
near the Fermi momentum is evident. The inset of Fig
shows the logarithmic derivative aq(p)[d lnun(p)
21/2u/d ln(p), which shows that for smalldp the behavior
may be described in terms of a slowly changing effect
exponent. We note thataq(p) is always less than 1, becaus
when the scale-dependent exponentgq(p) of Eq. ~9! is
greater than 1, the background term dominates.

We now turn to the tunneling density of states,
19330
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N~v!5
1

2p (
r
E

2`

`

dt eivt@Gr~0,t !1Gr~0,2t !#,

~10!

for v measured from the chemical potential.
We first show thatN(v) vanishes faster than any powe

of v as v→0. We observe that ifVc(p)Þ0, G vanishes
faster than any power oft as t→`.9 Therefore the integra
obtained by taking any number ofv derivatives ofN(v) is
absolutely convergent at long times, and may be evalua
straightforwardly by contour methods even atv50.14 We
further note thatGr(0,t) has no singularities in the lowe
~upper! half plane forr 511 (21); thus by deforming the
contours appropriately we find thatdnN(v)/dvnuv5050 for
any n. This argument does not apply ton(p) because of the
different analytic structure of thex dependence. Thus th
noncritical contributions which obscured the behavior
n(p) do not occur inN(v). By evaluating Eq.~10! we ob-
tain

N~v!}S v

vs
D gv(v)

, ~11!

where the scale-dependent density of states exponentgv(v)
is

gv~v!;
AV0

6
ln1/2S vs

v D1
ln21/2~vs /v!

2AV0

2
1

2
, ~12!

the same form as that of Eq.~9! with qs replaced by a char-
acteristic energy scalevs . From Eqs.~3! and ~6! we expect
vs5A qsvFAV0 with the numerical constantA determined
by subleading corrections to the asymptotic analysis of
~5!. HereA may in principle have a weak scale and syste
parameter dependence, but our numerical results show
for a wide range of energies (1023,v/EF,0.1) and inter-
actions (1,V0,5) it is very well approximated by the con

FIG. 1. Calculated momentum distribution functionn(p) with
respect to momentump2kF for a realistic QWR system ofa570
nm. Solid, dashed, and dotted lines are results for three diffe
interaction strengthsV051.21, 2.42, and 4.84, respectively, whe
V051.21 is for electron density 0.653106 cm21 and «0512.7
~Ref. 5!. Inset: the effective exponent~aroundkF) obtained by tak-
ing the logarithmic derivative of the numericaln(p) for up2kFu
,0.2kF .
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stant valueA520. Figure 2 shows the results of a numeric
calculation ofN(v) from Eq. ~10! for three different inter-
action strengths; the inset compares the numerically ca
lated effective exponentav(v)[d ln@N(v)#/d ln(v), with the
analytical result obtained from Eqs.~11! and ~12!:

av~v!5
AV0

4
ln1/2S vs

v D1
ln21/2~vs /v!

4AV0

2
1

2
. ~13!

One sees that the fit is very good~the small differences ap
pearing atv/Ef;0.01 arise from noise in the numerical ca
culation!.

The two crucial energy scales defined byN(v) arevs and
v* at which av(v* )51, corresponding tov* ;vse

234/V0

!vs . In the high-energy regionv.vs , one has essentially
noninteracting behavior. Forv* ,v,vs , one has a LL with
a scale-dependent exponent. Forv,v* , av.1 andN(v)
is concave upwards at smallv, suggesting a ‘‘pseudogap’’ in
the electronic density of states. For most real QWR syste
V0 is about 1–5 depending on«0 and vF , and thusv* is
typically many orders of magnitude smaller thanvs . In our
calculation, using QWR parameters from Ref. 5, we ha
vs;100 meV andv* ;1024 meV. For extremely smal
v!v* , Eq. ~13! gives av;(AV0/4)ln1/2(vs /v), an ap-
proximate form used earlier in the literature.9,10 However, as
seen from the inset of Fig. 2, the leading logarithmic div
gence is so weak that in all physically relevant regimes
other two terms in Eq.~12! are needed for quantitative acc
racy. On the other hand, the constant~scale-independent! ex-
ponent used in Ref. 6 for nanotubes is also not an adeq
approximation for the small energy region (v,0.05EF) ei-

FIG. 2. Calculated density of states,N(v), with respect to en-
ergyv for the same system as Fig. 1. Different line styles repres
different interaction strengths as indicated. The inset is the effec
exponentav obtained by taking the logarithmic derivative ofN(v).
The numerically calculated curves are well fitted by the analyt
expression~dash-dotted lines! of the exponent from Eq.~13! at the
correspondingV0’s and vs520qsvFAV0. The stars are the first
order term of Eq.~13! only, for V051.21, showing that the widely
used leading logarithm approximation leads to factor of 2 error
19330
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cable fitting formulas for the effective exponents in the Co
lomb Luttinger liquid.

The scale-dependent exponent also appears in
single-particle spectral functionr(q,v)5(1/2p)@G(q,v)
1G(2q,2v)]; however, the scale-dependent velocity
Eq. ~5! is more important. To introduce our results, w
briefly summarize known results for a short-ranged repuls
interaction in the spinless LL model.13 At fixed q, one defines
three v ranges: ~i! r(q,v)50 for uvu,vq ~energy-
momentum conservation!, ~ii ! power-law singularities as
uvu→vq

1 , and~iii ! an exponential decay at scales larger th
the Luttinger cutoff. For the long-ranged Coulomb intera
tion, r(q,v)50 for uvu,vq due to the energy-momentum
conservation, but the behavior in both regions~ii ! and~iii ! is
strongly modified. Foruvu.vs @region ~iii !#, r(q,v);exp
@2uvu/Ec(v)# with a scale-dependent cutoff

Ec~v!5
q0vFV0

4
lnS a uvu

vF
D , ~14!

because of the slow (1/q) decay of the Coulomb interactio
in the large momentum region@Eq. ~5!#.

Near threshold (vq,uvu!vs) there are two effects: the
scale dependence of the effective Luttinger exponent and
curvature of the plasmon dispersion, which prevents the
ferent boson modes from adding coherently. Thus as
decreasesv towardsvq ~considerv.0 part only! one ob-
tains first a divergencedvgv(dv)21 ~heredv[v2vq). This
divergence is cut off by curvature effects at a scalevc(q)
[Maxp,q(vp2pvq /q)'(1/4)qvFAV0ln21/2(qs /q), the
difference between the exact dispersion and a linear appr
mation. We find that forq larger thanq* ;Aqse

275/V0 @at
which gv„vc(q* )…51# the curvature effect is more impor
tant in cutting off the divergence, whereas forq,q* the
effective exponent is more important. Asdv→01 the spec-
tral function decreases rapidly, ultimately vanishing fas
than any power ofdv due to the increase of the effectiv
exponent. Thus the generic behavior is a spectral func
which increases rapidly asv is increased above thresho
vq , goes through a maximum atvpeak5vq1Dv with Dv
set by the larger ofv* andvc(q), and then decreases exp
nentially with a scale-dependent cutoffEc(v) for v
.vpeak. The suppressed spectral weight in the ne
threshold region is compensated by the slower decay at
energies, preserving the sum rule*r(q,v)dv51. In Fig. 3
we show the results of direct numerical evaluation of t
electron spectral function for the Coulomb Luttinger liqu
~solid lines! and for a short-ranged-interaction~regular! Lut-
tinger liquid with exponenta50.2, approximately equal to
the effective exponent of the Coulomb case atv50.3EF
~dashed lines!. Note that the partition theory techniques us
in Ref. 15 to simplify the evaluation for the short-range
case do not work in the Coulomb case. The shift of the p
away from the threshold is evident.

Finally, we briefly discuss the ‘‘Wigner crystal’’ correla
tion. Schultz9 observed that at long enough length scales
logarithm arising from the long-ranged Coulomb interacti
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causes the 4kF component of the density-density correlatio
to decay more slowly thanx24Kr and also more slowly than
the 2kF component, leaving a state best interpreted a
Wigner crystal. Using the notation of this paper, we obta
for the 4kF term in the structure factor,

FIG. 3. Calculated electron spectral functionr(q,v) for differ-
ent momentaq as indicated in the figure. Solid lines are from th
Coulomb interacting system~parameters are the same as Fig. 1 w
V051.21) while dotted lines are from the short-ranged interact
system with the approximate effective exponenta50.2. The two
triangles in~b! and~c! indicate the thresholdv56vq . The ripple
of the spectral function curves is the numerical error.
ad
re

in
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a
,

S4kF
~dp!;S qs

dpD 128V0
21/2ln21/2(qs /dp)

, ~15!

where dp[up24kFu. Therefore we expect to see the 4kF

divergence whenAV0ln1/2(qs /dp).8 or dp,qse
264/V0, or

in terms of temperature atT,Tw.x5vse
264/V0, which is sen-

sitive to the electron density and experimental geometry,
is in general far too small to be experimentally relevant a
is also much less than the scalev* at whichN(v) develops
a pseudogap.

Before concluding we critically discuss the various a
proximations made in our theory in the following.~i! We
have used an approximate form of the 1D Coulomb inter
tion through the simple model defined by Eq.~2!. This ap-
proximation is qualitatively correct, but the cutoff leng
scaleq0

21 is system dependent and may not be known
general.~ii ! We have neglected umklapp and other possi
~e.g., impurity-induced! large-q corrections in our calcula-
tion primarily because such corrections do not arise in se
conductor quantum wire systems which are of main inter
to us. If umklapp processes are important, that could cha
our results. We believe that our theory is the correct lead
order theory for the Coulomb Luttinger liquid and the n
glected corrections are small.

In conclusion, we have presented a systematic theore
analysis of the low-energy properties of electron syste
subject to long-ranged Coulomb interactions, including a
liable estimate of the scale-dependent Luttinger param
and apparently the first calculation of Coulomb effects on
spectral function and values for the~unfortunately extremely
low! scales at which the divergent behavior associated w
the Coulomb interaction becomes manifest.
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00081075~A.J.M.!.
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