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Prologue

Theoretical Science: logical explanation, falsifiable prediction

Theoretical Physics:

(mathematical, quantitative) descriptions about
(natural) phenomena

(repeatable by arranging experiments)

Physical laws are covariant to coordinate transformation
(have the same form for each observer) ‘o
Physical quantities are "gauge invaeiant" (Dirac)
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|. Classical Gravity

Newtonian particle mechanics:

Galilean invariant (equivalence of inertial frame)

T = ¥ — vt

t =t
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Electromagnetic (EM) wave:
Wave equations are Lorentz invariant
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EM wave propagates in constant speed in vacuum.

: P, \ rh i
o :—V,,-_ZL,,-_J-(|$,;—Q?3-|) — my— = -V Z‘[?; |1 i — ¢

o<

B = | 3'| ]

v = (1 o ;32)_1;2



|. Classical Gravity

= Particle Electrodynamics
Interplay between electromagnetic (EM) field
and sources (charged particles)

Maxwell's equations (Maxwell 1873; arr. Heaviside 1884) ... con maen assi-1579)

in his 40s.

_ 1 0 i, 1 O
V- -E = 4np V-B =0 _—

Lorentz force density (Lorentz 1892)

1

Hendrik Antoon Lorentz (1853~1928),
Nobel prize 1902 (with Zeeman)




|. Classical Gravity

Newton's gravity law Coulomb's law (EM force)
my Mo .. T 492
F=G 7 F=k 7
action-at-a-distance ~ simultaneity only good in static limit
(violation of cartesian prescriptions) mediated by EM field (Faraday)

Einstein's special relativity (1905)

Introducing Lorentz symmetry to particle mechanics

while keeping equivalence of inertial frame
- dropping observer-independent simultaneity
- postulating c=const, independent of the motion of its source.
== consistent particle electrodynamics



|. Classical Gravity

Newton's gravity law Coulomb's law (EM force)
my Mo .. T 492
F=G 7 F=k 7
action-at-a-distance ~ simultaneity only good in static limit
(violation of cartesian prescriptions) mediated by EM field (Faraday)

= Einstein's next goal:
Field theory of gravity with Newton's law as the static limit.




|. Classical Gravity

= Newton's bucket (Principia): against Aristotle, Descartes, Leibniz...

Newton: Water rotates with respect to an absolute space.
==  absolute motion

However, even Galilean relativity - the velocity of single particle has no
physical meaning - does not respect these absolute ideas.




|. Classical Gravity

= Newton's bucket (Principia): against Aristotle, Descartes, Leibniz...

Newton: Water rotates with respect to an absolute spacetime.

Einstein: Water rotates with respect to the gravitational field !!




|. Classical Gravity

elevator argument
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Newton: inertial mass = active gravitational mass = passive gravitation mass

Equivalence principle
A frame linearly accelerated relative to an inertial frame in special
relativity is locally identical to a frame at rest in a gravitational field.



|. Classical Gravity

inertial frame general frame
2t _ d? dx” dx?
— =0 - iz &
dr? d7?2 L dr dr ]

inertial force
X ' local inertial frame around Event A, X'(A)=0 (1 =0,1,2,3)
x“ . general coordinate around A

F_)J ’I
b X
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Xlx)==

el (x(A))z*
r=x(A) o -
nontrivial "tetrad" ~ gravity

metric tensor (not applicable to spinor)
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|. Classical Gravity

ds® = Gy dat dz”

Manifold endowed with a metric: Riemannian manifold
Example: In R?, one may choose

ds® = dx® + dy? + d2* ds® = dr® + r*d6* + r* sin® fdp?
100 or 10 0
g;=1010 gij=|0r* 0
001 0 0 r2sin®6
10 0
. ) K -k ij = 0 1’('?“2 0
9i;9°" = 0i g /
nverse ! 0 0 1/r*sin%6
covariant derivative of vectors D,V* =9, V" +T,,V*
1

metric connection in torsion-free space I, =

(S|

9 (Ou9ou + 0vGor — OoGur) | /"’"' /<\\
/ \

Riemann tensor ( ~ curvature) R, = 9,5, + T2, 00, —a, T, — T3, H[ R

\\‘__



|. Classical Gravity

hole argument (1912 ~ 1915)

N (Rovelli, 2004) PN

M M M M

% [3 @

active diffeomorphism passive diffeomorphism
A, B: spacetime point A intersecting point of two particle trajectories

There is no meaning in talking about the "physical" spacetime point
In "vacuum".

(Field equations + EOM of particles) must be generally covariant.

If e/ (x) is a solution, thene',(y) = %ﬁe;(m(y» Is also a solution.



|. Classical Gravity

= Einstein equation (1915)

G,u,r/ + Ag,u,r/ — _87TGT/JJ/
! !

geometry of spacetime stress tensor of matter
1
G,'.u; = R,mz — Eg,’.ﬂ/R

(Einstein tensor)

"Matter tells space how to curve, and space tells matter how to move." - J. A. Wheeler

1

"Einstein gravity" S =
167G

/ d*z\/~g R — 2;&]

cosmological constant

"No metric, no nothing." - J. Stachel
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|. Classical Gravity

= Relativistic free particles go along timelike geodesics
(back-reactions are neglected)

2 ol
dtﬁj%_r# dz" dxP

&
dr2 YO dr dr

form invariant under re-parameterization

T=art

= Light goes in null geodesic ds?=0.




|. Classical Gravity

Gravitational field has no proper energy-momentum density,
only psudo-tensors can be obtained (reference frame dependent).

non-localizability: consequence of Einstein's equivalence principle
- gravity cannot be detected at a point.

Gravitational energy-momentum

- and hence the energy-momentum of gravitating systems
- and hence the energy momentum of all physical systems
- Is fundamentally non-local.

Nester (2004): The integral of the boundary term in covariant
Hamiltonian formalism gives quasi-local energy-momentum/flux
associated with physically distinct boundary conditions.



‘ |. Classical Gravity

= Black holes
E.g. Static, Spherically Symmetric vacuum solution
(Schwarzschild 1916)
91 —1
ds? = (1 — QTU) dt? + (1 — g) dr® + r2d6® + r* sin® Odo?
light: ds?=0. , o1,
J d_-r_l_ﬂ —~ 0 asr —2M
dt r
Event horizon : coordinate singularity at r=2M
(pre-relativity: Laplace, M : ADM mass of the black hole)
Classical Information behind the event horizon will never

reach any observer sitting outside of the black hole.

"Black" hole: light signals got infinite red-shift when the source is
approaching the event horizon.




Ingoing null congruence

Singularity ——
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(D'Inverno 1992)

In Schwarzschild coordinate, only good for outside observers at rest.



|. Classical Gravity

Coordinate singularity at r = 2M can be removed by a general
coordinate transformation, e.g., Kruskal coordinate:




|. Classical Gravity

Relativistic Cosmology
1. Homogeneous and isotropic ansatz:
Robertson-Walker metric

d,},Q
1 — kr?

ds® = —dt® 4+ a*(t) + 72d6% 4 12 sin® Ad?

k=1 (topology ~ R x S?) closed, positive spatial curvature
k=0 (~R*)open, zero spatial curvature
k=-1 (-~ R*) open, negative spatial curvature

2. Perfect fluid (Weyl) 1. = (p+p)uyu, — pgu ut = (1,0,0,0)

3. Einstein equation G + Agu = —87GT,,



|. Classical Gravity

Singularity Theorem (Penrose, Hawking, Geroch, 1960s)
- Gravitation is always attractive (~ energy conditions)

If there is a trapped null surface and the energy density is
nonnegative, then there exist geodesic of finite length which

can't be extended.

A collapsing star must evolve into a spacetime singularity (where the
curvature diverges) in a black hole.

The universe must start with a spacetime singularity (bounced
universe is ruled out. )

Just like classical electrodynamics, GR predicts its own breakdown !!



|. Classical Gravity

Black hole thermodynamics (Bardeen, Carter, Hawking 1973)

The Zeroth Law (equilibrium and temperature):
Surface gravity k is constant over the event horizon.

= The First Law (change of internal energy):

Any two neighboring stationary axisymmetric solutions containing a perfect fluid
with circular flow and a central BH in it are related by

SM = %6}1 FQusTy + / Q5dT + f addN + / f5dsS

= The Second Law+&nd®py)
Area of BH does not decrease with time,
0A >0
= The Third Law (zero temperature)

It is impossible by any procedure to reduce « to zero by a finite sequence of
operations.




|. Classical Gravity

= Gravitational wave

- indirect evidence: decrease of orbital period of binary pulsar PSR
1913+16

- attempts to detect directly:
Weber's bar, LIGO, LISA,...
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ll. Semiclassical Gravity

Quantum fields in curved space

G,Lu/ + Ag;u,f/ = —81G < T;u/ >

Geometry is classical and fixed, matter fields are quantized.
- Particle concept of quantum fields is obscure,
- Regularization and Renormalization of stress-tensor are tricky
(choice of zero-point, anomaly)

Semiclassical Gravity

Geometry and expectation value of stress-tensor are solved
consistently. Backreactions of the field are considered.



ll. Semiclassical Gravity

Vacuum: ground state of the field
-ih_gtfr = Hy H ~ Z hwk [?}.k T i] Nk = (}.Lé.k
ot | . 2
Vacuum state| 0 ) is defined by ax| 0) = 0, which implies ( 0 |ix] 0 ) =0

Minkowski vacuum = no particle (field quanta) state for Minkowski observer.

(not always true in curved space)

If there exist two natural directions of time,
one has two different Hamiltonians associated with them,
which define two vacuum states that may disagree with each other.

e.g. Rindler vacuum in Minkowski space vs. Minkowski vacuum

DeWiItt: vacuum ~ new aether



ll. Semiclassical Gravity

In curved space, particle concept does not generally have universal
significance.

e.g. QFT in Rindler space (Fulling 1972, 1973; Davies 1975)

the other theory, and so on. The notion of a parti- ¢
cle is completely different in the two theories. v
The particles or quanta of the Rindley-Fock rep- /
resentation cannol be identified with the physical v

particles described by the usual quantum theory x
of the free field.

The minimal conclusion which must be drawn
from this observation is the following; I the con- N
text of the general static universe treated in Sec. o
IIA, the particle concept does not have the full
bhysical significance which it has in Minkowski
space. The theory of quantization in a static met- - S.A. Fulling, PRD7, 2850 (1973)

Resolution:

- expectation values of tensorial, local-defined quantities
(e.g. <Tw(X)>) — depend on the choice of zero-point

- operational definitions — essentially observer-dependent




ll. Semiclassical Gravity

Particle Creations in curved spacetime

Typel. Cosmological particle creation;
Time-varying background spacetime

af_?

F?QXI{(??J +wi(n)xk(n) =0

- adiabatic vacuum
TypeZ2. Black hole radiation, Unruh effect:

Out-modes are Infinitely red-shifted by static background
- trans-Planckian problem



ll. Semiclassical Gravity

Bekenstein (1973) :

BH entropy Spy = const.

A
IQ

lp = hG/c* Planck length

Black hole radiation (Hawking 1975)

w/temperature Ty = or

A

thus —
SBH )

Warning:

Not confirmed by
any experiment or
observation yet !!

A BRIEF
HISTORY OF
TIME .

FROM
THEBIG
BANG TO
BLACK
HOLES

s

STEPHEN
KING

WITH AN INTRODUCTION BY CARL SAGAN

; Gravity stretches the emitted photon //

Apair of virtual photons appears
atthe horizon because
of quantum effects

Horizon

One fallsin; the other climbs away. In the

process, they go from virtual to real .I.,‘

Hawking photon

COPYRIGHT 2005 SCIENTIFIC AMERICAN, INC.




ll. Semiclassical Gravity

= Unruh effect (Unruh 1976)

A detector uniformly accelerated in Minkowski vacuum will experience
a thermal bath at Unruh temperature:

N > 'é? sart
ha L
1 =
2k pc
Tu= 1K for a=2.4 x 1020 m/s?

- detector : point-like object with internal degree of freedom coupled to a field
- uniform acceleration : a,a® =a?=constant (a: proper acceleration)
- Minkowski vacuum: NO particle (field quanta) state of the field

for Minkowski observer

- Implicitly assumed that 7% is invariant under coordinate transformations.




|. Introduction: Black Hole Radiation and Unruh Effect

event event
. T .
horizon horizon
.

N=const =0

I=const =0

Nk X~aT?/2
3 N=const =0

I=const = 0

Schwarzchild BH in Kruskal coordinate ~ Minkowski space in Rindler coordinate

(Boulware 1975) (Padamanabhan 2005)
Detector - Detector
fixed outside _ uniformly accelerated
Equivalence

a Black Hole iIn Minkowski space

Principle




‘ ll. Semiclassical Gravity

Unruh effect

A detector uniformly accelerated in Minkowski vacuum will
experience a thermal bath at Unruh temperature.
A

1
Sg = — / A0, DD

mo T, .
Sq = [ a2 [10.0)° - 932

Environment
(field)

System
(detector, atom...)

"reservoir"

"test particle"
> System can

affect environment

density (back reaction).

matrices

S = o / ir / A2 Q(r)D(x)8* (x — (7))



ll. Semiclassical Gravity

Unruh effect
A detector uniformly accelerated in Minkowski vacuum will
experience a thermal bath at Unruh temperature.

The above "standard" statement is accurate

only at the initial moment of switching-on the coupling.

After that moment the statements make no sense beyond the
ultra-weak coupling and ultra-high acceleration limits,
namely, beyond the Markovian (memory-less) regime.

(Cf. Photon-atom bound state in quantum optics)

Further, there exists non-trivial behavior even when a = 0.
(Lin and Hu 2007)
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lll. Stochastic to Quantum Gravity

Top-down approach:
- String theory (lecture next week)
- Canonical (Loop) quantum gravity

Principles of quantum physics are good all the way down to (through)
the Planck scale.

Bottom-up approach
- Stochastic gravity

emergent relativity

Gravitation field may not be a fundamental field.



lll. Stochastic to Quantum Gravity

obtained by
integrating out the

_ _ matter part of the
Stochastic gravity total density matrix

Semiclassical Einstein-Langevin equation

((pr [J + h] \l(gpy -+ h.-py)) = TR [G + h] —+ 25}“’,

’7G 2

where g, is a solution of semiclassical Einstein equation,

Galg] + Agap = 87G(TH [g])

and &,, 1S the stochastic tensor field defined by correlators

Eaplg:1))s = 0, (Eablg:x)Ecalg:y))s = Nabed|g: x,y)

T

statistical average ~ *Vabed 9T ¥) = 5 ({tablg: 2), tealg; y)})

[\)|I—'~

tanlg: 2) = Tuplgs ) — (Tuslg )



lll. Stochastic to Quantum Gravity

Remarks:
. . cab e ) —
1. conservation: Ve¢,,[g:2) = 0 , traceless: 9 Sablgiz) =0

2. Einstein-Langevin equation is invariant under the gauge transtf.
h! = hap +Valp + Vil
where ¢, Is a stochastic vector field on the manifold.

Applications
- cosmological perturbations (structure formation)
- backreaction to BH (event horizon fluctuations)



lll. Stochastic to Quantum Gravity

Early efforts on full quantum gravity
1. Quantum dynamics of metric (DeWitt, 1960s)
2. metric perturbation as a spin-2, self-interacting gauge field on a
background spacetime (Veltman and 't Hooft..., 1970s)
- GR is not renormalizable at two-loops (Goroff & Sagnotti, 1985)
we need the counterterm

@ 1209 1
div " ¢ 9880 (1672)2

/ d-l T \/E C;‘;_g.ypg lolad AT C’Y)\T %

- higher-derivatives(R? gravity): 2-loop finite,
Supergravity : 2-loops finite



lll. Stochastic to Quantum Gravity

= Geometrodynamics: Recall Classical Canonical Gravity

Canonical analysis in ADM variable

~N

4 Einstein-Hilbert action [in metric variables]

L d*z/—g(R — 2A)

Towl = 15

4+ ADM Decomposition: introduce a foliation of spacetime M =Y x R
® Juu — Gab, No @ shift function, N: laspe function.
o ds* = gy datde’ = —N*(da®)? + qa(dz® + N°dz®)(dz® + N°dz®)

- Qabﬂmﬁ?b — N2 qabj\ra o _1/Ar2 Na/Nz
Gup = Qabir\*'rb b 9 = Nb/N:z qab . Araj\rb/j\rz

4+ After performing the Legendra transformation:

1
I[qu, 72 N, Nl = — [ dt | d®z[x®G,, —
[q by T, s ] 16?1'[ ‘[2 $[?T dab H]

o 7% = —%(K“b — Kq“'b) : momenta canonically conjugate to gus,

Kaup, = 55(—004ab + VaNy, + Vi N,) © extrinsic curvature. )

Chung-Hsien Chou Quantum Geometry and black holes Oct 4, 2006

Special thanks to Dr. C. H. Chou



lll. Stochastic to Quantum Gravity

-

S[qap. 7°, N,, N] = /dt/ d*x [7*Gap — H]
H(Gap, 7, Noy N) = N“H ,(qap, ) + N H(qap, ™)
e Super-momentum constraint: H,(qa, 7°) = wﬂcvb?r (= 0)
e Super-Hamiltonian constraint:
H (qab. ?Tab) = %(QQCQEJCI + QadQbe — qachd)ﬁabTCd - %(R(Q) — 2A)
= 1(‘3{@ [K*Ka — K* — R(q) +2A] (=0)

4 Degrees of freedom of GR in 4D:

6 pairs (gas, ™) subject to 4 constraints = 2 FIELD d.o.f.

4 The Poisson brackets are

{(7%(2), qea(y)} = 16m628%0(z,y).
{qb(7), gea(y)} = {7®(z),7(y)} =0

4+ Phase space variables: (g3, 7°)

_/

Chung-Hsien

Chou

Quantum Geometry and black holes

Oct 4, 2000



lll. Stochastic to Quantum Gravity

Canonical Quantization of GR

*
*
+

Does not require background spacetime (background independence)
Can be used for strong and weak GR fields.

Conjugate variables:
= C — 1 c C g —
{0a(2), 7 @)} rs. = 5(0,°0," +6,6,9)0°(F — 7)

Canonical Quantization :

1 i Ea
{ ] }P.B. — _[ y ]1 Qab — ab; ﬂ-ab — ﬂ'ab

ih

Metric representation: Wavefunction W|q,,]

b éﬂb@[Qab} — Qabll'r[q:zb] ' ﬁﬁb@[@ab} — ég;abm[QQb]
Constraints (First Class) (Dirac Quantization):
Ha(Gabs )W [qab) = Haldabs 5 50=) ¥ aas) = 0

< U(g',] = V[gas] if g is related to ¢, by a 3-dimensional
diffeomorphism

< W[G]. 3-geometry G € SUPERSPACE:
Space of all 3-geometries (equivalence class of 3-metrics) ¢, ~ qGas

Iff they are related by 3-dim. general coordinate transformation.



lll. Stochastic to Quantum Gravity

4 Quantum super-Hamiltonian Constraint: Wheeler-DeWitt Equation

H0[gu] ~ " (Gunot = + VA(R(g) — 20)]"¥[G] = 0

':ngb 5@.::1

Supermetric Gpeq = %(Qacqbd + Gadqbe — QabQCd)-

Symbolically,
52
[5—g2 + (R(q) — 2A)]¥[G] =0
4 Technical issues:

Ordering, Regularization, Anomalies, Explicit Solutions, of
Wheeler-DeWitt Equation.




lll. Stochastic to Quantum Gravity

4 Important conceptual issues: Where/what is physical "time” in
Quantum Gravity?

e Note: 2° is not "time". Theory is reparametrization invariant.

H does not generate "time" translation: exp (#)\I}[Q] = U[g].

4+ B. S. DeWitt [Phys. Rev. 160, 1113 (1967)]:
Supermetric G5q,,0q.q = —(0€)? + (%]52@‘4355‘4553 ie.
Glebied) = diag(—1, 2€2G4p) ; A, B =1,2,3,4,5.
G 4p: positive-definite = supermetric has signature (—, +, +, 4+, 4+, +).
" — " direction is associated with "intrinsic time" & = /32/3(det ¢)'/*.

Superspace is hyperbolic.

Super-Hamiltonian constraint has "dynamical” content.
Wheeler-DeWitt Equation:

8 32,0 & 3¢
[_5_52+@G SEAGER T 32

(R(q) — 2M)]"¥[G] =0

In simple homogeneous isotropic cosmological models (e.g. of
minisuperspace), & o [a(t)]*/? (a = expansion scale factor).



lll. Stochastic to Quantum Gravity

= Full Quantum Gravity: New variables

Chung-Hsien

The triad formulation

4+ To use a triad (a set of 3 1-forms at each point in X0)

i
Qab = € 65533

e Densitized triad: E} = Le%¢,  epek

e Additional 3 (Gauss) constraints: G;(E¢, K7) = ;s EKY =0
4 With new variables, the action of GR becomes
I[Ea K, N,,N,N] /dt/d3 E‘“KE
J\TE’H;J(E”‘ K7y — NH( EY, K7) — NG, (E"‘ K7)]
The sympletic structure now becomes
{E}(x), Ky(y)} = 8m6;050(z,y),
{Bj(2), B{(y)} = {Ki(x),K;(y)} =0

_/

Chou Quantum Geometry and black holes

Oct 4, 2000



l1l. Stoch

The Ashtekar-Barbero connection variables

-

astic to Quantum Gravity

4+ There is a natural so(3)-connection (spin-connection I'}) that defines

the notion of covariant derivative compatible with the dreibein
o i i Ik
d[aeb] ‘I_ € jkrfaeb] —= 0

e Ashtekar-Barbero variable: A =T + K
e v : Immirzi parameter, v € R — {0}.

4 With the connection variables, the action becomes

I[Ef, A} N,.N,N’| = / dt / dr[ErA!
—N°H, (B¢, Al) = N H(E;, Al) — N'G(E}, A)]
o Hy(F?, Al) = E9F}, — (1+ ) KjG; =

o B{EY i 2\ i i
o H(ET, Aj)—\/ﬁ( Tl — 21+ 9*) KL K}) =0

o G,(E!,Al)=D,E! =0

_/

Chung-Hsien Chou

Quantum Geometry and black holes

Oct 4, 2006



l1l. Stoch

astic to Quantum Gravity

-

*

e where F', = J,A, — O,A% + EijkAf;A{f and
The Poisson bracket of the new variables are
{Ej(z), A(y)} = 8mydydso(z.y),
{Ef(2),E}(v)} = {Al(x).Ay(y)} =0
Phase space variables: (A?, Ef)

Series of (Canonical) transformations:

Metric variables: (gqs, m°)

— (€qi, ™)+ 3 gauge constraints (Gauss' Law)

— (FE%, K!)+ Gauss' Law

— (E*, A~ =T" —iK!)+ Gauss' Law (Ashtekar Variable)

— (F¢, AL =T 4+ yK!)+ Gauss' Law (Ashtekar-Barbero Variable)
(related discussion: C.H.C, R.H. Tung, H. L. Yu, PRD 72, 064016 (2005))

_/

Chung-Hsien Chou

Quantum Geometry and black holes

Oct 4, 2006



lll. Stochastic to Quantum Gravity

Conceptual Breakthroughs

4 ™

4 Distinction between geometrodynamics and gauge

dynamics is bridged. ldentify £ as the momentum
conjugate to the gauge potential A’;
= (B, A') phase space identical to Yang-Mills Theory.

4 Quantum States can be wavefunctions in A-representation

U[A], with £ = (82—?5)& All manipulations done on

gauge variables.

- _/

Chung-Hsien Chou Quantum Geometry and black holes Oct 4, 2006




lll. Stochastic to Quantum Gravity

Technical Breakthroughs

4z ™

4 Constraints much simpler:
4 Exact solution found (e.g. Chern-Simons state, in field theory variables)
4 Loop variables: Wilson loops: holonomy elements.

e Gauss's constraint solved by W[Wilson loops in 4] ;

e H, = 0 solved by W[knot classes of Wilson loops in AJ.

4 Super-Hamiltonian constraint still difficult, but can be made

well-defined:
e Volume V' and area .4 operators : well-defined operators acting on

loop and spin network states and have discrete spectra.
4 Derivation of horizon entropy, both for black hole and cosmological

horizons.
e Black hole evaporation via transition from higher A states to lower

A states.

_/

Chung-Hsien Chou Quantum Geometry and black holes Oct 4, 2006




lll. Stochastic to Quantum Gravity

Quantization of area
4 Rovelli and Smolin (1994); Ashtekar, Lewandowski et al (1995): given

a surface
A(S):fﬁnaEfnbEfdQJ
S

4 The quantum area spectrum is

A(S)[S) =8my Y Vir(ip +1)|5)

4+ Why is geometry discrete ?

e The value of a triad in a given point is conjugate to the connection
iIn the same point but Poisson commute with values of the

connection in any other points.
e The flux operator will only notice intersection points.
e The eigenvalues of the flux operator: discrete.
e Triad — metric — length, area, volume.... Geometry is discrete.
e The result is topological and background independent.

e The spin of the lines of a spin network can be viewed as
"quanta of area”.



Stochastic to Quantum Gravity

Remarks on Loop Quantum Gravity

- loop (holonomy) variable:
diffeomorphism (general coordinate transformation) invariant
and background independent

- finite

- Lorentz symmetry is violated below Planck scale (aether)

Comments

- cannot predict anything at large length scale or in low-energy limit
(Baez, 2004), or
cannot show the ground state is semiclassical, or an emergence
of classical spacetime (Smolin, 2005)



IVV. Concluding Remarks




I\VV. Concluding Remarks

Even if QG theory comes true, we still have outstanding work in
theoretical physics:

guantum to classical,
micro to macro

3 pillars of fundamental physics:

general relativity, quantum field theory, statistical mechanics
...... BH entropy

- Revolution is still on-going.
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