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Overview

➫ Introduction to low dimensional systems:
• zero dimensions- quantum dots
•one dimension- quantum wires
• two dimensions- quantum wells and barriers
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Defining low-dimensions

L

W

zero dimensions one dimension
L ∼ few nanometers W ∼ few nanometers

T

blah
blah
blah
two dimensions
T ∼ few nanometers
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Quantum dots

➫ Fabrication
➫ Applications
➫ Example of quantum dots as quantum computing qubits.
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Fabrication

➫ small crystals (nanocrystals) of one material buried in
another material with a larger band gap, e.g., CdSe crystals
in ZnSn.
➫ Lattice mismatch between substrate and deposited
material can lead to quantum dot regions, called
self-assembled quantum dots.
➫ Doping or etching can provide individual quantum dots.
➫ Sizes are typically:
nanocrystals: 2-10nm
self-assembled: 10-50nm
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Nanocrystal size and colour
..
Large dot: red due to
closely spaced energy levels
Small dot: blue due to
widely spaced energy levels
blah
blah
“
“
“
“
bang gap ∝ 1/size2

“
“
“
“
“
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Applications of quantum dots

➫ lasers, amplifiers and sensors: zero-dimensional systems
have sharp DOS giving them superior transport and optical
properties.
➫ Solar cells: more efficient than conventional cells.
➫ Colour displays: LCDs require colour filters so a large
proportion of energy is lost, unlike quantum dots.
➫ Cosmetics: some nanocrystals are transparent to visible
light but reflect UV light (Titanium dioxide and Zinc oxide)
➫ Medical uses such as cancer treatment.
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Medical applications
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Medical applications

low dimensional systems – p. 8/50



Quantum computing

➫ Any computation
controlled by quantum
mechanical processes.
➫ Data is defined
by qubits (Quantum bits).
➫ The 0 and 1 states (0 volts
and 5 volts) of conventional
computers become
|0〉 and |1〉 quantum states.
➫ Any observable A which
has two time-independent easily distinguishable eigenstates
is a suitable qubit candidate
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Why qubits are better than bits

➫ A standard 3 bit computer can describe one of 8
configurations,
000, 001, 010, 011, 100, 101, 110, 111.
➫ A 3 qubit computer can describe these 8 configurations all
at the same time,

|ψ〉 = a1|000〉 + a2|001〉 + a3|010〉 + a4|011〉
+ a5|100〉 + a6|101〉 + a7|110〉 + a8|111〉

➫N qubits ⇒ 2N configurations.
➫ Quantum computers should be vastly faster than
conventional computers.
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General execution

➫ Initialize all qubits to |0〉.
➫ Run the algorithm.
➫ Read each qubit.
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General execution

➫ Initialize all qubits to |0〉.
➫ Run the algorithm.
➫ Read each qubit.
➫ Store the read data.
➫ Run the above 4 steps several times and determine the
correct solution statistically.

Eg: at the end of the algorithm a qubit has the state

|ψ〉 =
8

10
|0〉 +

6

10
|1〉

The state of this qubit can be read as either |0〉 or |1〉, but
most of the readings will be |0〉 so |0〉 is the correct result.
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What can quantum computers do?

➫ Not every type of calculation will be best performed by
quantum computers.
➫ Simple example- the password cracker

•Find a solution to a problem, where the only way to
solve the problem is choose a solution and check it.

•There are n possible solutions which take equal time to
check.

•On average we would need to check n/2 times but a
quantum computer needs to check

√
n times.

low dimensional systems – p. 12/50



DiVincenzo criteria for quantum computers

➫ Information storage: need a large number of qubits.
➫ Initial state: must be able to set all qubits to |0〉 at the end
of every computation.
➫ Isolated: to prevent decoherence.
➫ Gate implementation: need a method to change the state
of the qubit in a precise way in a limited time period.
➫ Read out: need a method to read the final result.
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Control the coupling between qubits

Heisenberg Hamiltonian between two spins

H = J(t)SL.SR

where the coupling is controlled by J .
On: J 6= 0. Off: J = 0.
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Molecular quantum computers

Malonic acid
Blue: O, White: H
Black: 13C
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Solid state quantum computer
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Quantum dot conclusion

➫ Quantum dots have many applications, some of which are
already realized but many require improved fabrication
techniques.
➫ One possible application is a quantum computer but gate
manipulation is difficult.
➫ Although other materials have been more successful as
quantum computing qubits, they also have their limitations.
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Quantum wires

➫ Carbon nanotubes
➫ Nanotube applications
➫ Some analytic results
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The fullerenes

Spheres, ellipsoids or tubes of carbon
blah blah blah blah
blah blah Buckminsterfullerene (C60)
blah blah
blah blah blah blah blah blah blah blah blah
Carbon nanotube
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graphene lattice
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Fullerene examples
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Fullerene quantum computer
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Quantum wires: carbon nanotubes

➫ Impressive strength:
• tensile strength:

63 GPa (steel: 1.2GPa).
•Young’s modulus:

1000 GPa (steel: 200 GPa).
➫ Metallic or semiconducting
depending on the structure
(armchair, zigzag or chiral)
➫ Occur naturally, but
even small defects will seriously
affect a nanotube’s performance.
➫ Synthesis is expensive.
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Nanotube applications
.
➫ Most applications use
multi-walled carbon nanotubes
as they are easier and cheeper
to produce.
➫ Cables, sports gear,
clothes, body armor
➫ Nanoelectronics
➫ Medical applications
➫ Fuel cells
➫ Field emission display
(FED) TV
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Carbon nanotube fabric
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Carbon nanotube bicycle
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Carbon nanotube transistor
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Field emission display (FED) TV
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Graphene Hamiltonian

Hubbard model Hamiltonian:

H0 = − t
∑

r∈R,α

[c†1α(r)c2α(r + a+ + d) + c†1α(r)c2α(r + a− + d)]

− t⊥
∑

r∈R,α

[c†1α(r)c2α(r + d)] + h.c
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a± = a(±1/2,
√

3/2), d = a(0,−1/
√

3)

.

.
Where R = n+a+ + n−a−. .
.
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Energy spectrum

We can diagonalize the Hamiltonian using the Fourier
transform

ciα(r) =
1√
Ni

∑

k

ciα(k)eir.k

=⇒ H0 = −
∑

k,α

(

c†1α(k), c†2α(k)
)

(

0 h(k)

h(k)∗ 0

)(

c1α(k)

c2α(k)

)

with
h(k) = 2t cos(akx/2)eiaky/2

√
3 + t⊥e

−iaky/
√

3.

The energy can be shown to be ǫ(k) = ∓|h(k)|.
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Zero energy gap

If h(k) = 0 the two bands meet =⇒ a conductor
The lowest momentum for h(k) = 0 when t = t⊥:

Dirac points : K =

(

±4π

3a
, 0

)

, K =

(

±2π

3a
,± 2π

a
√

3

)

.

.
Near Dirac points:

ǫ(k) = ∓ v(k)|k − K|,
v(k) =at

√
3/2
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Dirac points
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Conducting carbon nanotube

➫ A carbon nanotube has a finite
circumference C which quantizes
the momentum around the tube.
➫ A nanotube
is conducting if the quantized
momenta matches a Dirac point.
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Conducting carbon nanotube

➫ A carbon nanotube has a finite
circumference C which quantizes
the momentum around the tube.
➫ A nanotube
is conducting if the quantized
momenta matches a Dirac point.
➫ Armchair:
quantized along the y direction,
ky = 2πn/C = 2πn/

√
3aNy.

If n = 0, ky = 0, Dirac point K =
(

±4π
3a , 0

)

.
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Conducting carbon nanotube

➫ A carbon nanotube has a finite
circumference C which quantizes
the momentum around the tube.
➫ A nanotube
is conducting if the quantized
momenta matches a Dirac point.
➫ Armchair:
quantized along the y direction,
ky = 2πn/C = 2πn/

√
3aNy.

If n = 0, ky = 0, Dirac point K =
(

±4π
3a , 0

)

.
➫ Zigzag: is quantized along the x direction,
kx = 2πn/C = 2πn/Nxa.

If Nx = 3n, kx = 2π/3a, Dirac point K =
(

±2π
3a ,± 2π

a
√

3

)

.
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Graphene

➫ Graphene is a single sheet of graphite, one atom thick.
➫ It can be 2D or cut thin to make a 1D graphene ribbon.
➫ Strong, thermally conductive, electrically conductive.
➫ Cheaper and easier to make than carbon nanotubes.
➫ Easier to integrate into electronic devices than nanotubes.

blah
blah
blah
Graphene transistor
blah
blah
blah
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Quantum wire conclusion

➫ A promising candidate for a practical quantum wire is a
carbon nanotube.
➫ But due to engineering difficulties a graphene ribbon may
be better.
➫ Both these materials have many potential applications,
notably in nanoelctronics.
➫ Limitations at this point are mainly due to difficulties in
constructing pure, regular samples of significant size.
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2D wells/barriers

➫ Layered structures
➫ Example of a 2D barrier between two magnetic materials
(magnetic tunnel junction- MTJ)

•evaluate the conductance
•evaluate the tunelling magnetoresistance (TMR)
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Layered structures
.
➫ A quasi-2D system
forms within each
thin layer.
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Layered structures
.
➫ A quasi-2D system
forms within each
thin layer.
➫ Magnetic
tunnel junction
(MTJ): a thin insulator
(∼ 1nm) separating
two magnetic materials.
➫ The magnetism is
pinned in one material
while in the other it is
free to rotate.
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Tunnelling magnetoresistance (TMR)

➫ Tunnelling magneto resistance (TMR): when the current
through the junction is highly dependent on the orientation
of the magnetizations.
➫ Current is maximized when the magnetism in the two
materials are parallel and minimized when anti-parallel

TMR =
I↑↑ − I↑↓
I↑↓

➫ TMR can be up to 50% but only at low temperatures when
using ferromagnets.
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Julliere model of TMR

F1 I F2 F1 I F2

E E E E

Nm1 Nm2 Nm1

NM2NM1 NM2 NM1

Nm2

minority spin

band

majority spin

band

➫ Current ∼ density of states

I↑↑ ∼ Nm1Nm2 +NM1NM2 I↑↓ ∼ Nm1NM2 +NM1Nm2
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Hamiltonian and energy

H = − ~
2

2m∂
2
r − ∆

2

(

1 0

0 −1

)

Θ(w/2 − |z|) + UΘ(|z| − w/2)

z−w/2 w/2

µ

∆

U

EMm M
′

m
′

➫ Magnetic materials:
•majority band: ~kM/2m = E + µ+ ∆/2
•minority band: ~km/2m = E + µ− ∆/2

➫ Insulator: ~k/2m = E + µ− U
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Wave functions in magnetic materials
Majority band particle entering LHS:

ΨL(z) =

(

1

0

)

eikz
Mz + CMM

(

1

0

)

e−ikz
Mz

+ CMm

(

0

1

)

e−ikz
mz

ΨR(z) = R̂

[

CMM ′

(

1

0

)

eikz
Mz + CMm′

(

0

1

)

eikz
mz

]

Rotation matrix

R̂ =

(

cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

)
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Wave function in insulator

ΨI(z) =

(

A+
1

A+
2

)

eikzz +

(

A−
1

A−
2

)

e−ikzz.

➫ kz can be real (quantum well)
or imaginary (quantum barrier)
➫ By matching the wave functions and their derivatives at
the boundaries we can evaluate all the coefficients.

ψL(−w/2) =ψI(−w/2), ψR(w/2) =ψI(w/2)

∂zψL(−w/2) =∂zψI(−w/2), ∂zψR(w/2) =∂zψI(w/2)
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Solutions of the Transmission coefficients
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Transmission probability:

Tab =

{

|Cab|2kz
b/k

z
a, kz

b , k
z
a > 0

0, otherwise
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Landauer formula for current density

Jab = e

∫

d3ka

(2π)3
[f(Ea) − f(Ea + eV )]Tabvza

➫ Fermi-Dirac distribution:

f(Ea) =
1

eβ(Ea−µ) + 1

➫ Voltage across MTJ: V
➫ Velocity z-component: vza = ~kz

a/m
➫ Conductance

G(θ) =
1

V

∑

ab

Jab
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Conductance
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Tunneling magnetoresistance
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Applications of MTJ

➫ Magnetic read heads
in high density HDD and MRAM:

•data stored by
setting the orientation of
the variable magnetization

•data read by
measuring the TMR
➫ The variable magnetization
is controlled by a magnetic field.
blah
blah
blah
blah
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MTJ array
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Giant magnetoresistance

➫ Observed in magnetic-material/metal/magnetic-material
junctions
➫ Like TMR, the resistivity is large when the magnetic
materials are antiparallel and small when parallel ⇒ GMR
➫ The GMR is due to scattering.
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Enhanced GMR
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Quantum well/barrier conclusion

➫ TMR and GMR are dependant on both the electronic and
spin properties of the material ⇒ spintronics.
➫ The main application for layered devices with either TMR
or GMR memory storage applications such as MRAM and
disk.
➫ New applications include logic gates (‘Magnetic logic’).
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