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Abstract

Two methods of atomic many-body theory are

introduced. Our discussion is based on the relativistic

formulation. First, we have the many-body perturbation

theory (MBPT). Then, we discuss the configuration

interaction (CI) method. We conclude our lecture with

a sample MBPT calculation of excitation energy for the

divalent ion, Phosphorus IV.
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Many-body Perturbation Theory (MBPT)∗

We begin with the Dirac equation

HΨ = EΨ,

where

H0 =
N
X

i

„

cα·p + βc
2 −

Z

r
+ u(r)

«

i

V = −

N
X

i

u(ri) +

N
X

i<j

1

rij

.

Here, u(r) is the effective central potential. The Breit

interaction can also be included in V to take account of

magnetic interaction and retardation

bij = −
1

2rij

"

αi · αj +
(αi · rij)(αj · rij)

r2
ij

#

,

if high-precision calculations are needed.

The 0th-order eigenvalue equation is

H0Φ
β

= E
β
0 Φ

β
,

∗Atomic unit a.u. is adopted, except for Table 1, where energy is expressed in cm−1.
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and the eigenfunctions and eigenvalues are

Φβ = A{φi(1)φj(2) · · ·φv(N)},

E
β
0 =

N
X

i

εi,

where A is the anti-symmetrization operator.
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Dirac-Hartree-Fock (DHF) Solution

The DHF approximation is commonly employed to obtain

the 0th-order wavefunctions and energies. We set u(r) =

uDHF(r), where the DHF potential (non-local) operator is

defined through its matrix elements between a complete set of

orbitals

〈i|uDHF|j〉 =

occupied
X

b

D

ib
˛

˛

˛r
−1
12 (1 − P12)

˛

˛

˛ jb
E

.

It is convenient to define a DHF (one-electron) operator

hDHF = cα·p + βc
2
−

Z

r
+ uDHF(r),

then the 0th-order Hamiltonian can be compactly expressed as

H0 =
N
X

i

hDHF(ri).
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Partitioning of Functional Space

P =
X

α

|α〉〈α|

Q =
X

β 6=α

|β〉〈β| = 1−P.

Intermediate normalization is defined via

〈Ψ0|Ψ〉 = 1.
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Brillouin-Wigner (BW) Perturbation Expansion

First, we write the Dirac equation as

(E − H0)QΨ = QV Ψ.

Then, we define an E-dependent resolvent TE, which

commutes with Q,

TE(E − H0) = Q.

Component of the wavefunction in Q space is

QΨ = TEV Ψ.

The exact wavefunction written in terms of TE is

Ψ = Ψ0 + TEV Ψ.

BW expansion – For wavefunction:

Ψ = (1 + TEV + TEV TEV + · · · )Ψ0.

For wave operator:

ΩE = 1 +
Q

E − H0

V +
Q

E − H0

V
Q

E − H0

V + · · · .
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For energy:

E = E
(0)

+ E
(1)

+ E
(2)

+ · · · ,

where

E
(0)

= E0 = 〈Ψ0|H0|Ψ0〉

E
(n) =

D

Ψ0|V |Ψ(n−1)
E

, n ≥ 1.

The resolvent in spectral-resolution form is

TE = TE

X

β

|β〉〈β|

=
X

β 6=α

|β〉〈β|

E − E
β
0

.

Low-order corrections for wavefunction and energy are

Ψ
(1)

=
X

β 6=α

|β〉〈β|V |α〉

E − E
β
0

Ψ(2) =
X

βγ 6=α

|β〉〈β|V |γ〉〈γ|V |α〉

(E − E
β
0 )(E − E

γ
0 )

,
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E
(1)

= 〈α|V |α〉

E
(2)

=
X

β 6=α

〈α|V |β〉〈β|V |α〉

E − E
β
0

E
(3) =

X

βγ 6=α

〈α|V |β〉〈β|V |γ〉〈γ|V |α〉
“

E − E
β
0

”

(E − E
γ
0 )

.
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Green’s Function Operator†

We consider an inhomogeneous equation

(E − H)Ψ(x) = φ(x), x = all coordinates,

and define a general resolvent

T (z) = (z − H)
−1

.

The true Green’s function operator is

G
+(ε) = (ε − H + iη)−1

, η > 0.

The wavefunction is written formally as

Ψ(x) = lim
η→0

G
+
(E)φ(x).

Analogous with TE is the “0th-order” Green’s function

operator

G
+
0 (ε) = (ε − H0 + iη)

−1
.

Using the identity

(ε − H0 + iη) = (ε − H + iη) + V,

†Green’s function operator is also called propagator.
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we obtain the Dyson Equation

G
+(ε) = G

+
0 (ε) + G

+
0 (ε)V G

+(ε).

The true Green’s function operator is then expanded as

G
+(ε) = G

+
0 (ε) + G

+
0 (ε)V G

+
0 (ε)

+ G
+
0 (ε)V G

+
0 (ε)V G

+
0 (ε) + · · · .

Relation between Green’s function operator and (BW) resolvent

is

TE = QG
+
0 (E).
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Rayleigh-Schrödinger (RS) Perturbation
Expansion

We consider a group of states satisfying the Dirac equation

HΨa = E
aΨa

, a = 1, 2, . . . , d.

Using the definition of the wave operator

PHΩΨ
a
0 = E

a
Ψ

a
0,

we can define an effective Hamiltonian

Heff = PHΩP.
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Generalized Bloch Equation

We then have an eigenvalue equation for Heff:

HeffΨ
a
0 = E

aΨa
0.

The Bloch equation for complete degeneracy is

(E0 − H0)ΩP = V ΩP − ΩPV ΩP,

and the Generalized Bloch equation is

[Ω, H0]P = (V Ω − ΩPV Ω)P.

For a completely-degenerate case, we are able to define an

E-independent resolvent

T =
Q

E0 − H0

.
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Wave Operator Ω

Low-orders of the wave operator are

Ω(0)
P = P

Ω
(1)

P =
Q

E0 − H0

V P

Ω(2)
P =

Q

E0 − H0

V
Q

E0 − H0

V P

−

„

Q

E0 − H0

«2

V PV P, etc.

For general, i.e. noncompletely-degenerate, systems, low-orders

of the wave operator are given by

Ω(0)
P = P

h

Ω(1)
, H0

i

P = QV P

h

Ω(2)
, H0

i

P = QV Ω(1)
P − Ω(1)

PV P

h

Ω(3)
, H0

i

P = QV Ω(2)
P − Ω(2)

PV P

− Ω(1)
PV Ω(1)

P, etc.
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Eigenenergy

The exact energy using intermediate normalization is

E
a = 〈Ψa

0|H|Ψa〉 = E
a
0 + 〈Ψa

0|V Ω|Ψa
0〉.

Low-order corrections for the energy are

E
a,(1)

= 〈Ψ
a
0|V |Ψ

a
0〉

E
a,(2)

=
D

Ψ
a
0

˛

˛

˛V Ω
(1)
˛

˛

˛Ψ
a
0

E

E
a,(3) =

D

Ψa
0

˛

˛

˛V Ω(2)
˛

˛

˛Ψ
a
0

E

, etc.
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Variational Method

We review the variational method briefly, before introducing

the configuration interaction (CI) method in the next section.

Let E[φ] be the functional

E[φ] =
〈φ|H|φ〉

〈φ|φ〉

=

R

φ†Hφdτ
R

φ†φdτ
,

where φ is an arbitrary normalizable (square-integrable)

function. In the relativistic formulation, the trial function

φ is a two-component column vector. We expand φ as

φ =
X

n

anΨn,

where Ψn’s are the orthonormal eigenfunctions of H.

We find

E[φ] =

P

n |an|
2En

P

n |an|2
.

Subtracting the lowest eigenenergy E0 from both sides gives a

minimum principle for the ground-state energy

E0 ≤ E[φ].
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If the trial function φ is made orthogonal

to energy eigenfunctions corresponding to eigenvalues

E0, E1, E2, . . . , Ei (in ascending order). We have the

orthogonality conditions

〈Ψn|φ〉 = 0, n = 0, 1, . . . , i.

The functional then becomes

E[φ] =

P

n=i+1 |an|
2En

P

n=i+1 |an|2
.

Subtracting Ei+1 from both sides gives

Ei+1 ≤ E[φ].

We usually only have approximations {φn, n =

0, 1, . . . , i} for the eigenfunctions {Ψn, n = 0, 1, . . . , i},

then the orthogonality conditions are not fulfilled exactly. Thus,

the minimum principle for energy of the excited state does

not hold. To take an example, suppose we have obtained a

normalized wavefunction φ0(≈ Ψ0). For a trial function φ1

orthogonal to φ0, i.e. 〈φ0|φ1〉 = 0, we can derive the relation

(an exercise for students)

E1 − ε0(E1 − E0) ≤ E[φ1], where

ε0 = 1 − |〈Ψ0|φ0〉|
2

> 0.

In general, if φ0 is a good approximation to Ψ0, the violation

of E1 ≤ E[φ1] will be mild, since ε0 will be small.
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The minimum principle is the basis of the Rayleigh-Ritz

variational method. First, we select a trial function φ which

depends on a number of variational parameters, then this

function is used to evaluate E[φ]. After that, we minimize

E[φ] with respect to the variational parameters. The resulting

functional (energy) is the best approximation to the eigenenergy

allowed by the form chosen for φ.
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Configuration Interaction

Since the true state of an atomic system (atom or ion)

contains contributions from more than one configuration,

we construct a trial function (CI wavefunction) as a linear

combination of configuration functions (Slater determinants)

φ =

N
X

n=1

cnΦn,

where Φ1, Φ2, . . . , ΦN are linearly-independent determinants,

corresponding to different occupation scheme, and

c1, c2, . . . , cN (called the mixing coefficients) the linear

variational parameters. Only configuration functions having

the same angular-momentum values as the state considered

(φ) can contribute to the expansion.

We find for the energy functional

E[φ] =

PN

n′=1
n=1

c∗
n′cnHn′n

PN

n′=1
n=1

c∗
n′

cn∆n′n

,

Hn′n = 〈Φn′|H|Φn〉

∆n′n = 〈Φn′|Φn〉

= δn′n if Φn’s orthonormal.
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∆ is referred to as the overlap matrix. To minimize E[φ], we

rearrange its formula as

E[φ]
N
X

n′=1
n=1

c
∗
n′cn∆n′n =

N
X

n′=1
n=1

c
∗
n′cnHn′n.

Setting

∂E

∂cn

= 0

 

or
∂E

∂c∗
n′

= 0

!

,

for all n (or n′), gives a set of N homogeneous linear equations

N
X

n=1

(Hn′n − ∆n′nE)cn = 0,

for n′ = 1, 2, . . . , N . To obtain a non-trivial solution, we

require

det(Hn′n − ∆n′nE) = 0 (secular equation).

Its solution set consists of N energy values (written in

ascending order) and N mixing-coefficient vectors

E = Ei−1 and c = (c1, c2, . . . , cN)i−1, i = 1, 2, . . . , N,

where E0 is an upper bound to the ground-state energy, and

the other E’s are upper bounds to excited-state energies. The

c’s (when combined with the configuration functions) give the

corresponding approximate eigenfunctions of the system.
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MBPT Application–Divalent Ion

(3s3p) 3P0 (3s3p) 3P1 (3s3p) 3P2

E(0+1) 67021.3 67242.9 67696.5

E(2) 110.3 116.0 130.1

B(2) -0.9 0.3 1.3

E(3) 807.4 807.6 807.6

ELamb -21.1 -20.9 -20.5
Etot 67917.1 68146.0 68615.0

Eexpt 67918.0 68146.5 68615.2

∆E -0.9 -0.5 -0.2

(3s3p) 1P1

“

3p2
”

1D2

“

3p2
”

3P0

E(0+1) 120479.5 180554.7 165971.6

E(2) -20906.0 -61699.8 -2027.7

B(2) -15.8 -8.4 -5.2

E(3) 6470.7 48769.6 1089.6
ELamb -20.7 -43.6 -44.0

Etot 106007.7 167572.4 164984.3
Eexpt 105190.4 166144.0 164941.4

∆E 817 1428 43
“

3p2
”

3P1

“

3p2
”

3P2

“

3p2
”

1S0

E(0+1) 166200.8 166633.3 212201.4

E(2) -2013.9 -2008.1 -23060.7

B(2) -4.8 -2.7 -24.6

E(3) 1087.9 1077.3 5810.7

ELamb -43.8 -43.4 -41.3
Etot 165226.1 165656.5 194885.6

Eexpt 165185.4 165654.0 194591.8

∆E 41 3 294

Table 1: Comparison of excitation energies in cm−1 for the

P3+ ion.
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Results in Table 1 are obtained using the Rayleigh-

Schrödinger perturbation expansion. Phosphorus IV
`

P3+
´

is

an Magnesium-like ion. Second-order Breit correction B(2)

and lowest-order Lamb shift ELamb are also evaluated. The

maximum relative error for excitation energy through third

order of MBPT, Etot, is less then 0.9%. Experimental

energies are taken from the NIST’s online database:

physics.nist.gov/PhysRefData/ASD/index.html.
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