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Abstract

Two methods of atomic many-body theory are
introduced. Our discussion is based on the relativistic
formulation. First, we have the many-body perturbation
theory (MBPT). Then, we discuss the configuration
interaction (Cl) method. We conclude our lecture with
a sample MBPT calculation of excitation energy for the
divalent ion, Phosphorus V.
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Many-body Perturbation Theory (MBPT)*

We begin with the Dirac equation

HU = EU,
where
al Z
Hy = cop + B — = + u(r )
o = 3 (cwptat — T ruin)
N N4
Vo= Sk
i i<y |
Here, w(r) is the effective central potential. The Breit

interaction can also be included in V to take account of
magnetic interaction and retardation
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if high-precision calculations are needed.
The Oth-order eigenvalue equation is

Hy®" = Eo”,

* Atomic unit a.u. is adopted, except for Table 1, where energy is expressed in cm_l.
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and the eigenfunctions and eigenvalues are

o7 = A{di(1)$;(2) - u(N)},
Zeia

where A is the anti-symmetrization operator.

Ey
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Dirac-Hartree-Fock (DHF) Solution

The DHF approximation is commonly employed to obtain
the Oth-order wavefunctions and energies. We set u(r) =
upnr(7r), where the DHF potential (non-local) operator is
defined through its matrix elements between a complete set of
orbitals

occupied

(iluonelg) = > (ib|rip (1 = Pi)| jb) .
b
It is convenient to define a DHF (one-electron) operator

A
honr = ca-p + e’ — o + upnr(r),

then the Oth-order Hamiltonian can be compactly expressed as

N
Hy = Z hoHF (7).
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Partitioning of Functional Space

P = > |a)e

Q = Y IA =1-P.
f#a

Intermediate normalization is defined via

(To|T) = 1.
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Brillouin-Wigner (BW) Perturbation Expansion

First, we write the Dirac equation as
(E — Hy)QU = QV .

Then, we define an FE-dependent resolvent T, which
commutes with Q,

Ts(E — Hy) = Q.

Component of the wavefunction in ) space is
QU =TV W.
The exact wavefunction written in terms of T'g is
U =V,+4+ TV,
BW expansion — For wavefunction:
UV=A+TgV +TgVIEV +---)V,.

For wave operator:

Q Q Q
Qp=14—"_V 1% V4
& +E—HO+E—HOE—H0+
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For energy:
E:E(O)+E(1)+E(2)—|—--- :
where

EY = Ey= (Ug|Hy| o)
E™ = <\IJO|V|\IJ("_1)>, n>1.

The resolvent in spectral-resolution form is

Ty = 1Tg Z 18) (B
G

Low-order corrections for wavefunction and energy are

o _ Z|5><5|V|Oé>

3
. E-E

o e BBV (Ve
s X GomE-m)

ByF#a

NCTS Physics



EY = (a|V]a)

2 (o VB)(B|V]a)
Y= X E — EJ

B

2B _ (VB BIVIM (v V]a)
B%;a (E - Eg) (E — Ej)
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Green’s Function Operator!

We consider an inhomogeneous equation
(E — H)V(xz) = ¢(x), x = all coordinates,
and define a general resolvent
T(z) = (z—H) "
The true Green's function operator is
GT(e)=(—H+in)"", n>0o0.
The wavefunction is written formally as

¥ (x) = lim G (E)p(2).

Analogous with Tr is the “Oth-order” Green's function
operator

G{(e) = (e — Ho+1in) .
Using the identity

(e —Ho+in)=(e—-—H+in)+V,

TGreen's function operator is also called propagator.
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we obtain the Dyson Equation
G (e) = Gy (e) + G (e)VGT(e).
The true Green's function operator is then expanded as

GT(e) = Gg(e)+Gy(e)VGy(e)
+ GH (VG (VG (e) 4+ ---.

Relation between Green's function operator and (BW) resolvent
is

Ty = QG (E).
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Rayleigh-Schrodinger (RS) Perturbation
Expansion

We consider a group of states satisfying the Dirac equation
HYY = B0 a=1,2,...,d.
Using the definition of the wave operator
PHQU, = E“V¥y,
we can define an effective Hamiltonian

H.ge = PHQP.
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Generalized Bloch Equation

We then have an eigenvalue equation for H.g:

HegVl = E“WL.

The Bloch equation for complete degeneracy is
(Eg — Hp)QP = VQP — QPVQP,
and the Generalized Bloch equation is
2, Ho]P = (VQ — QPVQ)P.

For a completely-degenerate case, we are able to define an
E-independent resolvent

_Q
E, — Hy
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Wave Operator (2

| ow-orders of the wave operator are

QVp = p

oVp = LVP
E, — H,

QPp = Q 1%4 Q VP

Ey— Hy FE¢)— Hy

Q 2
— (—) VPVP, etc.
Eo — Hy

For general, i.e. noncompletely-degenerate, systems, low-orders
of the wave operator are given by

QVp = P
oY mlPp = Qvp
0% mlp = qQvaWp —oWpyp
O HP = Qva®pr - ao®pvp

—QWpPrvoWp, etc.
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Eigenenergy

The exact energy using intermediate normalization is
E® = (WE|H|U%) = B + (Ui VQ|ws).

Low-order corrections for the energy are

a,(l a a

B = (g|V|wg)

= (wilval )

EY = (i vaP ey, et
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Variational Method

We review the variational method briefly, before introducing
the configuration interaction (Cl) method in the next section.
Let E[¢] be the functional

(p|H|P)
(p|®)

[ ¢'Hpdr
[ ptpdr ’

E[¢]

where ¢ is an arbitrary normalizable (square-integrable)
function. In the relativistic formulation, the trial function
¢ is a two-component column vector. We expand ¢ as

¢» = Z anWn,

where W,,'s are the orthonormal eigenfunctions of H.

We find )
2n |0n|"En
El¢] = == o
2 an]
Subtracting the lowest eigenenergy F from both sides gives a
minimum principle for the ground-state energy

Ey < El¢].
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If the trial function ¢ is made orthogonal

to energy eigenfunctions corresponding to eigenvalues
Ey, Eq, Es, ..., E; (in ascending order). We have the
orthogonality conditions

(U,lp) =0, n=0,1,...,i.

The functional then becomes

Zn:H—l |CLn|2En
Zn:i—Fl |CLn|2

Subtracting ;11 from both sides gives

El¢] =

Eiy1 < E[¢].

We wusually only have approximations {¢,, n =
0,1,...,4} for the eigenfunctions {¥,,, n =0,1,...,i},
then the orthogonality conditions are not fulfilled exactly. Thus,
the minimum principle for energy of the excited state does
not hold. To take an example, suppose we have obtained a
normalized wavefunction ¢g(~ Wq). For a trial function ¢
orthogonal to ¢g, i.e. (¢o|p1) = 0, we can derive the relation
(an exercise for students)

By —eo(Er — Ey) < El¢1], where

e0 = 1—[(¥o|go)|* > 0.

In general, if ¢g is a good approximation to W, the violation
of E1 < E[¢1] will be mild, since €y will be small.
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The minimum principle is the basis of the Rayleigh-Ritz
variational method. First, we select a trial function ¢ which
depends on a number of variational parameters, then this
function is used to evaluate FE/[¢]. After that, we minimize
E[¢] with respect to the variational parameters. The resulting
functional (energy) is the best approximation to the eigenenergy
allowed by the form chosen for ¢.
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Configuration Interaction

Since the true state of an atomic system (atom or ion)
contains contributions from more than one configuration,
we construct a trial function (Cl wavefunction) as a linear
combination of configuration functions (Slater determinants)

N
¢ = Z Cn®Pn,
n=1

where @1, ®o, ..., Py are linearly-independent determinants,
corresponding to different occupation scheme, and
C1,C2,...,cn (called the mixing coefficients) the linear

variational parameters. Only configuration functions having
the same angular-momentum values as the state considered
(¢) can contribute to the expansion.

We find for the energy functional

N *
> . 1_1 CoiCnH 1y,
n=1

Elg] = = :
Zi:flzl C;/CHAn’n
n=1
An/n — <(I)n’|(1)n>

= 4,, Iif ®,'s orthonormal.
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A is referred to as the overlap matrix. To minimize E|[¢], we
rearrange its formula as

N N
E|[¢] Z Coren\,, = Z c rcnH,.
n/=1 n/=1
n=1 n=1
Setting
OF oFE
— =0 or =0],
ocy, 802,

for all n (or n'), gives a set of N homogeneous linear equations

N
> (Hy, — Ay, E)en =0,

n=1

forn” = 1,2,..., N. To obtain a non-trivial solution, we
require

det(H,., — A, E) = 0 (secular equation).

Its solution set consists of N energy values (written in
ascending order) and N mixing-coefficient vectors

E:Ei_landc:(01,02,...,01\;)1-_1, ’i:1,2,...,N,

where E is an upper bound to the ground-state energy, and
the other E's are upper bounds to excited-state energies. The
c's (when combined with the configuration functions) give the
corresponding approximate eigenfunctions of the system.
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Table 1:
P37t ion.
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MBPT Application—Divalent lon

(3s3p) °Pg  (3s3p) 5Py (3s3p) Py
g(0+1) 67021.3 67242.9 67696.5
£(2) 110.3 116.0 130.1
B(2) 09 03 13
£(3) 807.4 807.6 807.6
Elamb 211 209 205
Frot 67917.1 68146.0 68615.0
Fexpt 67918.0 68146.5 68615.2
AE 0.9 05 0.2

(3s3p) 1P1 (3p2) 1D2 (3p2) 3P0
g(0+1) 120479.5 180554.7 165971.6
£(2) -20906.0 -61699.8 00277
B(2) 15.8 8.4 5.2
£®3) 6470.7 48769.6 1089.6
Elamb 20.7 436 44.0
Erot 106007.7 167572.4 164984.3
Fexpt 105190.4 166144.0 164941 .4
AE 817 1428 43

(3p2> 3P1 (3p2) 3P2 <3p2> 150
g(0+1) 166200.8 166633.3 212201.4
£(2) 12013.9 -2008.1 -23060.7
B(2) 48 27 246
£(3) 1087.9 1077.3 5810.7
Elamb 4338 434 413
Erot 165226.1 165656.5 104885.6
Fexpt 165185.4 165654.0 104591.8
AE 41 3 294

Comparison of excitation energies in cm™ ' for the
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Results in Table 1 are obtained using the Rayleigh-
Schrodinger perturbation expansion. Phosphorus IV (P3+) IS
an Magnesium-like ion. Second-order Breit correction B®
and lowest-order Lamb shift E| ., are also evaluated. The
maximum relative error for excitation energy through third
order of MBPT, FE.y, is less then 0.9%. Experimental
energies are taken from the NIST's online database:
physics.nist.gov/PhysRefData/ASD /index.html.
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