
Abrikosov vortices in this regime are 
approximated by infinitely thin elastic 
lines with line energy
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1. The small tilt approximation

The path integral theory of thermal 
fluctuations of the flux lines in London 
appr. and melting of the vortex lattice.
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Parallel vortices repel, anti-
parallel attract, however the 
picture is more complicated 
than that: the force between 
curved vortices is of the 
vector-vector type
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Interaction is assumed mainly magnetic, thereby pair -
wise (superposition principle). Force per unit length:
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Thermal fluctuations

Thermodynamics of lines is described (in the ergodic or 
thermal equilibrium situationnns) by a statistical sum



This statistical  sum is the “line representation of 
“dual” relativistic scalar QED (Higgs model) in 3D
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Kovner, B.R. IJMPA7, 7419 (1992), MPLA8, 1343 (1993);
Sudbo et al (1999)



The small tilt approximation
This theory is too complicated. Generally all possible 
configurations including vortex loops contribute. 

However when magnetic field is not too weak, vortices 
are nearly aligned with magnetic field. In this case 
loops, overhangs… can be ignored and one develops a 
small tilt approximation.
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We can regards z as “time” and then the approximation 
is just a nonrelativistic approximation of the dual theory. 
Interaction also simplifies and becomes the 
“instantaneous” Abrikosov repulsion:
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Within this approximation the statistical sum becomes 
identical to the (Euclidean version of, namely, no 
complex “I”) the path integral of the quantum of many 
-body problem of interacting bosons:

With T analogous to     and to mass of a “particle”
and z playing a role of Euclidean time.

Nelson, PRL (1988)
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Thermal fluctuations in vortex lattice



2. The QM analogy: mean displacement 
in vortex lattice

A standard way of calculating displacement due to 
thermal fluctuations or disorder in lattice is via 
elasticity theory

Here I will employ the less rigorous 
but simpler Einstein approximation: 
a vortex is considered in a field of 
all the other vortices as if they are 
not vibrating: the cage model.

This will be enough to qualitatively map the melting 
line via Lindemann criterium



The cage model
To further simplify the calculations only harmonic part 
of the cage potential will be used.
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For very small fields                  distances are large, 
a> and the interaction is exponentially weak
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For larger inductions                the interaction is 
logarithmic

Therefore only 6 nearest neighbours at distance 
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and more neighbours should be summed up, 
resulting in
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The QM analogy for calculation of averages

Within the quantum mechanical analogy thermal 
average of a physical quantity is equivalent to 
quantum mechanical VEV
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Now we consider the thermal motion of a single vortex 
in harmonic potential: quantum mechanics of 
harmonic oscillator.
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Therefore for square of displacement       in harmonic 
oscillator ground state one obtains using the well known 
ground state of harmonic oscillator:

2r



3. Lindemann crirerium for melting of  the 
vortex lattice
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the lattice becomes unstable (spinodal) and slightly 
before that will melt into a homogeneous state 
(liquid=gas for purely repelling interactions). Typical 
values of the Lindemann constant range between

0 . 1 0 . 3Lc −�

A phenomenological model states that when the 
displacement reaches



Using the displacement calculated with QM, the 
Lindemann criterium takes a form:
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For very weak fields one obtains a logarithmic 
melting line separating the “random walk” lower 
liquid or gas from solid
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This is similar to melting of atomic solids in a sense 
that density of crystal is higher than that of liquid
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The melting line has 
a characteristic 
(Nelson’s nose) 
shape. Note that the 
Meissner phase is 
well separated from 
the crystal.

Phase diagram including thermal fluctuations



For larger fields one gets a negative power
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Near           one has to go beyond London approximation
2cH

This segment is like melting of ice: density of liquid is 
larger than that of the crystal.

The Lindemann criterium is a one phase instability 
model and provides an estimate of spinodal only. It 
does not allow to determine what kind of transition 
occurs (first, second order or KT).



To find the melting line, one has to calculate free 
energies of both phases. This has not been achieved yet 
in London approximation.
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4. Thermal depinning

The binding free energy is

0 . 1 0 . 3Lc −�

A columnar pin can be modeled well by a finite well, 
say cylindrical well of width U and size R.
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Where c is a zero of a Bessel function. Then at certain 
temperature
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It is dominated by the ground state. The ground 
state energy of a particle in a well is found by 
solving an algebraic equation

bound states disappear and vortex gets “liberated” by 
thermal fluctuations. In dynamics this temperature is 
close to the crossover from the “flux creep” to flux flow.
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The theory can be extended to include defect 
surfaces (1D well), while Lindemann criterium can 
be applied also to the columnar disorder case.



1. Type II superconductors in magnetic field provide 
a convenient laboratory for studying multisoliton
physics and beyond.

2. Convenient environment for experiments creates 
mant theoretical questions, sometimes answers.

Conclusion


