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The path integral theory of thermal

fluctuations of the flux lines in London
appr. and melting of the vortex lattice.

1. The small tilt approximation
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Abrikosov vortices In this regime are
approximated by infinitely thin elastic
lines with line energy
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Interaction Is assumed mainly magnetic, thereby pair -
wise (superposition principle). Force per unit length:
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| / Parallel vortices repel, anti-

| ) parallel attract, however the
| - picture IS more complicated
| than that: the force between
curved vortices is of the

7) X5 vector-vector type
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Thermal fluctuations

Thermodynamics of lines is described (in the ergodic or

thermal equilibrium situationnns) by a statistical sum
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This statistical sum is the “line representation of
“dual” relativistic scalar QED (Higgs model) in 3D
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Kovner, B.R. IIMPA7, 7419 (1992), MPLAS, 1343 (1993);
Sudbo et al (1999)
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The small tilt approximation

This theory Is too complicated. Generally all possible
configurations including vortex loops contribute.

5 PO

However when magnetic field is not too weak, vortices
are nearly aligned with magnetic field. In this case
loops, overhangs... can be ignored and one develops a

small tilt approximation.
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We can regards z as “time” and then the approximation
IS Just a nonrelativistic approximation of the dual theory.

Interaction also simplifies and becomes the
“Instantaneous’” Abrikosov repulsion:
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Within this approximation the statistical sum becomes
Identical to the (Euclidean version of, namely, no
complex “I’’) the path integral of the quantum of many
-body problem of interacting bosons:
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With T analogous to %z and I, to mass of a “particle”
and z playing a role of Euclidean time.
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Nelson, PRL (1988)



ermal fluctuations in vortex lattice
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2. The QM analogy: mean displacement
In vortex lattice

A standard way of calculating displacement due to
thermal fluctuations or disorder In lattice Is via

elasticity theory
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Here | will employ the less rigorous
but simpler Einstein approximation:
a vortex is considered in a field of
all the other vortices as If they are
not vibrating: the cage model.

This will be enough to qualitatively map the melting
line via Lindemann criterium
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The cage model

To further simplify the calculations only harmonic part
of the cage potential will be used.

Voo (=2 Y V(L-1)=k 1’

2 all the other 2
vortices
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For very small fields B < H_, distances are large,
a>@®a+ and the interaction is exponentially weak

V(r)=cexp|-r/A]
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Therefore only 6 nearest ne

Ighbours at distance

a~.®,/B aresignificant:
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The QM analogy for calculation of averages

Now we consider the thermal motion of a single vortex
In harmonic potential: guantum mechanics of
harmonic oscillator.

Within the quantum mechanical analogy thermal
average of a physical quantity is equivalent to
guantum mechanical VEV
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Therefore for square of displacement r? in harmonic

oscillator ground state one obtains using the well known
ground state of harmonic oscillator:
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3. Lindemann crirerium for melting of the
vortex lattice

A phenomenological model states that when the
displacement reaches

<(Ar)2 >thermal - Ciaz

disorder

the lattice becomes unstable (spinodal) and slightly
before that will melt into a homogeneous state
(liguid=gas for purely repelling interactions). Typical
values of the Lindemann constant range between

c, 10.1-0.3
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Using the displacement calculated with QM, the
Lindemann criterium takes a form:
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For very weak fields one obtains a logarithmic
melting line separating the “random walk” lower

liquid or gas from solid

T:cﬁgfexp _ % 1 = B, [ . .
B, 4 B, 2/1_ (IogT)

This i1s similar to melting of atomic solids in a sense
that density of crystal is higher than that of liquid
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Phase diagram including thermal fluctuations

B

The melting line has

a characteristic

H (Nelson’s nose)
shape. Note that the
Meissner phase Is
well separated from

\ the crystal.

Meissner
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For larger fields one gets a negative power
O c &’D
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This segment is like melting of ice: density of liquid Is
larger than that of the crystal.

Near |y one has to go beyond London approximation
c2

The Lindemann criterium Is a one phase instability
model and provides an estimate of spinodal only. It
does not allow to determine what kind of transition
occurs (first, second order or KT).
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To find the melting line, one has to calculate free
energies of both phases. This has not been achieved yet
In London approximation.
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Experiments

Show the transition is first order
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4. Thermal depinning

A columnar pin can be modeled well by a finite well,
say cylindrical well of width U and size R.

The binding free energy Is

exp{U (T)L,/T}=

Z‘lj Dr(z)exp%j
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It Is dominated by the ground state. The ground

state energy of a particle in a well is found by
solving an algebraic equation

T2
2¢R?
Where c Is a zero of a Bessel function. Then at certain

temperature
Tdepin 1 RVeU

bound states disappear and vortex gets “liberated” by
thermal fluctuations. In dynamics this temperature Is
close to the crossover from the “flux creep” to flux flow.

U(T)onzU—C
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The theory can be extended to include defect

surfaces (1D well), while Lindemann criterium can
be applied also to the columnar disorder case.
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Conclusion

1. Type Il superconductors in magnetic field provide
a convenient laboratory for studying multisoliton
physics and beyond.

2. Convenient environment for experiments creates
mant theoretical questions, sometimes answers.



