Quantum Chromodynamics and B Physics

李湘楠

Presented at NTHU 03／02／2007

Titles of lectures

- Strong Interaction
- Factorization Theorem and LHC Physics
- Quantum Mechanics in B Physics

Strong Interaction

Outlines

- Introduction
- History
- Asymptotic Freedom
- Confinement
- Summary

Introduction

Understood composition of our universe

Force carriers

- Graviton propagates gravity
- Photon propagates EM force
- Gluon propagates strong interaction

4 fundamental interactions

簡短描述

- 重力：決定星系，棒球的運動，無所不在
- 電磁力：控制電器，化學反應，摩擦力的來源，無所不在
－弱作用力：宇宙存在的要素，感受不到，僅可感受其效應－－－陽光
－強作用力：產生物體 90% 的質量，
只存在於原子核内, 感受不到

History

Electric Charges \& Photons

- Our understanding of EM interaction at beginning of $20^{\text {th }}$ century...
- EM interaction between electric charges through exchanging photons.
- Electron carries an electric charge, but a photon does not.
- Described by U(1): electron charge does not change as emitting a photon.
- No EM interaction between photons. +
- All electric charges add into electric neutrality.

Why nucleus exists?

- Nucleus full of protons, which repel each other.
- New interaction must exist, which differs from gravity and EM force.
- New interaction \Rightarrow new force carrier, like EM force \Rightarrow photon
- Yukawa called this new carrier as meson.
- Nucleus size 10E(-13) cm, where meson propagates.
- Uncertainty principle \Rightarrow meson mass 100 MeV
- Strong interaction appeared. Yukawa was awarded in 1949.

Gauge Field Theories

- Describe interactions in the viewpoint of group theory (Yang, Mills 1954)
- Symmetry dictates interaction!
- EM (QED) weak
- U(1)

SU(2)
strong (QCD)
SU(3), color charge

- It was a math model at that time.
- Effect of gluon emission

3X3
matrix

- Pauli: long-range forces, but not observed

Difficulties of gauge theory

- It is difficult to make sense out of gauge theory...
- Gauge theory is local, ultraviolet divergence (infinite energy) associated with point particle
- Systematic way to remove this divergence in order to extract physical prediction \Rightarrow Renormalization!
- A physical quantum field theory must be renormalizable

Quark Model

- Chemical "elements" are classified according to proton numbers, leading to the periodic table.
- Many "elementary" particles were found in 60's. There should exist more elementary particles.
- Gell-Mann proposed that "elementary" particles are composed of quarks (1964).
- "Elementary" particles were classified, and new particles were predicted.

Eightfold Ways

- Quark was only a math identity, not real.
- DIS at SLAC indicated existence of "quarks" inside a proton at the end of 60's.
Y (no. of s) $\mathrm{K}^{0} \quad \mathrm{~K}^{+} \quad$ 2-d group

$$
\mathrm{T}_{3} \text { (no. of } \mathrm{u} \text {) }
$$

Deep inelastic scattering

- DIS at SLAC showed something like quarks inside a proton at end of 60's.
- Gell-Mann was awarded in 1969.
- No interaction among quarks, like free particles.
- Incredible, because interaction should get stronger, when particles are closer.
- If free particles, why can't get quarks out of a proton
- DIS was awarded in 1990.

People were puzzled, when pieces of knowledge could not be connected together

Asymptotic Freedom

Gross, Politzer, Wilczek
 Nobel prize 2004

2004 Nobel Prize awarded to

David J. Gross

Kavli Institute for Theoretical Physics, University of California, Santa Barbara, USA, H. David Politzer

California Institute of Technology (Caltech), Pasadena, USA, and Frank Wilczek
Massachusetts Institute of Technology (MIT), Cambridge, USA

Vaccum \neq empty

$$
\Delta t \Delta E \sim h
$$

Violate energy conservation $\Delta E \neq 0$ Impossible in classical mechanics $h=0$ Allowed in quantum mechanics
As long as electrons exist in
A sufficiently short time.
$\Delta t \rightarrow 0$

Vacuum Polarization

Electron and positron pop out from the vacuum

Short distance
(high energy)
More positive charge

Measured e varies ${ }^{-}$ with energies

Long distnace (low energy) less positive charge

Distance vs. energy

EM interaction \Rightarrow screening effect

Precision measurement of hydrogen atom's energy levels has confirmed this effect, Lamb shift (Nobel prize,1955)

Color Charges \& Gluons

- Strong interaction between color charges through exchanging gluons.
- Both quark and gluon carry color charges.
- Strong interaction between gluons.
- Electric charges: positive and negative; color charges: red, blue, green
- All color charges add

Nonlinearity of QCD

- Gluon-gluon interaction corresponds to nonlinearity of QCD.
- Field strength between two quarks:

linear

nonlinear

Anti-screening of QCD

Vacuum $=$ empty, full of gluons

Screening

anti-quark
Gluon carries color

Anti-screening > screening

Beta function

- T'Hooft, Veltman renormalized gauge theory in 1971.
- Gauge theory was then applicable to meaningful calculation.
- T'Hooft, Veltman were awarded in 1999.
- Sign of beta function determines relation of interaction to energy.
- Beta function of EM (strong) force has a plus (minus) sign.
- Gross, Wilczek (Apl. 27, 1973), Politzer (May 3, 1973) published beta function of $\mathrm{SU}(3)$ gauge theory.

This minus sign worth of million dollars

Coupling constant, α_{5} (E)

Opposite to EM
High energy (asymototic)

Suddenly...

- Gell-Mann's quarks are not math identity.
- Interaction among quarks is described by gauge theory.
- Quarks behave like free particles at high energy (long distance).
- Gauge theory is no math model, but real physics.
- 3 in SU(3) means 3 colors \leadsto QCD.
- Quarks can not be separated. They form bound states at long distance.
- Yukawa's meson model describes interaction among bound states.

Confinement

Next Nobel prize in QCD

Ionization of an Atom

- Atom is a bound state of a nucleus and electrons.
- They are bounded by Coulomb's potential energy, electromagnetic (EM) interaction,

$$
V(r)=((+Z) e)(-e) / r
$$

- Can see a free electron via ionization

$$
A(\mathrm{~g}) \rightarrow A+(\mathrm{g})+e-(\mathrm{g})
$$

- Ionization energy is finite.

Confinement of Quarks

- Hadron is a bound state of quarks, such as pion, proton, neutron,...
- They are bounded by strong interaction, color potential energy.
- Never see free quarks, no matter how much energy is supplied.
- Why is the confinement?

Flux Tube

- To produce a strong potential, consider 1dim QED
- E=constant, $\mathrm{V} \propto r$
- Field lines are parallel
- To separate the two plates, infinite energy is needed
 \Rightarrow confinement
- Conjecture: field lines between a pair of quarks are deformed into a tube.

String Model

- Rage trajectory
$J=E^{2} / 2 \pi \sigma$
spin, mass

String tension σ

- Multiplicity
- As dosed energy exceeds the mass of quark pair, string breaks, and new pair appears

Regge Trajectory

Multiplicity dn (No. particles)/dy (rapidity)

quarks

strings

Leading particles

(mainly from remnants)

Data:
NA49

Baryon spectra in pp at $158 \mathbf{G e V}$

Gribov-Regge
Theory:
(FM Liu et al)

Lattice QCD (Juge etal)

 densities

Fit to $V_{0}+e / r+\kappa r$
Radial
Probability
different gluonic excited states

Static quark potentials

Our understanding of confinement mainly comes from numerics.

No one solves QCD after decades

Factorization theorem and LHC physics

Outlines

- Introduction
- Factorization theorem
- Application
- LHC physics
- Summary

Introduction

- QCD Lagrangian $\mathcal{L}=\bar{\psi}\left(i D^{\mu} \gamma_{\mu}-m\right) \psi-F^{\mu \nu} F_{\mu \nu} / 4$
- ψ : quark field, F: gluon field strength
- Confinement at low energy, hadronic bound states: pion, proton, B meson,...
- Asymptotic freedom at high energy: a small coupling constant \Rightarrow perturbation
- Test QCD at hgih-energy scattering!
- Nontrivial due to initial hadrons
- A sophisticated prescription is necessary ---factorization theorem

Factorization theorem

Deep inelastic scattering

- Electron-proton DIS I(k)+N(p) $\rightarrow \mathrm{I}\left(\mathrm{k}^{\prime}\right)+\mathrm{X}$
- Large momentum transfer $-q^{2}=\left(k-k^{\prime}\right)^{2}=Q^{2}$
- Calculation of cross section σ requires the nonperturbative quark distribution in the proton
- Is it possible to factor the perturbative part, and the nonpert part is left for other methods?

Feynman diagrams

- Lowest order
- Cross section= $=\frac{\vdots \gamma^{*}}{\gamma^{*}} \quad 1 \quad i^{\prime}$
|amplitude| ${ }^{2}$
- Next-to-leading order, infrared div, except for UV div

IR divergence is physical!

- It's a long-distance phenomenon, related to confinement.
- All physical hadronic high-energy processes involve both soft and hard dynamics. How to test QCD?

Parton model

- The proton travels huge space-time, before hit by the virtual photon
- As $\mathrm{Q}^{2} \rightarrow \infty$, hard scattering occurs at point space-time
- The quark hit by the virtual photon behaves like a free particle
- It decouples from the rest of the proton
- Cross section is the incoherent sum of the scattered quark of different momentum
- Just need to know the probability of the quark carrying a momentum fraction ξ

Factorization formula

- Define Bjorken variable $x=Q^{2} /(2 p \cdot q)$
- Following the parton model, the factorization formula for DIS
- $F(x)=\sum_{f} \int_{x}^{1}(d \xi / \xi) H_{f}(x / \xi) \phi_{f / N}(\xi)$
- F : structure function for cross section
- H_{f} : hard kernel, cross section of the quark f, calculable in perturbation theory
- $\phi_{f / \mathrm{N}}$: parton distribution function (PDF) for quark f in $\mathrm{N}, \int_{0}{ }^{1} \phi_{f / N}(\xi) \mathrm{d} \xi=1$

Factorization picture

- Lowest-order $\mathrm{H}_{\mathrm{f}}{ }^{(0)}$, all-order H_{f}

$$
Q^{2} /(\xi p \cdot q)=x / \xi
$$

Parton distribution function

- PDF is defined by a matrix element of a nonlocal operator
- $\phi_{f / \mathbb{N}}(\xi)=\int d y^{-/}(2 \pi) \exp \left(i \xi \mathrm{p}^{+} \mathrm{y}^{-}\right)$ $\langle N(p)| \bar{f}\left(y^{-}\right) \gamma^{+} W\left(y^{-}, 0\right) f(0)|N(p)\rangle$
- $\mathrm{W}\left(\mathrm{y}^{-}, 0\right)$: Wilson link for gauge invariance
- PDF can be computed by nonperturbative methods, like lattice QCD, or extracted from experiment data
- PDF is universal (process-independent)

Application

Hard kernel

- PDF is infrared divergent, if evaluated in perturbation \Leftrightarrow confinement
- Quark diagram is also IR divergent.
- Difference between the quark diagram and PDF gives the hard kernel $H^{\text {DIS }}$

Extraction of PDF

- Fit the factorization formula $\mathrm{F}=\mathrm{H}^{\mathrm{DIS}} \otimes \phi_{f / \mathrm{N}}$ to DIS data. Extract $\phi_{f / N}$ for $f=u, d, s, \ldots, g$ (luon)

Drell-Yan process

- Derive factorization theorem for Drell-Yan process $N\left(p_{1}\right)+N\left(p_{2}\right) \rightarrow \mu^{+} \mu^{-}(q)+X$

Hard kernel for DY

- Compute the hard kernel H^{DY}
- IR divergences in quark diagram and in PDF must cancel. Otherwise, factorization theorem fails

Same as in DIS

Prediction for DY

- Use $\sigma^{D Y}=\phi_{f 1 / N} \otimes H^{D Y} \otimes \phi_{f 2 / N}$ to make predictions for DY process

Factorization scheme

- Definition of an IR regulator is arbitrary, like an UV regulator: $\phi^{(1)} \propto 1 / \varepsilon_{\mathbb{I R}^{R}}$ +finite part
- Different finite parts correspond to different factorization schemes.
- Hard kernel depends on schemes
- Extraction of a PDF depends not only on powers and orders, but on schemes.
- Must stick to the same scheme. The dependence of predictions on factorization schemes would be minimized.

LHC physics

LHC will answer

- why masses are what they are?
- why neutrino masses?
- why symmetry breaking?
- why Universe dominated by matter? CP violation?
- why gauge interactions?
- why $\operatorname{SU}(3) \mathrm{xSU}(2) \mathrm{xU}(\mathrm{x})$?
- why 3 generations?
- what about gravity?
- why 4 dimensions?

Hope to find Higgs, and new physics signals.

CERN

- world's largest particle physics laboratory
- Proton-proton collision at E=14 TeV

Higgs production channels

Higgs production rates

Higgs decay modes

Higgs decay rates

Search channels

- $\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \gamma \gamma$
- Dominant background:
- QCD continuum production of $\gamma \gamma$
- QCD γ jet production with jet fragmenting into π^{0}
- Need to calculate these QCD backgrounds precisely

Summary

- High-energy QCD processes must involve both perturbative and nonperturbative dynamics.
- Factorization theorem is a powerful tool for highenergy QCD processes. It is predictive.
- Factorization theorem has been extended to many processes, the PQCD approach.
- Accurate calculation of QCD background is crucial for verifying new physics at LHC
- More topics to study, such as B meson decays, CP asymmetries,...

Quantum Mechanics in B Physics

Outlines

- Introduction
- Oscillation
- Basics of Particle Physics
- Particle Oscillation
- B factory
- Summary

Introduction

- Two-level oscillation is a simple quantum mechanic phenomenon.
- Oscillation frequency reveals the energy difference of the two levels, and the interaction making the splitting.
- This idea can be used to determine fundamental parameters in the standard model of particle physics.

Oscillation

Spin-orbital coupling

- Hamiltonian $\mathrm{H}=\mathrm{H}_{\text {could }}+\mathrm{H}_{\text {int }}, \mathrm{H}_{\text {int }}=\mathrm{c} \mathbf{s} \cdot \mathbf{L}$
- With only $\left.\mathrm{H}_{\text {col, }}, \mathrm{l}=1, \mathrm{~s}=1 / 2\right\rangle$ are degenerate.
- Adding $\mathrm{H}_{\text {int }}$ splitting of degenerate levels.
- Mixing matrix: $\left\langle I_{z}, S_{z}\right| H\left|\left.\right|_{z} ^{\prime}, S_{z}^{\prime}\right\rangle=\left\langle H_{\text {could }}\right\rangle+\left\langle H_{\text {int }}\right\rangle$
- $\left\langle\mathrm{H}_{\text {could }}\right\rangle$: diagonal $\propto \delta\left(\mathrm{I}_{\mathrm{z}}, \prime_{z}\right) \delta\left(\mathrm{S}_{\mathrm{z}}, \mathrm{S}_{\mathrm{z}}^{\prime}\right)$
- $\left\langle\mathrm{H}_{\text {int }}\right\rangle$: non-diagonal
- Diagonalization gives $\left|j, j_{z}\right\rangle$ as linear combination of $\left\|\|_{z}, \mathrm{~S}_{\mathrm{z}}\right\rangle$.

Splitting of energy levels

- Small c, small splitting, oscillation.
- Oscillation frequency is related to the splitting, and to c.
- Consider

$\mathrm{t}=0$	$\mathrm{t}>0$, turn on $\mathrm{H}_{\text {int }}$
-	$\mathrm{t}=\mathrm{t}$, turn off $\mathrm{H}_{\text {int }}$

- Ask for the probability of finding electron at the original state.

Oscillation

- Initial condition, $\left|\|_{z}, \mathrm{~s}_{\mathrm{z}}, \mathrm{t}=0\right\rangle=\mathrm{a}\left|\mathrm{j}_{+}, \mathrm{t}=0\right\rangle+\mathrm{b}\left|\mathrm{j}_{-}, \mathrm{t}=0\right\rangle$.
- $\left.\left.\|_{z}, s_{z}, t\right\rangle=a \exp \left(-i E_{+} t\right) j_{+}, t=0\right\rangle$ $+b \exp \left(-i E_{-}\right) \mid j$., $\left.t=0\right\rangle$
- $\left\langle I_{Z}, S_{z}, t=0\right\rangle\left|I_{z}, S_{z}, t\right\rangle=a^{2} \exp \left(-i E_{+} t\right)+b^{2} \exp \left(-i E_{-}\right)$.
- Probability $=a^{4}+b^{4}$ $+2 a^{2} b^{2} \cos (\Delta E t)$ $\Delta \mathrm{E}=\mathrm{E}_{+}-\mathrm{E}$.

Electron goes to other $\left|\|_{2}, \mathrm{~S}_{z}\right\rangle$

Complex $\mathrm{H}_{\mathrm{int}}$

- Imagine complex $\mathrm{H}_{\text {int }}$ Hermitian
- $\langle\mathrm{H}\rangle=\left(\begin{array}{cc}E & E_{12}+i \varepsilon \\ E_{12}-i \varepsilon & E\end{array}\right)=\left(\begin{array}{cc}E & E_{12} \\ E_{12} & E\end{array}\right)+i \varepsilon\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
- Diagonalization of the first matrix gives the eigenstates $\left|\mathrm{j}_{+}\right\rangle$, $\left|\mathrm{j}_{\rangle}\right\rangle$.
- The second matrix gives nontrivial mixing between $\left|j_{+}\right\rangle$, $\left.|j\rangle_{-}\right\rangle$.
- True eigenstates,
$\left|j^{\prime}{ }_{+}\right\rangle=\left|j_{+}\right\rangle+\varepsilon\left|j_{-}\right\rangle,\left|j_{-}^{\prime}\right\rangle=\left|j_{-}\right\rangle-\varepsilon\left|j_{+}\right\rangle$

CP violation

Weak decay $\left.\right|^{\text {e }}$

- β decay: $n \rightarrow \mathrm{pe}^{-} v_{\mathrm{e}}$
- Quark level d \rightarrow u e-ve

- Fermi's weak theory inspired by EM
- Decay amplitude: G[u $\left.\gamma_{\mu} d\right]\left[e \gamma^{\mu} v_{e}\right]$
- G: phenomenological Fermi constant
- The current $u \gamma_{\mu} d$ conserves parity.

- $\theta-\tau$ puzzle: same mass, $\theta \rightarrow 2 \pi, \tau \rightarrow 3 \pi$
- $\mathrm{K}^{+} \rightarrow 2 \pi, 3 \pi$, parity violation (Lee, Yang 56)

Parity Violation

Left-hand right-hand

- Exp evidence (Wu): ${ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni} \mathrm{e}_{\mathrm{L}}^{-} v_{\mathrm{eR}}$

$$
\mathrm{J}=5, \quad 4
$$

- Weak theory: $\mathrm{G}\left[\mathrm{u} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathrm{d}\right]\left[e \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\mathrm{e}}\right]$
- God chose it! No right-handed current.
- $\operatorname{SU}(2)$ doublet $(u, d)_{L},\left(v_{\mathrm{e}}, e-\right)_{\mathrm{L}},\left(\nu_{\mu}, \mu-\right)_{\mathrm{L}}$

Impact from kaon decay

- Naturally, postulate doublet (c,s)
- Amplitude: $\mathrm{G}\left[\mathrm{c} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathrm{s}\right]\left[I \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{l}\right]$
- G: universal Fermi constant
- $\mathrm{K}^{+} \rightarrow \mu^{+} v_{\mu}$ was observed

- u couples to s?
- Introduce a new coupling constant?

Cabbibo angle

- Instead of new coupling, Cabbibo proposed "quark mixing" (63).
- Weak eigenstate vs. mass eigenstate

$$
\binom{d^{\prime}}{s^{\prime}}=\left(\begin{array}{cc}
\cos \theta_{C} & \sin \theta_{C} \\
-\sin \theta_{C} & \cos \theta_{C}
\end{array}\right)\binom{d}{s} \quad \begin{aligned}
& \theta_{C} \approx 13^{\circ} \\
& \text { Cabbibo angle }
\end{aligned}
$$

- Doublets (u,d') ${ }_{\mathrm{L}},\left(\mathrm{c}, \mathrm{s}^{\prime}\right)_{\llcorner }$
- Beautiful phenomenology!
- Check

Particle Oscillation

$\mathrm{K}-\overline{\mathrm{K}}$ oscillation

- C: charge conjugate. $C P\left|K^{0}\right\rangle=\left|\bar{K}^{0}\right\rangle$
- Oscillation between K^{0} and $\overline{\mathrm{K}}^{0}$ through a box diagram

- $\left|\mathrm{j}_{+}\right\rangle:\left|\mathrm{K}_{\mathrm{s}}\right\rangle=\left(\left|\mathrm{K}^{0}\right\rangle+\left|\overline{\mathrm{K}}^{0}\right\rangle\right) / \sqrt{ } 2,[\mathrm{CP}=+1] \rightarrow 2 \pi$
- $\left|\mathrm{j}_{-}\right\rangle:\left|\mathrm{K}_{\mathrm{L}}\right\rangle=\left(\left|\mathrm{K}^{0}\right\rangle-\left|\overline{\mathrm{K}^{0}}\right\rangle\right) / \sqrt{ } 2, \quad[\mathrm{CP}=-1] \rightarrow 3 \pi$
- $\mathrm{K}_{\mathrm{L}} \rightarrow 2 \pi$ was observed (64).

CKM matrix

- CP violation implies nontrivial admixture, $\left|\mathrm{K}_{\mathrm{S}}^{\prime}\right\rangle=\left|\mathrm{K}_{\mathrm{S}}\right\rangle+\varepsilon\left|\mathrm{K}_{\mathrm{L}}\right\rangle,\left|\mathrm{K}_{\mathrm{L}}^{\prime}\right\rangle=\left|\mathrm{K}_{\mathrm{L}}\right\rangle-\varepsilon\left|\mathrm{K}_{\mathrm{S}}\right\rangle$
- The mixing matrix must be complex.
- To get it, Kobayashi and Maskawa (73) proposed the third generation of quarks.
- Doublets $\left(u, d^{\prime}\right)_{L},\left(c, s^{\prime}\right)_{L},\left(t, b^{\prime}\right)_{L}$
- Top and bottom were not discovered then.

$$
\begin{aligned}
&\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)==\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right) \\
& \text { V: CKM matrix }
\end{aligned}
$$

Weak phase

- In 2-generation model, no physical weak phase in mixing matrix, since all phases can be absorbed into quark fields.
- The minimal number of generations for complex mixing matrix is 3 .
- 18-9(unitarity)-5(unphysical)=3(rotation)+1
- Again, beautiful phenomenology!

Measure $\mathrm{V}_{\mathrm{CKM}}$

- $R e \mathrm{~V}_{\text {скм: }}$ splitting or oscillation frequency
- lm $\mathrm{V}_{\text {Скм }}$: CP violation
- Measure $\mathrm{K}-\overline{\mathrm{K}}$ mixing, determine $\mathrm{V}_{\mathrm{CKM}}$
- But $\operatorname{Im}\left[\mathrm{V}_{\mathrm{td}} \mathrm{V}^{*}{ }_{\mathrm{ts}}\right]$ is too small!
- Unitarity: $\mathrm{V}^{\dagger} \mathrm{V}=\mathrm{I}$ (magnitude of a vector is invariant under rotation).

- A flat CKM triangle.

Why $B-\bar{B}$ mixing?

- B^{0} and $\overline{\mathrm{B}}^{0}$ oscillate like K^{0} and $\overline{\mathrm{K}^{0}}$.

$$
\left\langle H_{\text {int }}\right\rangle \sim{\overline{B^{0}}}_{\frac{b}{\frac{b, c, t}{} V_{\text {ts }}}-\cdots \frac{d}{d, V_{t d}}}^{B^{0}}
$$

- An ideal but small CKM triangle (Bigi, Sanda).
- $\mathrm{V}_{\mathrm{ud}} \mathrm{V}_{\mathrm{ub}}{ }^{+} \mathrm{V}_{\mathrm{cd}} \mathrm{V}_{\mathrm{cb}}+\mathrm{V}_{\mathrm{td}} \mathrm{V}_{\mathrm{tb}}=0$.
- Relatively
large $\operatorname{Im}\left[\mathrm{V}_{\mathrm{td}} \mathrm{V}^{*}{ }_{\mathrm{tb}}\right]$

How?

- In kaon case, just produce K_{0}

$$
\mathrm{K}_{0} \longrightarrow \mathrm{~K}_{\mathrm{S}} \quad \mathrm{~K}_{\mathrm{L}} \rightarrow 2 \pi
$$

- In B meson case, $\tau\left(B_{S}\right) \approx \tau\left(B_{L}\right)$. The above strategy does not work.
- To produce abundant b quarks, use electron collider with E at the threshold. B and B are produced at the same time.
- Need a different strategy!

Bigi, Sanda's clever idea

Nuclear Physics B193 (1981) 85-108
© North-Holland Publishing Company

Need millions of B, challenge for experimentalists
 NOTES ON THE OBSERVABILITY OF CP VIOLATION IN B DECAYS

I.I. BIGI
Institut für Theor. Physik der RWTH Aachen, D-5100 Aachen, FR Germany
A.I. SANDA ${ }^{1}$
Rockefeller University, New York 10021, USA

Received 16 June 1981
We describe a general method of exposing $C P$ violations in on-shell transitions of B mesons. Such $C P$ asymmetries can reach values of the order of up to 10% within the Kobayashi-Maskawa model for plausible values of the model parameters. Our discussion focuses on those (mainly non-leptonic) decay modes which carry the promise of exhibiting clean and relatively large $C P$ asymmetries at the expense of a reduction in counting rates. Accordingly we address the complexities encountered when performing $C P$ tests with a high statistics B meson factory like the Z^{0} (and a toponium) resonance.

B Factories

Time-dependent CP Violation

- Still measure $C P$ violation, but different

$$
A_{C P}(\Delta t) \equiv \frac{\Gamma\left(\bar{B}^{0}(\Delta t) \rightarrow f_{C P}\right)-\Gamma\left(B^{0}(\Delta t) \rightarrow f_{C P}\right)}{\Gamma\left(\bar{B}^{0}(\Delta t) \rightarrow f_{C P}\right)+\Gamma\left(B^{0}(\Delta t) \rightarrow f_{C P}\right)}
$$

- Recall $K_{0}=(1+\varepsilon) \mathrm{K}_{\mathrm{S}}^{\prime}+(1-\varepsilon) \mathrm{K}_{\mathrm{L}}^{\prime}$,

$$
\overrightarrow{\mathrm{K}_{0}}=(1-\varepsilon) \mathrm{K}_{\mathrm{S}}^{\prime}-(1+\varepsilon) \mathrm{K}_{\mathrm{L}}^{\prime}, \quad \mathrm{A}_{\mathrm{CP}} \neq 0 .
$$

- To produce abundant B mesons, $E\left(e^{+} e^{-}\right)=\operatorname{Mass}(B \bar{B})$.
- Then the two B meson sit at rest. How to distinguish B or B meson decay?
- Very clever idea: asymmetric collider!!

Time-dependent CP asymmetry measurement

$\longrightarrow \Upsilon(4 S)=b \bar{b}$

$$
\frac{B^{0}=\bar{b} d}{\bar{B}^{0}=b \bar{d}}
$$

$\xrightarrow[B^{0}]{\stackrel{\bar{B}^{0}}{ }}$

evolution now uncor		

Babar at SLAC

KEKB \& Belle Layout

$8 \mathrm{GeV} e^{-} \times 3.5 \mathrm{GeV} e^{+}$
$\Upsilon(4 S)$ boost: $\beta \gamma=0.425$
$\pm 11 \mathrm{mrad}$ crossing angle
$\mathrm{A}_{\mathrm{CP}}(\Delta \mathrm{t})$ data $(c \bar{c}) \mathrm{K}_{\mathrm{S}}(\mathrm{CP}$ odd) modes

Amplitude
(CP violation) related to $\mathrm{Im} \mathrm{V}_{\mathrm{CKM}}$ weak phase $\sin \left(2 \phi_{1}\right)$ or $\sin (2 \beta)$

Frequency related to mass (energy) difference, $\mathrm{Re} \mathrm{V}_{\text {СКМ }}$

Summary

- Simple Quantum Mechanics is useful in determining fundamental parameters in the standard model.
- Beauty of phenomenology is appreciated in exploring property of fundamental interaction.
- Cabbibo: quark mixing, KM: CP model. All are insightful.
- Measurement of $\sin \left(2 \phi_{1}\right)$ from oscillation requires clever theoretical and experimental ideas.

