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Many-body effects on excitonic optical properties of photoexcited semiconductor quantum
wire structures
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We study carrier-interaction-induced many-body effects on the excitonic optical properties of highly photo-
excited one-dimensional semiconductor quantum wire systems by solving the dynamically screened Bethe-
Salpeter equation using realistic Coulomb interaction between carriers. Including dynamical screening effects
in the electron-hole self-energy and in the electron-hole interaction vertex function, we find that the excitonic
absorption is essentially peaked at a constant energy for a large range of photoexcitation density (n50 –6
3105 cm21), above which the absorption peak disappears without appreciable gain; i.e.,no exciton to free
electron-hole plasma Mott transition is observed, in contrast to previous theoretical results but in agreement
with recent experimental findings. This absence of gain~or the nonexistence of a Mott transition! arises from
the strong inelastic scattering by one-dimensional plasmons or charge density excitations, closely related to the
non-Fermi-liquid nature of one-dimensional systems. Our theoretical work demonstrates a transition or a
crossover in one-dimensional photoexcited electron-hole systems from an effective Fermi liquid behavior
associated with a dilute gas of noninteracting excitons in the low-density region (n,105 cm21) to a non-
Fermi liquid in the high-density region (n.105 cm21). The conventional quasistatic approximation for this
problem is also carried out to compare with the full dynamical results. Numerical results for exciton binding
energy and absorption spectra are given as functions of carrier density and temperature.

DOI: 10.1103/PhysRevB.64.195313 PACS number~s!: 78.55.2m, 71.35.Cc, 78.66.Fd, 73.21.2b
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I. INTRODUCTION

Excitons in low-dimensional semiconductor systems h
been extensively studied in the recent past. Present inte
has focused on one-dimensional excitons in artificially str
tured semiconductor quantum wire~QWR! systems where
spectacular improvements in growth and nanofabrica
techniques have led to very narrow wires of nanostruct
size (,100 Å in GaAs! with rather deep conduction ban
electron confinement energy (;150 meV) and large
conduction-subband spacing (;20 meV) ~Refs. 1–4! so
that the electrons in the conduction band of such a QW
most likely form a pure one-dimensional~1D! system. For
the holes in the QWR valence band, the bare confinem
potential ~for example, in the GaAs-AlGaAs system! is
known to be too shallow (;10 meV) for a hole to be one
dimensionally confined in these QWR structures. Includ
the Coulomb interaction between electrons and holes a
the transverse~i.e., perpendicular to the 1D free motion d
rection! directions of the wire, however, Glutschet al.5 find
that even the holes in the valence band of QWR’s can
strongly localized in the transverse plane, leading to b
electrons and holes being effectively 1D~or rather quasi-1D!
in the dynamical sense. Therefore an exciton in such ul
narrow QWR nanostructures can be effectively thought o
a bound pair of a 1D electron and a 1D hole with the car
dynamics being free along the 1D wire direction as long
one is interested in low energy~lower than confinement en
ergy ;20–100 meV) excitonic optical properties. Su
strong confinement for both electrons and holes also subs
tially enhances the excitonic binding energy, leading to no
optical phenomena. In the low-~electron-hole! density limit
without considering the self-energy correction to the cond
0163-1829/2001/64~19!/195313~16!/$20.00 64 1953
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tion and the valence-band energies as well as neglectin
dynamical screening effects, the single-electron and sin
hole problem in forming the exciton can be exactly solved
a quasi-1D hydrogenic~Wannier exciton! atom with an ex-
citon radius of about 100 Å for GaAs-based QWR system
This single-1D-exciton problem, where an electron and
hole in a QWR form a bound excitonic state, has been st
ied extensively in the recent literature in the context of u
derstanding QWR excitonic optical properties. Such a n
interacting exciton picture, based on a simple single-part
electron-hole hydrogenic bound-state scenario, obviou
only applies in the dilute low-carrier-density limit when th
excitons or the bound electron-hole pairs are effectively v
far from each other, forming a noninteracting exciton g
We will refer to this situation as a Fermi liquid~because in
1D only an effectively noninteracting system may behave
a Fermi liquid! or a noninteracting exciton gas. In the hig
carrier-density situation the excitons must overlap with ea
other a great deal, and the simple Fermi liquid picture o
noninteracting exciton gas would not apply. Our main goa
this paper is to theoretically study this transition between
low-density~Fermi-liquid-like! exciton gas and the high den
sity system of interacting~and strongly overlapping! excitons
in quasi-1D semiconductor~GaAs! QWR systems. This ex-
citon gas to a strongly overlapping and highly correlat
electron-hole system crossover with increasing electron-h
density can be thought of as a transition from an insulat
exciton gas to a conducting electron-hole plasma~EHP!, the
Mott transition. A typical feature of this Mott transition, ob
served in higher-dimensional~2D,3D! optical experiments, is
the development of optical gain in the absorption spec
where the absorption coefficient becomes negative~gain re-
gion! in some frequency range. One of the questions
dressed in this paper is whether such an optical gain reg
©2001 The American Physical Society13-1
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exists in 1D photoexcited QWR systems. In this paper
consider the formation, stability, and optical properties
one-dimensional excitons from low to high carrier densit
in semiconductor QWR’s under photoexcitation conditio
~i.e., equal electron and hole densities!, a problem which has
attracted a great deal of both theoretical5–18 and
experimental1–4 attention in these years. Consistent with r
cent interest one of the central issues we focus on is
density-induced exciton gas to EHP Mott transition in 1
QWR systems and its experimental signature.

The motivation of our work arises from recent experime
tal studies of the photoluminescence spectra of
GaAs/Al12xGaxAs semiconductor QWR systems.1–4 The ex-
perimentalists use strong lasers to pump photons into
QWR systems, exciting electrons from the filled valen
band into the empty conduction band and/or the exciton
els, and observe the spectrum of the subsequently em
light coming from the eventual recombination of the excit
electrons and the holes created in the valence band. The
toluminescence spectrum is proportional to the exciton-E
optical oscillator strength, which, at first sight~i.e., without
incorporating the Sommerfeld factor effect associated w
the electron-hole Coulomb interaction!, is expected to have
anv21/2 singularity at the band-gap energy due to theE21/2

divergence of the 1D electron density of states18 at band
edge. However, this 1D plasma band-edge singularity
known to be strongly suppressed by the excitonic Coulo
correlation effect10 so that the main peak observed in t
experimental photoluminescence spectra should result f
the excitonic effect rather than the band-edge singularity
the noninteracting electron-hole plasma. The most strik
experimental observation in the recent1–4 experimental stud-
ies of photoexcited QWR systems has been the finding1,2 that
the exciton peak seems to be at an almost constant en
independent of the carrier density, i.e., independent of
laser pumping power. Thus the exciton peak seems to rem
well defined~and unshifted in energy! all the way from very
low to very high photoexcitation density (;33106 cm211!
without any distinct signature of the expected insulat
~exciton-! to-metal~EHP! Mott transition and the associate
optical gain. The constancy of the exciton energy could
principle, arise from an almost exact cancellation betwe
the exchange-correlation induced shrinking of the nomi
band gap, the so-called band gap renormalization~BGR!,
and the reduction of the exciton binding energy~with respect
to the bottom of the renormalized band edge! due to the
screening induced softening of the Coulomb interactio6

Such an accidental cancellation between two distinct ph
cal mechanisms~namely, BGR and screening suppression
exciton energy! over a wide range of photoexcitation dens
needs to be theoretically established in a compelling way.6 In
addition, combining this accidental cancelation explanat
with the experimental fact of a very high Mott density~not
yet seen experimentally! one may conclude that the BGR o
a 1D electron-hole (e-h) system should be very weak in th
high-density situation, which is not consistent with theore
cal calculations up to now.4,15,16 In particular, one must un
derstand why there is no characteristic signature of the E
in the luminescence spectra even at very high photoexc
19531
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tion densities. One must be able to answer the question a
where the Mott transition has gone. On this issue, an imp
tant and unresolved problem for the photoluminescence
periment is that there is no reliable and direct way of e
mating the photoexcited electron-hole density in such hig
pumped QWR systems. The theoretical basis of the den
estimation methods in the literature,1 such as from the line
shape analysis of the spectrum, is usually not self-consis
and not appropriate in such high-density strongly las
pumped systems. Although we feel that the precise car
density of the photoexcited QWR systems may not be kno
accurately, this issue does not pose any fundamental prob
for our theory where the EHP densityn5ne5nh is an input
parameter. The problem arises only in trying a direct qua
tative comparison with experiments.1–3

From the theoretical point of view, the full many-bod
calculation in a high-electron-hole-density semiconduc
system is complicated and has not been attempted be
except for our own short Letter published last year.6 The
exciton mode is a solution of the Bethe-Salpeter equa
~BSE! for the interaction vertex which, in the many-partic
situation of interest to us, should include self-energy a
dynamical screening correlations. A complete or exact so
tion of the BSE is only possible in the dilute exciton lim
when it reduces to a simple hydrogenic electron-hole bou
state Schro¨dinger equation. Our interest in this paper is in t
many-particle ‘‘exciton’’ state in the photoexcited semico
ductor QWR system where self-energy correlations of sim
electron or hole states and dynamical screening of
electron-hole Coulomb interaction vertex are important.
model of an electron gas with a single hole in a wire17 is not
appropriate in our problem because a bound state alw
exists in any attractive potential in 1D systems, which w
trivially provide an overestimate of the Mott density. W
emphasize that both the quasiparticle self-energy and the
namical screening of the electron-hole interaction ver
should be included properly~i.e., consistent with each othe
in a conserving approximation! in the BSE to obtain the
correct description of the Mott transition. With the excepti
of our own short earlier report6 most other theoretical calcu
lations use the static~Hartree-Fock! approximation or the
quasistatic approximation18 to the self-energy and a staticall
screened interaction vertex to solve the many-particle B
and obtain the optical absorption-gain spectra. In these s
pler approximations, where dynamical screening effects
neglected in an uncontrolled way, the dominant excito
peak has a weak redshift~a few meV decrease! with increas-
ing density up to a Mott densitync , above which the exci-
tonic peak completely disappears and the spectrum sho
shallow ~and weak! gain region very similar to the behavio
of the noninteracting EHP.7,10,14,17Including the many-body
dynamical screening6 in the Coulomb interaction, the excito
peak stays essentially constant in energy~for n,nc) and
exhibits a pronounced gain spectrum~for n.nc), stronger
than the quasistatic results. But the predicted Mott densi
in the above theories (nc;83104–83105 cm21) are all
below the experimentally estimated value (nc.3
3106 cm21) — in fact, it is not clear if experimentally the
transition to the EHP has ever been observed even at
3-2
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MANY-BODY EFFECTS ON THE EXCITONIC OPTICAL . . . PHYSICAL REVIEW B 64 195313
highest photoexcitation densities. It is in general hard to
clude the many-body effects appropriately in a calculati
ally tractable model over such a wide range of density~over
at least four orders of magnitude inn), from the weak-
coupling dilute exciton gas system to the strong-coupl
EHP regime.

In this paper, starting with the realistic Coulomb intera
tion in 1D T-shaped QWR systems, we first evaluate
single-particle self-energy for both electrons and holes in
dynamical plasmon pole approximation~PPA! within the so-
called GW scheme~i.e., in the leading-order dynamicall
screened interaction! to obtain the electron and hole reno
malized Green’s function. This self-energy calculatio
which by itself does not contain any direct excitonic effec
gives us the BGR or the reduction of the nominal band g
due to exchange correlation. For comparison, we also ca
late the BGR obtained by the quasistatic calculation in b
static random phase approximation~RPA! and static PPA in
this paper. We then derive analytically the effective electr
hole (e-h) interaction vertexVe f f(k,v), which includes con-
sistently the electron-hole-plasmon coupling with the ext
nal photons within our dynamical GW-RPA-PP
approximation scheme. We use two different methods
study the excitonic properties: one is a variational appro
mation on an effective exciton Hamiltonian,18 which depends
on the carrier density; the other technique is to solve
dynamical BSE by treating both self-energy renormalizat
and vertex correction~arising from the Coulomb interaction!
on an equal footing~within our plasmon pole approximatio
scheme!, obtaining the optical absorption spectra. Both c
culations are carried out over a wide range ofe-h density
from n5102 cm21 to n5106 cm21 at finite temperatures
under the quasiequilibrium condition; i.e., thee-h density is
assumed to be a constant parameter for each density c
lation ~and n5ne5nh). While our dynamical BSE calcula
tion includes exciton and EHP effects equivalently and
directly capable of providing the Mott densitync through the
analysis of the absorption spectra, the variational exciton
ergy has to be compared with the BGR calculation in or
to ascertain the Mott transition — in particular, the mergi
of the effective variational exciton with the renormalize
band edge is taken to be the signal for a Mott transition.
find that the absorption peak obtained from solving the
namical BSE survives with very large broadening well abo
the critical densitync estimated from the variational approx
mation, and no optical gain~negative absorption! regime
shows up in the spectra even at the higheste-h density. This
implies thenonexistenceof Mott transition in 1D electron-
hole systems. This striking result may be physically und
stood as arising from the fact that the quasiparticle pict
underlying the conventional Fermi liquid model fails in hig
density 1D systems due to strong inelastic scattering by p
mons, associated with the generic non-Fermi-liquid beha
in 1D systems. In fact, in 1D systems there is no conv
tional EHP because there are no single-particle excitation
an interacting 1D systems. This nonexistence of sing
particle excitations or quasiparticles also leads to a bre
down of the conventional exciton picture — a quasielectron
and a quasihole bound pair. We will discuss this point
19531
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more details later in this paper.
This paper is organized as follows: In Sec. II we pres

and discuss the theory we use in various parts of our ca
lations, e.g., the realistic Coulomb interaction in the 1
T-shaped QWR system, the single-particle self-energy ca
lation in the single-loop PPA-GW approximation, the diffe
ent approximation schemes used for screening the lo
ranged Coulomb interaction, the dynamical Bethe-Salpe
equation approximations in our theory, and the effective
citon Hamiltonian used in the variational calculation. In Se
III we show our results for the density-dependent excit
energy in the variational method and for the excitonic opti
properties from the solution of BSE. In Sec. IV we conclu
with a discussion and a summary of our results.

II. THEORY

We use the two-band~one-conduction-band and one
valence-band! model to study the 1D electron-hole system
neglecting higher subbands and the degenerate val
bands. We also consider the photoexcited quasiequilibr
regime where thee-h density is assumed to be a constant~in
time! so that the Hamiltonian of such a 1D electron-ho
system can be expressed as~in the effective mass approxi
mation and assuming purely parabolic band dispersion;
take\51 throughout!

H5(
k

S Eg
01

k2

2me
ck

†ck1
k2

2mh
dk

†dkD
1

1

2L (
k,k8,q

@Vc,ee~q!ck2q
† ck81q

† ck8ck1Vc,hh~q!

3dk2q
† dk81q

† dk8dk22Vc,eh~q!ck2q
† ckdk81q

† dk8#,

~1!

whereck(ck
†) anddk(dk

†) are the annihilation~creation! op-
erators for conduction-band electrons and valence-b
holes, respectively~we will not explicitly show the spin in-
dex in summations throughout this paper although spin
included in our calculations!, andme/h are the electron-hole
effective masses.Eg

0 is the direct band gap between the to
of the valence band and the bottom of the conduction ba
taken to be 1550 meV for the GaAs/Al12xGaxAs QWR sys-
tem in all our calculations. There are three different Coulo
interactions entering the Hamiltonian: electron-electr
@Vc,ee(q)#, hole-hole @Vc,hh(q)#, and electron-hole
@Vc,eh(q)# interactions. The first two give rise to the electro
and hole quasiparticle self-energies and the other one,
electron-hole interaction, produces the exciton bound st
One should note that if we neglect the self-energy correc
and also dynamical screening effect~i.e., the low-density
limit of a Wannier exciton!, the Hamiltonian of Eq.~1! leads
to a 1D hydrogen atom problem19 for the Wannier exciton,
which in 1D always has a bound excitonic state even for
arbitrarily weak electron-hole~attractive! interaction. Using
a model of an electron gas with a single hole therefore gi
rises a very high Mott density estimate~even ifVc,eh is stati-
cally screened!, which is a reflection of this 1D bound-stat
3-3
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D. W. WANG AND S. DAS SARMA PHYSICAL REVIEW B64 195313
property. We address both the many-body self-energy ef
and the electron-hole excitonic binding effect on an eq
footing in the theory, which we accomplish by using t
dynamical Bethe-Salpeter equation as described below.

A. Coulomb interaction in QWR’s

The realistic~bare! Coulomb interaction in 1D QWR’s is
obtained by taking the expectation value of the 3D Coulo
interaction over the electron wave function along the tra
verse directions (y andz axes; see the inset of Fig. 1! of the
wire. After Fourier transformation along the 1D wire dire
tion (x), we have12,15,20for the Coulomb interaction matrix
element

Vc,i j ~q!5
e2

«0
E

2`

`

dy dy8E
2`

`

dz dz8E
2`

`

dx

3
e2 iqxuf i~y,z!u2uf j~y8,z8!u2

Ax21~y2y8!21~z2z8!2

5
2e2

«0
E

2`

`

dy dy8E
2`

`

dz dz8uf i~y,z!u2

3uf j~y8,z8!u2K0@qA~y2y8!21~z2z8!2#,

~2!

wheref i(y,z) is the QWR confinement wave function fo
the lowest eigenstate of electrons (i 5e) or holes (i 5h).
Their exact forms depend on the geometry and the deta
nature of confinement for the QWR system.K0(x) is the
zeroth-order modified Bessel function of the second kin20

which diverges logarithmically whenx goes to zero~i.e., in
the long-wavelength limit!.

Following the experimental system of Ref. 2, we u
T-shaped QWR parameters to numerically calculate the
Coulomb interaction via Eq.~2!. To simplify calculations
~and also to have some analytical control! we use the follow-

FIG. 1. Theoretically calculated@from Eqs. ~2!–~4!# 1D Cou-
lomb interaction in a T-shaped QWR system in momentum sp
Results of different wire widths are calculated and shown toget
In the inset we show the T-shaped intersection of two quan
wells in cross section.
19531
ct
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D

ing two approximations in evaluating the wave functio
f i(y,z): ~i! we assume the confinement potential for bo
electrons and holes to be infinitely deep—i.e., both electr
and holes are completely confined by the 2D T-shaped
tential well—so that the wave functions of electrons a
holes are of the same form, independent of their effect
mass difference. Consequently the three different interact
(Vc,ee, Vc,hh , andVc,eh) become the same, denoted byVc
throughout this paper. This simplifying approximation is ju
tified by the detailed work of Ref. 5, as mentioned in t
Introduction.~ii ! Instead of numerically solving the compl
cated 2D Schro¨dinger equation to get the ground-sta
single-particle wave function5,12,13~which is not the focus of
our interest!, we simply approximatef(y,z) to be the prod-
uct of two single-variable functionsj(y) and c(z) @i.e.,
f(y,z);j(y)c(z)] and assume21 a simple and reasonabl
approximate model form forj(y) andc(z) through the fol-
lowing exponential formulas:

j~y!5
23/4

Wy
1/2p1/4

e2(2y/Wy)2
, ~3!

c~z!5
25/2z

Wz
3/2

e22z/Wz, ~4!

whereWz andWy are the full-plane (x-y plane! QW width
and the half-plane (x2z plane! QW width, respectively.
Equations~3! and ~4! have the maximum electron-hole de
sity at y50, z5Wz/2, with three branches of exponential
decaying density along6y and1z directions~see the inset
of Fig. 1!. The exponential decaying lengths or confineme
sizes areWy/2 andWz/2 in y andz directions, respectively
and thus in our model of the T-shaped QWR the effect
wire geometry on the Coulomb interaction is entirely co
tained in the effective ‘‘wire sizes’’Wy and Wz , which are
the confinement parameters of our model. This approxim
tion greatly simplifies the calculation of the realistic Co
lomb interaction in Eq.~2! and makes our BSE calculation
tractable. We believe our QWR confinement model, as
fined in Eqs.~3! and ~4!, to be quite reasonable.21 For ex-
ample, the exciton binding energy calculated in this appro
mation is 18.2 meV forWy5Wz57 nm wire, very close to
the quoted experimental value, 17 meV, for the same w
size.2 The small overestimate~about 7%! is expected becaus
of the assumption of infinite confinement energy and
stronge2y2

localization ofj(y). In more accurate numerica
treatments the confinement is weaker than in our mo
leading to a lower binding energy in the QWR system.
Fig. 1 we show the calculatedVc(q) from Eqs.~2!–~4! for
different wire sizes. We assume only one~the ground! elec-
tron and hole subband in the conduction and valence ba
respectively.

B. Absorption spectra

In order to study the excitonic effect on optical properti
of 1D photoexcited electron-hole systems in semiconduc
QWR structures, we calculate the dynamical~photon-

e.
r.
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frequency-dependent! absorption coefficienta(v) and re-
fractive index n(v), which are related to the long
wavelength dielectric function«(q→0,v), by the following
formula:

n~v!1 i
ca~v!

2v
5«~v!1/2, ~5!

wherec is the vacuum light velocity. The dynamical refra
tive indexn(v) is therefore given in terms of«(v) by

n~v!5A 1
2 $Re«~v!1@Re«~v!21Im «~v!2#1/2%, ~6!

and the absorption coefficienta(v) is given by

a~v!5
v Im «~v!

n~v!c
. ~7!

Using the linear response theory,18,22 the dielectric function
of the 1De-h system is expressed as

«~v!.«`2
4pe2

AL (
k,k8

r vc~k!r vc* ~k8!Gq→0~k,k8,v!, ~8!

where the retarded pair Green’s functionGq(k,k8,v) is

Gq~k,k8,v!52 i E
0

`

eivt^@d2k~ t !ck1q~ t !,

ck81q
†

~0!d2k8
†

~0!#&0dt, ~9!

and A5WyWz is the cross-sectional area of the QWR.
these equationsq is the center of mass momentum of th
exciton which is set to zero~and hence not shown explicitly!
in all our calculations below.r vc(k) is the dipole matrix
element, which can be simplified in the effective ma
approximation:18

ur vc~k!u.
M ~k!

A4mEg
0

, ~10!

where the reduced massm5memh /(me1mh) and

M ~k!5S 11
k2

2mEg
0D 21

. ~11!

By introducing a new function

Q~k,v!5(
k8

M ~k8!G~k,k8,v!, ~12!

the dielectric function in Eq.~8! can be expressed as

«~v!.«`2
pe2

ALmEg
0 (

k
M ~k!Q~k,v!, ~13!

and the dynamical functionQ(k,v), which is essentially a
two-particle Green’s function, satisfies the Bethe-Salpe
equation described below.
19531
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C. Bethe-Salpeter equations

For the results to be presented in this paper, the ma
body exciton is given by the so-called Bethe-Salpe
equation18 for the two-particle Green’s function shown dia
grammatically in Fig. 2~a!, which corresponds to a rathe
complex set of two-component~electrons and holes! coupled
nonlinear integral equations which must be solved s
consistently with the bare interaction being the Coulomb
teraction in the QWR geometry. These equations are not
ously difficult to solve without making drastic
approximations and, in fact, have never before been so
in the literaturein any dimensions~except for our own short
report earlier6!. In carrying out the full many-body dynami
cal calculations for the BSE we are forced to make so
approximations. Our most sophisticated approximation u
the fully frequency-dependent dynamically screen
electron-hole Coulomb interaction in the single-plasmo
pole approximation, which has been shown to be an ex
lent approximation23 to the full RPA @see Fig. 2~c!# for the
1D QWR system. For the self-energy correction we use
single-loop GW diagram shown in Fig. 2~b! with the
screened interaction given by the PPA. Ward identities th
fix the vertex correction, entering Fig. 2~a!, to be the appro-
priate ladder integral equation.

For convenience, we use the finite-temperatu
imaginary-time Matsubara frequency Green’s function f
malism in our analysis. The bare electron-hole two-parti
Green’s function without anye-h interaction is

G0~k,k8,z,V!5Ge~k,V2z!Gh~2k,z!dk,k8 , ~14!

and it corresponds to the two separate Green’s function l
of electron and hole in Fig. 2~a!. For each particle line, we
have

Gi~k,z!5
1

z2« i ,k2S i~k,z!1m i
~ i 5e,h!, ~15!

FIG. 2. Many-body Feynman diagrams used in the paper w
the single~double! solid line representing the bare~dressed! elec-
tron or hole Green’s function and the single~double! wavy line
representing the bare~dressed! Coulomb interaction:~a! the exci-
tonic Bethe-Salpeter equation,~b! the single-loop self-energy~in the
so-called GW approximation! defining the dressed Green’s func
tion, and~c! the RPA dressing of the Coulomb interaction~treated
in the plasmon-pole approximation in our calculation!.
3-5
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where «e,k[k2/2me1Eg
0 and «h,k[k2/2mh are the bare

~noninteracting! band energies for electrons in the condu
tion band and for holes in the valence band, respectivelym i
is the chemical potential andS i(k,z) is the self-energy~for a
complex frequencyz), which we will calculate later within
the GW approximation. In order to avoid the multipole~and
any possible branch cut! structure inGi(k,z), we approxi-
mateS i(k,z) by the momentum-dependent band-gap ren
malizationD i(k), which is related to the self-energy throug
the self-consistent Dyson’s equationD i(k)5S i„k,« i ,k
1D i(k)2m i…; i.e., D i(k) is the so-called quasiparticle on
shell self-energy. However, D i(k) can be well
approximated24 by truncating this equation at the first no
trivial order, i.e.,D i(k)5S i(k,« i ,k2m i), which should be
reasonably valid in our calculations below. Therefore
have the following electron-hole single-pole Green’s fun
tion:

Gi~k,z!;
1

z2« i ,k2D i~k!1m i
, ~16!

for later calculations in this paper. The details of calculat
the self-energyS i(k,z) within the GW approximation are
discussed in the Sec. II D below.

The Bethe-Salter equation in Fig. 2~a! could be read as
~with b51/kBT, whereT is the temperature!

G~k,k8,z,V!

5G0~k,k8,z,V!

3S 11
1

b (
k9,z

Vs~k2k9,z2z8!G~k9,k8,z8,V!D .

~17!

Putting Eqs.~14!–~16! into Eq. ~17! we get

@V2«e,k2«h,2k2De~k!2Dh~2k!

1me1mh#G~k,k8,z,V!

5@Ge~k,V2z!1Gh~2k,z!#dk,k8

3S 11
1

b (
k9,z8

Vs~k2k9,z2z8!G~k9,k8,z8,V!D .

~18!

This equation, however, is not of closed form and is diffic
to evaluate since it is a rather complex multidimensio
singular integral equation. We therefore have to use an a
tional simplifying approximation first introduced b
Shindo,18,25,26 where the two-particle Green’s functio
G(k,k8,z,V) is replaced by a simple pair Green’s functio
G(k,k8,V) @whose retarded function yields via Eq.~9! di-
rectly the optical dielectric function#:
19531
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G~k,k8,z,V!

.
Ge~k,V2z!1Gh~2k,z!

2
1

b (
z

@Ge~k,V2z!1Gh~2k,z!#

G~k,k8,V!,

~19!

where

G~k,k8,V![2
1

b (
z

G~k,k8,z,V! ~20!

and

2
1

b (
z

@Ge~k,V2z!1Gh~2k,z!#

512ne~je,k!2nh~jh,2k!. ~21!

Here j i ,k[« i ,k1D i(k) and ni(j i ,k) is the fermion momen-
tum distribution function (eb(Rej i ,k2m i )11)21, which keeps
the electron and hole density constant by adjusting
chemical potentialm i to satisfy the correct density constrai
*(dk/p)ni(j i ,k)5n. Note that the approximation defined b
Eq. ~19! follows from the exact BSE in a statically screen
Coulomb interaction,25 i.e., if the frequency dependence o
the effective dynamically screened interaction is neglect
We expect the Shindo approximation to be a reasonable
proximation in our dynamical calculation below, because
dynamical screening effect contributes mostly to the corre
tion energy, whose real part is dominated by the~static!
Hartree-Fock exchange energy in the high-density regio19

~while the imaginary part of the correlation energy plays
important role in our calculations below!. We have not been
able to find a tractable way of solving the dynamical BS
without making the Shindo approximation.

Using Eqs.~15! and ~19!–~21! in Eq. ~18!, we then have
the following effective Bethe-Salpeter equation for the p
Green’s functionG(k,k8,v) ~after the analytical continua
tion V→v1 id2me2mh):

G~k,k8,v!5G0~k,k8,v!

3S 12(
k9

Ve f f~k9,k8,v!G~k9,k8,v!dss9D ,

~22!

whereG0 and the dynamically screened effective electro
hole interactionVe f f are expressed as

G0~k,k8,v!5
12ne~je,k!2nh~jh,2k!

v1 id2«e,k2«h,2k2D~k,v!
dk,k8

~23!

and
3-6
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Ve f f~k,k8,v!

5S 1

b D 2

(
z,z8

FGe~k,V2z!1Gh~2k,z!

12ne~je,k!2nh~jh,2k!

3Vs~k2k8,z2z8!

3
Ge~k8,V2z8!1Gh~2k8,z8!

12ne~je,k8!2nh~jh,2k8!
G

V5v2me2mh1 id

.

~24!

The effective BGRD(k,v) is given by

D~k,v!5(
k8

$@12ne~je,k81q!2nh~jh,2k8!#

3Ve f f~k,k8,q,v!2Vc~k2k8!%

52(
k8

@ne~je,k81q!1nh~jh,2k8!#Ve f f~k,k8,v!

1(
k8

@Ve f f~k,k8,q,v!2Vc~k2k8!#. ~25!

In Eq. ~25! the self-energy term (ne1nh)Ve f f and the vertex
correction Ve f f2Vc are treated on an equal footing
G0(k,k8,v) in Eq. ~23! is the electron-hole pair Green
function with self-energy correction but without electro
hole attractive interaction, which is now replaced by the d
namically screened effective interactionVe f f(k,k8,v) in the
BSE, Eq.~22!. If we neglect dynamical effects inVs(k,z) ~as
in the static or the quasistatic approximation described
low!, thenVe f f(k,k8,v)5Vs(k) according to Eqs.~24! and
~21!. In the following section, we will discuss the use
different screening models to evaluateVe f f(k,k8,v) @and
BGR De/h(k) through the screened GW approximation# in
calculating the absorption spectrum by solving the BSE.

Combining the Bethe-Salpeter equation~22! for
G(k,k8,v) with Eq. ~12!, we have the following equation fo
Q(k,v):

Q~k,v!5Q0~k,v!S 12
1

M ~k! (
k8

Ve f f~k,k8,v!Q~k8,v!D ,

~26!

for Q0(k,v)[(k8M (k8)G0(k,k8,v). OnceQ(k,v) is ob-
tained by solving the integral equation~26!, which is also a
BSE, it is straightforward to calculate the absorption a
gain spectra from the dielectric function«(v) through Eq.
~13!.

D. Self-energy, BGR, and screening in QWR’s

In order to solve Eqs.~22!–~26! for the Bethe-Salpete
equation, we have to use a screened interactionVs(k,z) in
Eq. ~24! to get Ve f f and also to get the single-particle se
energyS i(k,z) in the Green’s function of Eq.~16!. In this
section, we discuss and compare both the quasistatic
proximation and the dynamical~PPA! approximation in the
19531
-
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d

p-

screening calculation. For convenience, we first discuss
self-energy part and then the screening effect.

In the GW approximation, which is the leading-order se
energy in the screened interaction expansion, the self-en
is calculated in the single-loop diagram composed of a n
interacting particle line and a screened interaction line@Fig.
2~b!#. Using static screening in the interaction line@i.e.,
Vs(k,z)5Vs(k,0)], we get a screened exchange self-ene
term only, and all higher-order screening effects to the c
relation energy are neglected. This approximation~named
the static approximation! is therefore too simplistic to give
correct results,6 although it has been extensively employed
excitonic calculations because of its simplicity. An improv
ment to the static approximation is the quasista
approximation,18 which neglects the recoil energy during th
scattering process so that no dynamical frequency inside
screened interaction potential shows up. This approxima
produces an extra constant Coulomb-hole term@the second
term of Eq. ~27!# in the self-energy in addition to the
screened exchange self-energy of the static approxima
so that the full expression for the BGR in this quasista
approximation becomes

D i~k!5(
k8

F2Vs~k2k8!ni~« i ,k!1
1

2
@Vs~k8!2Vc~k8!#G ,

~27!

where Vs(k)[Vs(k,v50)5Vc(k)/«(k,v50) is the stati-
cally screened Coulomb interaction, which could be anal
cally derived either from the RPA@using Eq.~29! below#
~Ref. 15! or PPA@using Eq.~30! below#.23 In our paper, the
former is named the quasistatic RPA and the latter named
quasistatic PPA. Note thatD i(k) in Eq. ~27! is pure real, i.e.,
without any imaginary part of the self-energy or inelas
broadening effect, so that the quasiparticle assumption
the Landau-Fermi liquid is completely satisfied in this a
proximation with an infinite quasiparticle lifetime. It is we
known, however, that the quasiparticle assumption bre
down in 1D~unlike in 2D or 3D! electronic systems, with a
generic non-Fermi-liquid behavior.27 For the purpose of
comparison we still use this approximation to calculate
1D optical properties in order to compare with the full d
namical calculation results and to study the quantitative
lidity of this widely used quasistatic approximation both
the higher-dimensional systems18,22 and in the 1D system7,10

in the literature. In Fig. 3~a! we show the conduction-ban
energy je,k

0 2Eg
05«e,k1De(k)2Eg

0 in the quasistatic PPA
for different electron densities. The band-gap renormali
tion is almost a wave-vector-independent rigid shift in t
quasistatic approximation.

For the self-energyS i(k,v) calculated in the one-loop
GW approximation with dynamically screened interactio
we have

S i~k,z!52
1

b (
k8,z8

Vs~k2k8,z2z8!Gi~k8,z8!

52
1

b (
k8,z8

Vc~k2k8!

«~k2k8,z2z8!
Gi~k8,z8!, ~28!
3-7
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where we can use either the RPA or PPA@which is an excel-
lent approximation to the RPA~Ref. 23!# to calculate the
dynamical dielectric function «(k,v). For the zero-
temperature RPA,«(k,v) is obtained by including the non
interacting polarizabilities of electrons@Pe

0(k,v)# and holes
@Ph

0(k,v)# ~Ref. 15!:

FIG. 3. ~a! Conduction-band energyje,k2Eg
0 calculated in the

GW approximation with screened interaction approximated by
quasistatic PPA.~b! and~c! are, respectively, the real and imagina
parts of the band energy calculated in the dynamically screened
approximation~within PPA! for the same system as~a!. The calcu-
lation is carried out in the symmetric T-shaped QWR system w
Wy5Wz57 nm including finite-temperature (T510 K) and finite
~phenomenological! impurity scattering (g50.5 meV) effects.
19531
«~k,v!512Vc~k!Pe
0~k,v!2Vc~k!Ph

0~k,v!

512Vc~k! (
i 5e,h

mi

pk
lnFv22@~k2/2mi !2kvF,i #

2

v22@~k2/2mi !1kvF,i #
2G ,

~29!

wherevF,e/h is the ~Fermi! velocity of electrons or holes a
Fermi momentum in the conduction and valence bands
this paper we will use the RPA only in calculating the qu
sistatic screening via Eq.~27! by settingv50 in Eq. ~29!,
not in the full dynamical BSE@Eq. ~26!#, because the pole
structure~and branch cut properties! of the screened interac
tion, Vc(k)/«(k,v), in the full dynamical RPA is too com-
plicated to deal with in the frequency summation of Eq.~24!
and in the integral equation~26!. In the dynamical PPA,
however, the dielectric function«(k,v) is defined by the
following expression where screening is induced by a sin
~plasmon! pole satisfying the correspondingf-sum rule:23

1

«~k,v!
511

vpl
2 ~k!

~v1 id!22vk
2

, ~30!

wherevpl(q)5AnVc(q)q2/m is the 1D plasmon oscillato
strength andvq is the effective plasmon frequency given b
a simple formula14,18,23

vq
25vpl

2 ~q!1
nq2

mk
1

q4

4m2
, ~31!

wherek is the inverse screening length. It has been sho
that the PPA is a very good approximation to the RPA in
systems, where plasmon excitations dominate the sin
particle excitations.15,23 The great virtue of the single-pol
PPA for our theory is that it makes our calculation ofVe f f in
Eq. ~24! tractable because the integral equation in freque
becomes simple. In the PPA the self-energy of the elect
( i 5e) or hole (i 5h) can be expressed as a sum of the us
exchange or Hartree-Fock energyS i

ex(k) and the correlation
energyS i

cor(k,v):

S i~k,v!5S i
ex~k!1S i

cor~k,v!,

S i
ex~k!52(

k8
Vc~k8!ni~« i ,k8!,

S i
cor~k,v!5(

k8

Vc~k8!vpl
2 ~k8!

2vk8
FnB~vk8!1ni~« i ,k1k8!

v1vk82« i ,k81k2 ig

1
nB~vk8!112ni~« i ,k1k8!

v2vk82« i ,k81k1 ig
G , ~32!

wherenB(vk) is the bosonic momentum distribution func
tion (ebvk21)21 for the plasmons;g is a small phenomeno
logical damping term incorporating impurity scattering a
all other possible broadening processes~see the discussion in
Sec. III B!. From Eq.~32! we see that the dynamical effect a
well as the imaginary part ofS i(k,v) arises entirely from
the correlation energy@and is absent in the static~Hartree-
Fock! or quasistatic theory#. This will play an important role

e

W

h
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~which is crucial in 1D! in our following calculations. Fig-
ures 3~b! and 3~c! show the real and imaginary parts of th
electron energyje,k2Eg

05«e,k1Se(k,«e,k2me)2Eg
0 , tak-

ing into account the dynamical PPA self-energy renormali
tion.

Defining the on-shell self-energy to beD i(k)[S i(k,« i ,k

2me) wherei 5e,h, the imaginary part ofDe(k) is propor-
tional to the electron inelastic-scattering rate15 arising from
electron-electron interaction, which is very small whenk is
below some threshold momentumkc . For k.kc a new
collective-mode scattering channel opens up in which e
trons lose energy by emitting plasmons. At zero tempera
and for zero impurity scattering~clean system limit!, it can
be shown that the inelastic-scattering rate diverges ask
2kc)

21/2 when k approacheskc from above in 1D.15 Note
that this divergence in ImDe/h(k) also exists in the RPA
calculation,15 and is therefore a characteristic of the intera
ing 1D system in the dynamical GW approximation, caus
a gap to open up atk5kc in the real part of the self-energy a
shown in Fig. 3~b!. The existence of this gap in the BGR@or
the divergence in ImDe/h(k)] reflects the breakdown of th
quasiparticle picture in the 1D electron system27 within the
perturbative GW approximation. An interacting 1D electr
system is known to be better described by the Luttinger
uid ~LL ! model than the Fermi liquid model due to the stro
plasmon scattering effect arising from the limited pha
space in 1D. A Luttinger liquid, in contrast to a Fermi liqui
does not have any discontinuity in its momentum distribut
function, and does not, therefore, have any true quasip
cles. The existence of a Luttinger liquid is a purely nonp
19531
-
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re

(

-
g

-

e

n
ti-
-

turbative effect of interaction and happens in 1D even for
arbitrarily weak electron-electron interaction. We therefo
cannot get a true Luttinger liquid within our perturbative G
approximation, but the opening of the gap in the real par
the self-energy~or equivalently the divergence in the imag
nary part of the self-energy! is the perturbative signature o
the breakdown of the Fermi liquid picture. At finite temper
ture and for finite impurity scattering, the single-partic
properties calculated in the 1D Fermi liquid model via t
dynamical GW approximation are similar to the results c
culated in the Luttinger liquid theory. Therefore we belie
that the strong inelastic scattering shown in Fig. 3~c! quali-
tatively reflects the LL character of 1D systems, and o
self-energy calculation is qualitatively correct for our pu
pose of calculating excitonic optical properties. Our inc
sion of the strong inelastic scattering by plasmons catc
some essential aspects of the 1D phase-space restric
which eventually leads to the nonperturbative formation o
1D Luttinger liquid, which is beyond the scope of this wor

We evaluate the effective interactionVe f f in Eq. ~24! by
using the same PPA approximation and obtain

Ve f f~k,k8,v!5Vc~k2k8!

3F11
1

Neh~k!

1

Neh~k8!
xeh~k,k8,v!G ,

~33!

where Neh(k)[12ne(je,k)2nh(jh,k) and xeh is given by
the the following complicated formulas containing eight d
ferent terms associated with various dynamical processe
the 1De-h system:
xeh~k,k8,v!5
vpl

2 ~k2k8!

2vk2k8
F2@11nB~vk2k8!#ne~je,k!1nB~vk2k8!ne~je,k8!1ne~je,k!ne~je,k8!

je,k2je,k82vk2k8

1
2nB~vk2k8!ne~je,k!1@11nB~vk2k8!#ne~je,k8!2ne~je,k!ne~je,k8!

je,k2je,k81vk2k8

1
2@11nB~vk2k8!#nh~jh,2k!1nB~vk2k8!nh~jh,2k8!1nh~jh,2k!nh~jh,2k8!

jh,2k2jh,2k82vk2k8

1
2nB~vk2k8!nh~jh,2k!1@11nB~vk2k8!#nh~jh,2k8!2nh~jh,2k!nh~jh,2k8!

jh,2k2jh,2k81vk2k8

1
ne~je,k!nh~jh,2k8!1@11nB~vk2k8!#@12ne~je,k!2nh~jh,2k8!#

v1 ig1me1mh2je,k2jh,2k82vk2k8

1
2ne~je,k!nh~jh,2k8!1nB~vk2k8!@12ne~je,k!2nh~jh,2k8!#

v1 ig1me1mh2je,k2jh,2k81vk2k8

1
ne~je,k8!nh~jh,2k!1@11nB~vk2k8!#@12ne~je,k8!2nh~jh,2k!#

v1 ig1me1mh2je,k82jh,2k2vk2k8

1
2ne~je,k8!nh~jh,2k!1nB~vk2k8!@12ne~je,k8!2nh~jh,2k!#

v1 ig1me1mh2je,k82jh,2k1vk2k8
G , ~34!
3-9
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where we use the same phenomenological damping pa
eterg to broaden the resonant threshold energies in the
nominators. The first two terms in the brackets of Eq.~34!
describe the coupling of electron excitations with the pl
mon, having the corresponding particle filling factors in t
numerator and the resonance energy in the denominator.
third and the fourth terms describe the same plasmon c
pling process for the holes. The first four terms are static
v independent in our approximation. The last four terms
dynamical and depend explicitly onv. These last four dy-
namical terms describe processes which couple both elec
and hole systems with the plasmon modes, and are extre
important in the dynamics of the photoexcited system. N
that we take the real part ofxeh only in our numerical cal-
culation because the Hermitianity ofVe f f is required for the
effective Hamiltonian shown below in Eq.~36!.

E. Effective Hamiltonian and variational method

Before solving the full dynamical Bethe-Salpeter equ
tion, it is instructive to study the excitonic and the EHP e
fectsseparatelyby treating the influence of the EHP on th
excitonic states as a perturbation.18,26 Using an effective
Hamiltonian derived from the Bethe-Salpeter equation,
can variationally obtain the exciton ground-state energy
minimizing the energy expectation value through a 1s exci-
ton trial wave function. The effective Hamiltonian treats t
EHP as a perturbative effect and is written asHpp8(vn)
5Hpp8

0
1Hpp8

8 (vn), where

Hpp8
0

5S Eg
01

p2

2mD dpp82Vc~p2p8! ~35!

is the Hamiltonian for the single electron-hole pair with
unscreened Coulomb interaction~similar to a 1D hydrogen
atom! and the perturbationH8 is

Hpp8
8 ~vn!5D~p,vn!dpp81Vc~p2p8!

2@12 f e~je,p!2 f h~jh,2p!#Ve f f~p,p8,vn!,

~36!

for the nth eigenstate of energyvn . Here we can explicitly
see the physical meaning ofD(p,v) andVe f f(p,p8,v) ana-
lytically derived in Eqs.~24! and ~25!. We expect that the
wave function of the exciton satisfies the correspond
Schrödinger’s equation in the low-density limit, where th
screening effect is negligible. Thus this exciton effecti
Hamiltonian approach may be a reasonable approximatio
calculate exciton energies and wave functions.

For the exciton trial wave functionfn(p) in momentum
space, we use the two-parameter variational wave func
first introduced by Nojima7,8 to express the 1D exciton
ground state as

f0~p!5A 2sl

K1~2s!

K1~sAl2p211!

Al2p211
, ~37!

where l and s are two independent~positive! variational
parameters in our calculation.K1(x) is the first-order modi-
19531
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fied Bessel function of the second kind. This variation
bound-state wave function has the following form in re
space:

f0~x!5
exp@2A~x/l!21s2#

A2slK1~2s!
, ~38!

where one can see that the variational parameterl represents
the exciton radius ands smoothes or broadens the center-o
mass wave function atx50. We do not study the firs
excited-state wave functionf1(p) in this paper because it i
not particularly relevant to the Mott transition process we
interested in, although the variational technique can
adapted to study excited excitonic states.8

III. RESULTS

We first show the variational results because conceptu
this is the simplest approach since it is based on an effec
single-particle Hamiltonian. We obtain the BGR and the e
citon binding energy by the variational method in both t
quasistatic approximation and the dynamically screened
approximations~within PPA! for various photoexcited carrie
(e-h) densities. The crossover between the exciton ene
and the BGR gives us an estimated Mott transition criti
densitync , where the exciton bound state ceases to exist
an insulator-to-metal transition occurs. The idea here is
at nc the exciton merges with thee-h continuum and is no
longer a stable bound state. Finally we carry out the f
Bethe-Salpeter integral equation solution by a matrix inv
sion method and obtain the absorption spectra and refrac
index in a large range ofe-h density ~from 102 to
106 cm21) to compare with the variational effective Hami
tonian results. Details are described below.

A. Effective Hamiltonian result

In Fig. 4~a!, we show the calculated density dependen
of the exciton ground-state energy variationally obtain
from the effective Hamiltonian method and the BG
@De(0)1Dh(0)# calculated in both the quasistatic approx
mation and the dynamically screened GW approximation
described in Sec. II D. Both the RPA and PPA are used in
quasistatic calculation@Eq. ~27!# for comparison whereas th
full dynamical calculations are done only in the PPA. T
intersection between the exciton energy~dashed lines! and
the BGR~solid lines! indicates the Mott transition, where th
exciton merges with the band continuum and the system
a phase transition from an insulating exciton gas to a c
ducting EHP. Note that the variational method introduced
Sec. II E loses its accuracy near the Mott density~and be-
comes essentially meaningless forn.nc), because the varia
tional energy expectation valueE(l,s)[^f0(l,s)uH0

1H8„E(l,s)…uf0(l,s)& has a very flat minimum region in
thel-s space aroundn'nc ; i.e., the exciton wave function
is highly broadened, so that its minimum energy is hard
determine in such a perturbation-based variational meth
In Fig. 4~b! we show the variationally calculated trial excito
1s ~ground-state! wave functionf0(x) for different exciton
3-10



on

av
In
n

o
in

to

ult

e

ost
-
ion

er

this
n-
ited
st

ic
R

the
and

on
g
ak
an

ws
een

,

ss

ton
si-

full

ain

xi-
f
’s

to

a
nt
lit-
l

arge

d
rger
-
-

gy

d
it

din

o

In

sit
(
e
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densities. The exciton density dependences of the variati
parametersl ands are also shown in the inset of Fig. 4~b!.
The sharp divergences ofl ands at nc;23105 cm21 in-
dicate the delocalization of the exciton ground-state w
function, a signal of an exciton-to-EHP Mott transition.
Fig. 4~a! we terminate the variationally calculated excito
line ~dashed! at n523105 cm21 and use the dotted line t
represent the peak position of the absorption spectra obta
from solving the full dynamically screened BSE~discussed
below! to continue the exciton line to higher densities up
63105 cm21.

We can make the following comments about the res
shown in Fig. 4~a!: ~i! For a density below 104 cm21 the
exciton energy has only a few-meV density-dependent r

FIG. 4. ~a! Separately variationally calculated exciton ener
~dashed lines! and BGR of the EHP~solid lines! as a function of
photoexcitation density, in three different approximations as in
cated in the plot by different linewidths. Note that when the dens
is larger than 23105 cm21, the variational method~introduced in
Sec. II E! fails to give a good exciton energy~see the text! and the
dotted lines are the exciton peak positions of the correspon
absorption spectra by solving the BSE~Fig. 5!. ~b! The 1s exciton
ground-state wave function obtained in the variational meth
through effective Hamiltonian@Eqs.~35! and~36!# in the dynamical
~PPA! screening calculation for various electron-hole densities.
set: the variational parametersl ands for the 1s exciton ground-
state trial wave function with respect to the photoexcitation den
in logarithm scale. When the density is near the Mott densitync

;33105 cm21), both l and s increase sharply and the wav
function becomes totally broadened.
19531
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shift in the quasistatic RPA/PPA approximations and alm
no shift ~less than 0.5 meV! in the dynamical screening ap
proximation. This shows the almost complete cancellat
between the exchange-correlation-induced BGR~a density-
dependent shift! and the blueshift of the exciton energy~due
to screening! over a wide range of density. On the oth
hand, using the static screening~i.e., exchange energy only!
approximation in the same calculation does not lead to
cancellation,6 showing that the experimentally observed co
stancy of the exciton energy as a function of the photoexc
e-h density is a dynamical effect, which may not manife
itself in simpler approximations.~ii ! For an e-h density
higher than 104 cm21, the exciton energy in the quasistat
RPA has a rather large redshift until it merges with the BG
line smoothly atnc;63104 cm21, indicating a rather low-
density Mott transition in this system. On the other hand,
exciton energies calculated in both the quasistatic PPA
the full dynamical PPA are almost constant up ton5nc;3
3105 cm21, where the band continuum meets the excit
energy.~iii ! In the full dynamical results obtained by solvin
the dynamical BSE directly, the excitonic absorption pe
~dotted line! seems to survive even for densities higher th
the ‘‘critical density,’’ nc , at which the calculated exciton
energy crosses the band continuum BGR line. This sho
that there must be reasonably strong hybridization betw
the exciton and the EHP in the dynamical BSE@note that the
dotted line in Fig. 4~a! is not from the variational calculation
but is obtained from the BSE solution#, so that the effective
BGR, including excitonic effects in the BSE, is actually le
than the result we calculate from Eq.~32! by adding the
electron and hole self-energies without incorporating exci
effects. This also demonstrates the limitation of the qua
static approximation and confirms the necessity of the
dynamical BSE calculation in the high-density 1De-h
system.

B. Dynamical Bethe-Salpeter equation result

In Fig. 5, we show our calculated absorption and g
spectra by solving the full Bethe-Salpeter~integral! equation
in the quasistatic and the full dynamical screening appro
mations forWy5Wz57 nm wire at a low temperature o
T510 K. The integral equation for the two-particle Green
function, Eq.~26! @or equivalently Eq.~22!#, is solved by the
matrix inversion method with maximum momentum up
kmax5(p/2)3108 cm21(5100kF for n5106 cm21). The
poles of the dynamical screened interactionVe f f in Eqs.~33!
and~34!, together with the logarithmic singularity of the 1D
Coulomb interaction in the long-wavelength limit, produce
multisingular kernel with multiple momentum-depende
singularities which have never been solved before in the
erature ~except for our earlier work,6! because the usua
singularity-removal method is ineffective here.18,22 In our
calculations presented in this paper, we use a rather l
matrix (150031500 in a Gaussian quadrature foruku
<kmax) in the matrix inversion method in order to get goo
overall accuracy; i.e., the same calculations using even la
(200032000) matrix size~which is extremely time consum
ing and not shown here! do not show any significant differ
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y

g

d

-

y
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FIG. 5. Calculated absorption and gain spectra for various photoexcitation densities by solving the Bethe-Salpeter equation
different approximations for screening:~a! the quasistatic RPA,~b! the quasistatic PPA, and~c! and~d! the full dynamical~PPA! calculation.
The system parameters of~a!–~d! are the same as used in Fig. 3, except for the smallerg ~50.2 meV! used in~d!.
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ence~within 10%! in the whole absorption~and refractive
index! spectrum from the results we present in Figs. 5
The broadeningg used in our calculation is a phenomen
logical parameter which simulates in a simple manner
effects of all possible scattering and broadening proce
not explicitly included in our theory. These are, for examp
impurity and defect scattering, inhomogeneities in the s
tem ~e.g., fluctuations in the wire width!, broadening associ
ated with optical excitation process itself, and phonon sc
tering. We mention that inelastic plasmon scattering lifeti
effects are explicitly included in our theory. Note thatg
should be small compared with the bare excitonic bind
energy (;10–20 meV in GaAs semiconductor QWR sy
tems!, and as long asg is small, its precise value has n
qualitative effect on our conclusions and results. We ty
cally chooseg50.5 meV in our calculations.

In Figs. 5~c! and 5~d! we show the absorption spectra
the dynamical PPA for two different values of impurity sca
teringg ~different by a factor of 2.5! to show thatg does not
affect the qualitative behavior of the spectra, but does con
the linewidths of the absorption peaks as one would exp
Some important features of the optical spectra~calculated by
solving the full BSE! shown in Fig. 5 are the following:~i!
there are generally two absorption peaks in the low-den
(n,104 cm21) spectra of all three approximations, one t
exciton ground-state (1s) peak at about 1532 meV and th
19531
.
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other one the exciton first excited state (2s) at, for example,
1547.5 meV forn5102 cm21 @this peak is off the plot re-
gion in Fig. 5~a!#. Note that this low-density spectrum i
almost the same in all three different approximations, sho
ing that the dynamical effect is not important in the low
density region.~ii ! When the density increases but is still le
than 104 cm21, the exciton peak does not shift much
(,2 meV) with increasing carrier density in all approxim
tions, indicating the constancy of the exciton energy.~iii ! At
higher densities (104 cm21 ,n,105 cm21), however, the
quasistatic RPA result@Fig. 5~a!# shows some additional red
shift in the excitonic peak, consistent with the result sho
in Fig. 4~a! which is obtained from the variational metho
On the other hand, the excitonic peak positions in the qu
static PPA and in the full dynamical approximation are
most ~density independent! constants in this region. A sig
nificant difference between the quasistatic PPA and
dynamical calculation results, however, is that the exci
peak of the quasistatic PPA results@Fig. 5~b!# has an almost
constant oscillator strength, while the oscillator strength
the peak in the full dynamical calculation results@Fig. 5~c!#
decays at high density to about one-third of its low-dens
value.~iv! For n.105 cm21, both quasistatic RPA and qua
sistatic PPA results show negative absorption~gain! for the
photon frequency below some critical valuevc , while the
full dynamical result is still positive~i.e., no gain! with a
3-12
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weaker broadened peak upton'63105 cm21 or higher. In
other words, we do not explicitly find the expected excit
~insulator! to plasma~metal! Mott transition when both the
self-energy and the screened interaction are included
namically in the full BSE theory up to a rather highe-h
density. We believe that this behavior arises from the str
plasmon scattering effects in 1D as discussed in Sec. IV
this paper.~Such strong inelastic scattering was not includ
in our earlier short report,6 leading to the appearance of
gain in the high-density spectra above the Mott density.! In
Fig. 6, we show the refractive indexn(v) calculated by solv-
ing the Bethe-Salpeter equation in both the quasistatic
and the full dynamical approximation for different photoe
citation densities. The calculated refractive indices in th
two approximations are similar in structure.

In Fig. 7, we show the calculated absorption-gain spe
obtained in both the quasistatic PPA@Fig. 7~a!# and the full
dynamical calculations@Fig. 7~b!# for the same wire width
Wy5Wz57 nm, but at a higher temperature (T5100 K)
for various densities. We find that the higher-temperat
~100 K! low-density (n,104 cm21) absorption spectrum is
almost the same as the corresponding lower-temperaturT
510 K) spectra in Figs. 5~b! and 5~c!, while in the higher-
density region (n.104 cm21) the high-temperature excito
absorption peak of the full dynamical calculation has

FIG. 6. Calculated refractive index for various photoexcitati
densities in both~a! the quasistatic PPA and~b! the dynamical
~PPA! approximation for interaction screening.
19531
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smaller redshift in energy with a much larger broaden
than the quasistatic PPA result. The quasistatic RPA resu
such high temperature~not shown here! has an even large
redshift and broadening. We mention that the gain in
absorption spectra of the quasistatic calculation at the lo
temperature@Fig. 5~b!# is flattened and almost disappears
the higher-temperature~100 K! calculation results.

IV. CONCLUSION

In this paper, we theoretically study, using a reasona
realistic Coulomb interaction, the excitonic optical propert
of a 1D QWR system by solving the many-body Beth
Salpeter equation using a number of approximations,
most sophisticated one being a treatment of both the s
energy and the vertex function in the dynamically screen
GW approximation. Our calculation is applied to the expe
mentally studied T-shaped GaAs-AlxGa12xAs 1D QWR sys-
tems for various densities and temperatures. We calculate
electron and hole self-energies in the one-loop GW appro
mation diagram using different screening approximatio
the quasistatic RPA, the quasistatic PPA, and the dynam
~PPA! approximation. The quasistatic approximations gi
an almost rigid shift~the BGR effect! to the band energy@see

FIG. 7. Absorption and gain spectra obtained by solving
Bethe-Salpeter equation in~a! the quasistatic PPA and~b! the full
dynamical~PPA! approximation for screening at high temperatu
(T5100 K). Other system parameters are the same as use
Fig. 3.
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Fig. 3~a!#, and there is no imaginary part of the self-energ
i.e., the quasiparticle lifetime is infinite. This approximatio
may work well in 2D and 3D systems but fails completely
1D systems, because unlike in the higher-dimensional
tems, the electrons in 1D system suffer a very stro
inelastic-scattering effect by virtue of restricted phase spa
Therefore the validity of the quasistatic approximation a
plied to 1D systems, which has been extensively used
many theoretical works,7,10,14,28,29is doubtful. In the dynami-
cal calculation we find that the electron and hole band-
renormalization has a gap opening up in its real part an
consequent divergent singularity in its imaginary part ak
5kc @Figs. 3~b! and 3~c!#, where the quasiparticle energy
transferred to the plasmon excitations due to very strong
elastic scattering by 1D plasmons. Although this perturba
GW self-energy is ‘‘unphysical’’ due to the failure of th
Fermi liquid model in the 1D system,27 it still gives a rather
good qualitative description of the single-particle and
collective-mode properties~compared to the correct Lut
tinger liquid model!, particularly at finite temperatures an
for finite impurity scattering.15 Our results in Figs. 3~b! and
3~c! reflect an important generic feature of 1D systems:
quasiparticle excitation has a very short lifetime~in fact, it
does not exist! if the excitation momentum is higher tha
some valuekc . This 1D feature associated with the Lutting
liquid properties of 1D systems strongly affects the stabi
of 1D excitons and the bound quasielectron and quasih
pairs, as we can see from the calculated absorption and
spectra~Fig. 5!.

In Fig. 5 we find that the quasistatic approximation, whi
excludes inelastic scattering, gives rise to a negative abs
tion ~gain! region in the highly photoexcited system. Th
existence of gain means that the exciton state is satur
~fully occupied!, and therefore manifests a spontaneo
emission, rather than absorption. On the other hand, the o
all positive absorption~no gain! spectrum found in the dy
namical calculation@Fig. 5~c!# up to the highest density i
caused by the large imaginary part of the electron-hole
shell self-energy, ImDe/h(k) @see Fig. 3~c! and Eq. ~32!#,
which is proportional to the inelastic-scattering rate and
sults from the energy scattering through plasmon channe
other words, the excitons, composed of bound pairs
quasielectrons and quasiholes, are unstable due to stron
elastic scattering by 1D plasmon excitations in the hig
density region. Consequently, in the dynamical calculati
the exciton absorption peak is suppressed in strength
broadened in width as the photoexcitation density increa
leading to stronger plasmon scattering. The absorption s
trum does not exhibit a negative~gain! region even in the
high-density regime because the quasiparticle EHP band
tinuum is so strongly inelastically scattered by plasmons
it is not a proper eigenstate~i.e., it decays! and is never
saturated. The disappearance of the exciton line and the
negativity in the absorption spectra~at the same time! in our
dynamical calculation suggest that there isno insulator~ex-
citon! to the metal~EHP! Mott transition in 1D systems
since both excitons and quasiparticles are strongly inela
cally scattered by plasmons, leading to neither of them be
well-defined coherent states of the high-density 1D syst
19531
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This result is consistent with the well-known non-Ferm
liquid properties of 1D electronic systems, where the qua
particle~and hence the exciton! picture fails. The quasistatic
approximation, which ignores any plasmon effect and wo
well in 2D and 3D systems,28 does not work in 1D system
because the 1D excitation spectrum is completely domina
by plasmons.

Another clue in support of the importance of plasmons
such a high-density 1De-h system comes from the temper
ture dependence of the absorption spectra shown in Fig
Our results show that the high-temperature (T5100 K) ab-
sorption peak in the dynamical calculation@Fig. 7~b!# is sup-
pressed and broadened so greatly that there is almos
spectral structure observed forn>105 cm21, while the
high-temperature quasistatic PPA result@Fig. 7~a!# still has a
rather strong peak at the same density. This is because
plasmon excitation occupancy, whose energy distribut
function nB(vk) follows the Bose-Einstein statistics, de
pends strongly on temperature, leading to a qualitative
ference between theT510 K andT5100 K results in the
dynamical calculation, while such plasmon dynamics is
included in the quasistatic calculation. This characteris
strong temperature dependence is also consistent with
recent experimental results.3

Based on our results and the discussion above, we
pose that a crossover from a low-density~essentially nonin-
teracting! Fermi liquid to a high-density interacting non
Fermi liquid is occurring in the optical spectra of the 1De-h
system as the photoexcitation density increases@see Fig.
5~c!#. In the low-density limit, say,n<102 cm21, we have a
dilute and noninteracting exciton system, whose absorp
spectrum is independent of the many-body screening
proximations we use — plasmons are just not that import
in this regime. This shows that excitons in this situation a
isolated quasielectron and quasihole pairs, reflecting the
lidity of the quasiparticle picture in the effective noninterac
ing Fermi liquid model in the low density limit. In the
higher-density region, however, the plasmon effect on
quasiparticle self-energy becomes important, because
band curvature atk5kF is less for higherkF ~i.e., higher
density! and the relative importance of collective-mode e
citations~plasmons! is then strongly enhanced as in the Lu
tinger liquid model. Therefore the oscillator strength of t
exciton absorption peak is then reduced and broadened in
dynamical calculation@Fig. 5~c!#. When the density is
roughly the nominal ‘‘Mott transition’’ critical densitync ,
where the band continuum energy equals the exciton en
@see Fig. 4~a!#, the plasmon excitation becomes so domina
that both exciton and band continuum~EHP! states become
unstable, showing a crossover to effectively non-Ferm
liquid properties. We therefore do not expect to see the
Mott transition from an excitonic insulator to an EHP me
in 1D highly photoexcited systems, in contrast to the resu
of previous theories. For an electron-hole plasma with
any backward scattering in the usual Luttinger liquid mod
~no band curvature at all, which is unrealistic in our cas!,
we can prove that gain in the optical spectra does exist be
the Fermi energy at all densities with a complicated pow
law singularity at the Fermi surface. Including the electro
3-14
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MANY-BODY EFFECTS ON THE EXCITONIC OPTICAL . . . PHYSICAL REVIEW B 64 195313
hole attractive backward interaction~assuming a short
ranged interaction as in the so-calledg-ology formalism!, the
electron-hole system most likely undergoes a charge den
wave ground state transition with a mass gap in the elem
tary plasmon excitation.30 While this scenario is consisten
with our results, further work for the excitonic effect at e
ergy far below the Fermi energy is still needed, because
regular Luttinger liquid model cannot include band curvatu
in an appropriate way in order to study the Mott transition
an energy level around the band edge.

In reference to the experimental data, we note that
results from solving the dynamically screened Beth
Salpeter equation are in excellent qualitative and quantita
agreement with recent experimental findings.1,2 In particular,
the effective constancy of the exciton peak as a function
the photoexcited carrier density and the possibility of ex
tonic absorption well into the high-density regime~even for
n.63105 cm21) turn out to be characteristic features
the full dynamical theory~but not of the static and the qua
sistatic approximations!. A full dynamical self-consisten
theory as developed in this paper is thus needed for an
derstanding of the recent experimental results. Moreover
find that in our theory, the plasmon effect is crucial in t
high-density regime, leading to the nonexistence of any
servable Mott transition in our calculation. This is consiste
with recent experimental results,1,2 which do not observe an
actual Mott transition in the semiconductor QWR syste
even in the high-photoexcitation-density (;33106 cm21)
regime. We emphasize that only our dynamical theory,
not the static or quasistatic approximation, is in agreem
with the experimental results. We point out that the physi
reason for the failure of static screening theory in the exci
calculation is that static screening strongly overestimates
screening strength by not allowing dynamical antiscreen
effects. The constancy of the exciton energy in this probl
arises from an approximate cancelation between the s
energy correction~the band-gap renormalization! and the
vertex correction in the problem.

Before concluding we emphasize the various simplifyi
approximations made in our theory:~i! we consider an effec
J
e
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tive 1D exciton problem by appropriately integrating ov
the transverse dimensions of the quantum wire — a m
complete theory should take into account the full 3D nat
of the quantum wire structure;~ii ! we treat dynamical screen
ing in the plasmon-pole approximation for the purpose
simplification; ~iii ! we treat many-body effects in the sing
loop GW approximation along with the corresponding ladd
vertex correction.

In summary, our main accomplishments reported in t
paper are the following:~i! thefirst fully dynamical theory of
a photoexcited electron-hole system in semiconduc
which treats self-energy, vertex corrections, and dynam
screening in a self-consistent scheme within a realistic C
lomb interaction-based Bethe-Salpeter theory;~ii ! a reason-
able qualitative and quantitative agreement with the rec
experimental observations of a constant~photoexcitation
density-independent! excitonic absorption peak in energ
which in our dynamical theory arises from an approxima
cancellation between the self-energy and the vertex cor
tions in the Bethe-Salpeter equation;~iii ! inclusion of the
plasmon effect in the quasiparticle self-energy calculation
our dynamical theory, leading to our theoretical proposal t
no Mott transition should be observed in 1D electron-ho
systems~at least in optical experiments! even at very high
photoexcitation density—i.e., there should be no optical g
region;~iv! instead, we suggest an experimentally observa
crossover from a low-density noninteracting Fermi liquid b
havior~quasiparticle-exciton favored! to a high-density inter-
acting non-Fermi-liquid behavior~no stable quasiparticle
and excitons!. A more precise and nonperturbative theore
cal model for the high-density 1D electron-hole system
needed for future study — such a study should someh
incorporate both band curvature and Luttinger liquid beh
ior in analyzing the optical properties, although we belie
that the qualitative features of such a theory are already c
tained in our work.
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