SHG imaging:
From molecules to tissues

朱士維
台大物理系
Outline

- Introduction
- Principles of optical harmonics
- Experimental setup
- Applications of harmonics imaging
 - Material science
 - GaN material properties mapping
 - 3D Electric field visualization
 - Biological science
 - Bio-photonic crystal probing
 - Tissue imaging
- Summary
Optical microscopy

- **Important issues**
 - Contrast
 - Resolution
 - Penetration depth
 - Noninvasiveness

Bright field microscopy

- Human heart
- Zea mays
Advanced microscopy

- Dark field microscopy
 - ✔ Contrast enhanced
- DIC or PC microscopy
 - ✔ Contrast enhanced
- Fluorescence microscopy
 - ✔ Contrast enhanced
 - ✗ No deep tissue observation
 - ➢ Due to blurring
 - ✗ Staining required
Confocal microscopy

- Contrast enhanced
- Resolution enhanced
 - Due to the rejection of out-of-focus light
 - Optical section

J Cell Biology 105, p44 (1987)
Single photon confocal microscopy

- Inefficient collection
- Out of focus fluorescence
 - Out of focus photobleach
 - Out of focus photodamage
- Low penetration depth

\[h\nu_1 \quad h\nu_2 \]
Two photon fluorescence (2PF) imaging

- Optical sectioning (automatically confocal)
 - High axial resolution

- Minimized out-of-focus absorption
 - Minimized out of focus photobleach/photodamage

- High penetration depth

W. Denk et al., Science 248, 73 (1990)
Problems of 2PF microscopy

- Limited penetration depth in live tissues
 (~ 150 μm @ 800 nm)
- Require in-focus two-photon absorption in labeling dye or auto-fluorescent pigment
- Photo-bleaching and photodamages
 - Due to single and multi-photon absorption with NIR
 - To fluorescent and non-fluorescent absorbers
- Limited dye penetration and toxicity issue
- Limited dye availability for structure labeling

Explore alternative spectral range and intrinsic imaging modality

Harmonics optical microscopy (HOM)

1. Denk et al., Science 248, 73 (1990)
Outline

- Introduction
- Principles of optical harmonics
- Experimental setup
- Applications of harmonics imaging
 - Material science
 - GaN material properties mapping
 - 3D Electric field visualization
 - Biological science
 - Bio-photonic crystal probing
 - Tissue imaging
- Summary
Optical harmonic generations

- Virtual transition \rightarrow Energy conservation
- Resonant enhancement

Second Harmonic Generation

Third Harmonic Generation

$2h\nu_1 = h\nu_2$

$3h\nu_1 = h\nu_2$
Second harmonic generation

\[P^{NL}(2\omega) = \frac{1}{2} \varepsilon_0 \chi^{(2)}(2\omega; \omega, \omega) E(\omega)E(\omega) \]

- \[I(2\omega) = I(\omega)^2 \]
 - Auto-sectioning capability
- Allowed only in non-centrosymmetric media\(^1\)
 - Imaging selectivity
 - Surfaces and interface\(^2\)
 - Membrane potentials\(^3,4\)
 - Uniform polarity tissue\(^5,6\)
 - **Bio-photonic crystal effect**\(^7,8\) (structural proteins\(^9\))

1. Y. R. Shen, *The Principles of Nonlinear Optics*
Third harmonic generation

\[P_{NL}^{3\omega} = \frac{1}{4} \varepsilon_0 \chi^{(3)}(3\omega;\omega,\omega,\omega) E(\omega)E(\omega)E(\omega) \]

- \[I(3\omega) = I(\omega)^3 \]
 - Better sectioning capability
- Interfaces with optical inhomogeneity
 - Contour imaging

Why harmonics?

Multi-photon Fluorescence

- Optical Sectioning
- Deeper penetration due to IR wavelength

- In-focus absorption/photo-bleaching

- In-focus photo-damage

- Staining or auto-fluorescence

- Strong λ dependency

Harmonics Generation

- No energy deposition/No absorption/photo-bleaching

- No photo-damage

- Endogenous (No staining required)

- Weak λ selectivity
Outline

▶ Introduction
▶ Principles of optical harmonics
▶ Experimental setup
▶ Applications of harmonics imaging
 ▶ Material science
 ▶ GaN material properties mapping
 ▶ 3D Electric field visualization
 ▶ Biological science
 ▶ Bio-photonic crystal probing
 ▶ Tissue imaging
▶ Summary
Excitation wavelength selection

- Lowest attenuation around 1200 ~ 1300-nm
 - Deepest penetration in biological specimens
 - Both SHG and THG fall in visible regime
 - Reduced multiphoton fluorescence (v.s. 800-nm)
 - Reduced photodamage
 - Fiber compatible
 -Insensitive to silicon detectors
Harmonics optical microscope (HOM)

- Cr: forsterite laser
- Central wavelength: 1230-nm
- Pulse width: 130-fs
- Average power: 320-mW
- Rep. rate: 110-MHz
Outline

- Introduction
- Principles of optical harmonics
- Experimental setup
- Applications of harmonics imaging
 - Material science
 - GaN material properties mapping
 - 3D Electric field visualization
 - Biological science
 - Bio-photonic crystal probing
 - Tissue imaging
- Summary
GaN introduction

- **GaN**
 - Green-UV optoelectronic devices (LD, LED).
 - High-power/high-speed electronic devices.

- **Physical properties are strongly affected by**
 - Defect states
 - Large residue piezoelectric field due to unrelaxed strain
 - Both create spectral red-shift and is hard to distinguish in a single-point spectral measurement

GaN LED at 395 nm (LEDTronics # L200)
Motivation

- Observation of electric-field enhanced SHG in GaN\(^1\)

\[
P(2\omega) = \epsilon_0 \chi^2 (2\omega; \omega, \omega) E_{\text{laser}}^2 + \epsilon_0 \chi^3 (2\omega; \omega, \omega, 0) E_{\text{laser}}^2 E_{\text{residue}}^2
\]

- With a 1230-nm Cr:forsterite fs laser
 - SHG at 615-nm
 - Piezoelectric-field enhanced
 - Off-resonance
 - THG at 410-nm
 - Bandtail state resonant
 - Defect related

Nonlinear emission from a bulk GaN

- **SHG at 615-nm**
 - Far from GaN resonance
- **THG at 410-nm**
 - Resonant with the bandtail state
Power dependency

- Confirming 2nd and 3rd order nonlinearity
HOM imaging

- THG \rightarrow bandtail state distribution
- SHG \rightarrow piezoelectric field distribution
- Bandtail state density \uparrow \rightarrow piezoelectric field intensity \downarrow

HOM v.s. PL imaging

Bandgap luminescence (365nm)
Defect-state yellow luminescence (550-600nm)
Bandtail state
Piezoelectric field

bandgap luminescence ↓ → yellow luminescence ↑
→ defect-related bandtail state density ↑
→ piezoelectric field ↓ → strain relaxation

✗ But requires two lasers for imaging

Multiphoton excitation

5-μm bulk GaN grown on sapphire

- 4-photon fluorescence observed!
 - With a single 1230 nm source
 - 4PF in semiconductor for the first time

Resolution comparison

- The better axial resolution of 4PF over THG and SHG is demonstrated

- Peak position
 - THG: air/GaN interface
 - SHG: GaN/sapphire interface
 - 4PF: bulk contribution
Potential for spin imaging

- In GaAs/AlGaAs two dimensional electron gas
- Pump-probe SHG measurement

\[\Delta E \text{ from gradient of electron density} \]
\[\Delta M \text{ (spin polarization) is opposite in } +x \text{ and } -x \text{ directions} \]

Han et al., APL 91, 202114 (2007)
HOM in semiconductor

- We demonstrated laser scanning SHG, THG microscopy in bulk GaN:
 - SHG to map piezoelectric field
 - THG to map bandtail state
 - Bandtail state (defect) density \uparrow
 - Piezoelectric field \downarrow
 - Bandgap PL \downarrow \rightarrow Yellow luminescence \uparrow

- Brand new method to find out the distribution of piezoelectric field and defect state in GaN bulk and MQWs.

- Potential for spin mapping
Electrical field visualization

- **Electric probe**
 - Require metal contact
 - Invasive and indirect

- **Optical probe**
 - E-O sampling\(^1\)
 - Probe head required
 - Low 3D resolution
 - Mapping, not visualization
 - Electrical Field Induced Second Harmonic Generation (EFISHG)

Characteristics of EFISHG

Electric Field Induced Second Harmonic Generation

\[P(2\omega) = \varepsilon_0 \chi^3 (2\omega: \omega, \omega, 0)E_{\text{laser}}E_{\text{laser}}E_{\text{applied}} \]

\[I_{\text{EFISHG}} \propto (I_{\text{laser}})^2 \]

\[I_{\text{EFISHG}} \propto (E_{\text{applied}})^2 \propto (V_{\text{applied}})^2 \]

- Intrinsic sectioning power \(\rightarrow \) 3D visualization
- Sub-\(\mu \)m resolution
- Ability of measuring electric field vector \(E \)

Focused laser beam

Detector

Filter
Visualize E-field by EFISHG

- **Surface EFISHG**
 - Silicon MMIC\(^1\) & Si/\(\text{SiO}_2\) heterojunction\(^2\)
 - Only at interface or surface
 - No 3D imaging capability

- **GaN EFISHG\(^3\)**
 - 3D E-field imaging
 - Strong residual SHG

- **EFISHG in liquid crystal**

HOM with EFISHG in liquid crystal

Advantages:
- High EFISHG efficiency
- Background free
- 3D E-field visualization
- Measure both amplitude and direction
- Transparent
- Non-conducting
- Easily available

Integrated-Circuit-Like Sample

Gold electrodes

10μm groove filled with non-prealigned nematic liquid crystal

Microscope cover glass

Laser
SHG confirmation

Emission spectrum of liquid crystal (30V)

\[I_{\text{EFISHG}} \propto (I_{\text{laser}})^2 \]

Slope: 2.00
EFISHG confirmation

\[I_{\text{EFISHG}} \propto (E_{\text{applied}})^2 \propto (V_{\text{applied}})^2 \]

Background free

\[\chi^{3}_{xxxx} (\omega, \omega, 0) >> \chi^{3}_{xxxy} (\omega, \omega, 0) \]

Direction sensitive

Depth resolution

Resolution: $xy \sim 0.5\mu m$, $z \sim 1\mu m$
E-field visualization

- Amplitude reconstruction

\[\sqrt{E_1^2 + E_2^2} = |E| \]

- Amplitude of electric field

- Polarization

- Gap metal
E-field visualization

- **Direction reconstruction**

\[
\tan^{-1} \left(\frac{E}{E} \right) = \Delta \vec{E}
\]

\[
\tan^{-1} \left(\text{polarization} \right) \div \text{polarization} = \text{Direction of electric field}
\]
Electric field in neuron

- SHG imaging for neural action potential visualization

Sacconi, PNAS 103, 3124 (2006)
Electric field in neuron

- Polarization anisotropy of SHG on neurons
- The molecular orientation is deduced

Jiang, Biophys J. 107, L26 (2007)
HOM for E-field visualization

- HOM with EFISHG in LC
 - First 3D E-field visualization
 - Sub-\(\mu \)m spatial resolution
 - Background free
 - Obtain E-field vector
 - Z-component \(\rightarrow \) sample rotation
- Action potential in neuron
Outline

- Introduction
- Principles of optical harmonics
- Experimental setup
- Applications of harmonics imaging
 - Material science
 - GaN material properties mapping
 - 3D Electric field visualization
 - Biological science
 - Bio-photonic crystal probing
 - Tissue imaging
- Summary
SHG imaging in biological tissues

- Cellulose in cell wall of maize stem
- Collagen of tendon fiber
- Starch and grana in mesophyll cells
- Myosin in muscle fiber
- Hint of crystallinity

- No labeling at all!
Nonlinear photonic crystal

\(\chi^{(2)} \) existed even with pump frequency not close to photonic bandgap.

Broderick, PRL 84, 4345 (2000)
Dumeige, APL 78, 3021 (2001)
Nonlinear bio-photonic crystal

- First observed in bR (≈ 5-nm period)
- Strong SHG is observed
 - No SHG after bR was hydrolyzed

Lots of orderly-arranged nano-structure in biology
- Stacked membranes: starch granule, grana, mineral deposition
- Arrayed microtubules: cellulose microfibrils, myofibrils in a muscle fiber, and collagen bundles, etc.

Can be studied by SHG

Nonlinear biophotonic crystal

Mitosis spindle of a zebrafish blastoderm THG + SHG

- **SHG**
 - Crystallized microtubule array
 - Diminished after the microtubules dispersed

- **THG**
 - Cellular and nuclear plasma membranes
Can we find the arrangement symmetry of underlying molecules by SHG?
 - Active molecule identification
 - Molecular structural/packing information elucidated
SHG of starch

Bright field Polarized microscope SHG
Molecular origin of starch SHG

- **Amylopectin** or **Amylose**?

3. In preparation to *Biophys J*

Japonica rice
Amylopectin: 86%
Amylose: 14%

Japonica waxy rice
Amylopectin: 99%
Amylose: 1%

SHG from Japonica waxy rice is 15% stronger

SHG from amylopectin!!
SHG of starch

- Full $\chi^{(2)}$ tensor and molecular orientation are deduced

$$
SHG \propto \left(\chi^{(2)}_{16} \sin 2\theta \right)^2 + \left(\chi^{(2)}_{21} \sin^2 \theta + \chi^{(2)}_{22} \cos^2 \theta \right)^2
$$

$$
\chi^{(2)} = \chi^{(2)}_{16} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0.23 \pm 0.09 & 0.95 \pm 0.04 & 0.23 \pm 0.09 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
$$
SHG in muscle

- From myosin filaments, not actin

2D Bio-photonic crystal in animal

Muscle fibers

- Full $\chi^{(2)}$ tensor is resolved
 - Based on cylindrical symmetry assumption

\[\chi^{(2)} = \chi^{(2)}_{31} \begin{bmatrix} 0 & 0 & 0 & 0 & 1.15 & 0 \\ 0 & 0 & 0 & 1.15 & 0 & 0 \\ 1 & 1 & 0.09 & 0 & 0 & 0 \end{bmatrix} \]

SHG from myosin

- Polarization anisotropy
 - SHG from coiled-coil filaments of myosin
 - The inclination angle of molecular coil is determined by fitting the anisotropy
 - 61.2 deg, matching X-ray diffraction results

SHG anisotropy

- Muscle

- Collagen

Selective imaging by SHG

- Biological tissues usually entangle with each other
 - e.g. muscle fiber & collagen-based endomysium
- Both exhibit strong SHG
- How to selectively observe them without staining?
Polarization based selective imaging

Over 100-fold contrast enhancement

Chu, *APL* 91, 103903 (2007)
Emission dipole based selective imaging

- Muscle fibers: FSHG dominated
- Collagen: both FSHG and BSHG

BSHG vs. FSHG

- They do not overlap well
 - BSHG does not come merely from backscattering
BSHG vs. FSHG

- Thickness determination in a collagen fibril

 Thickness of a collagen fibril

- Determined by FSHG/BSHG ratio
- Ten nanometer precision

![Diagram showing the correlation between active cluster size (nm) and collagen fibril thickness (nm)]
Virus imaging

- No labeling is required

Normal cells

Infected cells

Nuclear polyhedrosis viruses in living cells

SHG to locate the virus

THG to outline the cells

SHG polarimetry

- Body-centered-cubic arrangement of polyhedrin trimers was found from the virus
Future prospect

- SHG is sensitive to molecular structure
 - Membrane / thin-film study
 - Spin dynamics mapping
 - Electric field visualization
 - Thermal effect probing
 - Deep tissue imaging
Summary for HOM

- **Issues of optical microscopy**
 - **Contrast**
 - Greatly enhanced
 - Function/structure specificity
 - **Resolution**
 - 300-nm for THG, 400-nm for SHG in our case
 - **Penetration depth**
 - > 1.5-mm
 - **Noninvasiveness**
 - Long-term embryonic observation
 - No exogenous labeling
Summary for HOM

- Very good candidate for
 - Material characteristics mapping
 - E-field 3D visualization
 - Bio-photonic crystal probing
 - Developmental biology
 - And much more……..
Acknowledgement

- **My lab**
 - 卓宗衍
 - 游鈞彥
 - 曾鈺懿
 - 廖建盛

- **UFO/NTU**
 - 孫啟光教授
 - 陳嘉維博士
 - 劉子銘博士
 - 戴世芃博士
 - 廖建盛

- **台大漁科所**
 - 蔡懷禎教授
 - 林正勇

- **生物技術開發中心（DCB）**
 - 林白翎博士
 - 陳勇志
 - 陳振銘

- **陽明大學**
 - 林奇宏教授
 - 蕭一清博士
 - 何佳霖

- **UCSB**
 - Prof. S.P. Denbaars
 - P. Fini

- **NYSU/Buffalo**
 - 鄭炳今教授

Thank you!