Interstellar Molecules: From Hydrogen to Amino Acids

T. Amano Department of Chemistry and Department of Physics and Astronomy The University of Waterloo "Hydrogen is the most important constituent of the Universe."

G. Herzberg

In this talk •••••

• Overview of Interstellar Space and Interstellar Molecules

(ex) H_3^+ and HCO⁺

• Submillimeter-wave Spectroscopy and New Initiatives in Submillimeter Astronomy

Multiply deuterated species in spaceAnions in the lab and in spaceBiological molecules in space

Cosmic Abundance

21cm-Line of Hydrogen Atom

- van de Hulst (Leiden Observatory)

 1944 pointed out possibility of H 21cm line.

 Ewen, Purcell (Harvard University)

 Oort, Muller (Leiden Observatory)
 1951 detection of the line
 Christiansen, Hindman (Australia, AAO)
- Hydrogen Maser (N. F. Ramsey) 1 420 405 751.786Hz 21.10611405 cm

Discovery of Interstellar Molecules

- 1814 Fraunhofer lines
- 1904 Absorption lines of Ca,K against bright stars
- 1934 Discovery of 4 Diffuse Interstellar Bands (DIBS) Still remain unidentified.
- 1937-1941 Discovery of CH⁺,CH,CN 4230-4300 Å
- 1951 Bates, Spitzer : skeptical about interstellar molecules.
- 1955~ Townes, Shklovsky: Pointed out possibility of observing molecules with radio telescopes.

OH, NH₃, HCN, CO.....

Table 4.1: List of Interstellar Molecules Identified(as of May, 2004).							
Simple hydrides, oxides, sulfides, halogenated compounds							
$H_2(IR)$	CO	NH_3	CS	$NaC\ell^*$			
HF	SiO	$SiH_4^*(IR)$	SiS	$AlC\ell^*$			
$HC\ell$	SO_2	$C_2(IR)$	H_2S	$KC\ell^*$			
H_2O	OCS	$CH_4^*(IR)$	PN	AlF*			
N_2O	CO ₂						
Nitryles, Acetylene derivatives							
$C_3^*(IR)$	HCN	CH_3CN	HNC	$C_2H_4^*(IR)$			
$C_5^*(IR)$	HC_3N	CH_3C_3N	HNCO	$C2H2^{*}(IR)$			
C_3O	HC_5N	$CH_3C_5N?$	HNCS	$HC_4H^*(IR)$			
C_3S	HC_7N	CH_3C_2H	HNCCC	$HC_6H^*(IR)$			
C_4Si^*	HC ₉ N	CH_3C_4H	CH_3NC				
	$HC_{11}N$	CH_3CH_2CN	HCCNC				
	HC_2CHO	$\rm CH_2 CHCN$					
Aldehydes, Alcohols, Ethers, Ketones, Amides							
H_2CO	CH_3OH	HCOOH	CH_2NH	H_2C_3			
H_2CS	CH_3CH_2OH	$HCOOCH_3$	$\rm CH_3 NH_2$	H_2C_4			
CH_3CHO	CH_3SH	CH_3COOH	$\rm NH_2CN$	H_2C_6			
NH ₂ CHO	$(CH_3)_2O$	CH ₂ OHCHO					
H_2CCO	$(CH_3)_2CO$	CH ₂ CHOH					
Cyclic mole	cules						
$c-C_3H_2$	$c-SiC_2$	$c-SiC_3^*$	$c-C_3H$	$c-C_2H_4O$			
$C_6H_6^*(IR)$	$c-C_2H_4S?$						
Molecular Ions							
$CH^+(Opt)$	HCO^+	$HCNH^+$	H_3O^+	HN_2^+			
HCS^+	$HOCO^+$	HC_3NH^+	HOC^+	$H_3^+(IR)$			
CO^+	H_2COH^+	SO^+		H_2D^+			
				D_2H^+			
Free Radicals							
OH	C_2H	CN	C_2O	C_2S			
CH	C_3H	C_3N	NO	NS			
CH_2	C_4H	$C_5N?$	SO	SiC^*			
$CH_3(IR)$	C_5H	HCCN*	HCO	SiN^*			
NH(UV)	C_6H	$\rm CH_2 CN$	MgNC	CP^*			
NH ₂	C_7H	$\rm CH_2N$	MgCN	SiCN*			
SH(IR)	C_8H	HNO	NaCN	FeO?			
			AINC				

>Free radicals, ions.
>Carbon chains
>Cyclic molecules

 $H-C\equiv C-C\equiv C-C\equiv C-C\equiv C-C\equiv N$

Molecules identified other than radio are specified individually.

IR: Infrared, Opt: Visible, and UV: Ultraviolet.

* Indicates molecules observed only in Red Giants.

? Reported, however, not yet confirmed.

Formation of molecules in interstellar space

Ion-molecule reactions

H₃⁺
HCO⁺

Neutral molecule reactions

CN + C₂H₂ → HC₃N + H

Surface reactions on dust grains

H₂, CO, CO₂, H₂CO, CH₃OH......

Ion-molecule reaction

 $H_{2} \longrightarrow H_{2}^{+} + e^{-}$ $H_{2}^{+} + H_{2} \longrightarrow H_{3}^{+} + H$ $H_{3}^{+} + CO \longrightarrow HCO^{+} + H_{2}$ $H_{3}^{+} + X \longrightarrow HX^{+} + H_{2}$

Fig. 4.1. The physical regimes of the interstellar medium, as currently observed.

From B. E. Turner

Particle density of standard atmosphere $3 \times 10^{19} / \text{cm}^3$ **Collision interval** ~10⁻⁹ sec Molecular Clouds $10 / cm^3$ **Collision interval** ~100 years

- H₃⁺ in the laboratories
- H₃⁺ in Jupiter
- H₃⁺ in Dark clouds
- H_3^+ in Diffuse clouds
- Dissociative recombination of H_3^+ with electrons

Discovery of H_3^+ spectra

Figure 2. The spectral pattern for the ν_2 band of H_3^+ calculated by Watson for the rotational temperature of 200 K. Observed transitions are marked with asterisks (Oka 1980).

T. Oka, Phys. Rev. Lett. 45, 531-534(1980)

Figure 3. The intense and pure H_3^+ emission spectrum recorded on the southern hemisphere of Jupiter at 60° latitude and mean longitude 40° (Maillard *et al.* 1990).

J.P. Maillard et al, Astrophys. J. 363, L37(1990)

Detection of Interstellar H_3^+

SN1987A Miller, Tennyson, Lepp, and Dalgarno(1992)

Geballe, McCall, Hinkle, and Oka(1999)

Formation and destruction of H₃+

 $\begin{array}{ccc} \mathrm{H}_{2} \rightarrow \mathrm{H}_{2}^{+} & : \zeta \sim 10^{-17} \mathrm{s}^{-1} \\ \mathrm{H}_{2}^{+} + \mathrm{H}_{2} \rightarrow \mathrm{H}_{3}^{+} + \mathrm{H} & : \mathrm{k}_{1} \end{array}$

In dark cloud

 $\begin{array}{rcl} \mathrm{H_{3}^{+}} + \mathrm{CO} \rightarrow \mathrm{HCO^{+}} + \mathrm{H_{2}} & : \mathrm{k_{2}} \\ & & [\mathrm{H_{3}^{+}}] \sim \zeta \ [\mathrm{H_{2}} \]/ \ \mathrm{k_{2}} \ [\mathrm{CO}] \end{array}$

In diffuse cloud

 $H_{3^{+}} + e^{-} \rightarrow 3H, H_{2} + H : k_{d}$ [$H_{3^{+}}$] ~ ζ [H_{2}]/ k_{d} [e^{-}]

In dark clouds

 $[H_{3}^{+}] \sim \zeta [H_{2}]/k_{2} [CO]$ $\zeta = 3 \times 10^{-17} \text{ s}^{-1}$ $k_{2} = 1.8 \times 10^{-9} \text{ cm}^{3} \text{ s}^{-1}$ $[CO]/[H_{2}] = 1.5 \times 10^{-4}$ $[H_{3}^{+}] = 1.1 \times 10^{-4} \text{ cm}^{-3}$

Observed Column densities

 $[H_3^+]L=6\times10^{14} \text{ cm}^{-2} \text{ W33}$ =4×10¹⁴ cm⁻² GL2136 \Rightarrow L=1~2 pc

In diffuse clouds

 $[H_{3}^{+}] \sim \zeta [H_{2}] / k_{d} [e^{-}]$ $\zeta = 3 \times 10^{-17} \text{ s}^{-1}$ $k_{d} = 1.8 \times 10^{-7} \text{ cm}^{3} \text{s}^{-1} (4.6 \times 10^{-7})$ $[e^{-}] / [H_{2}] = 5.6 \times 10^{-4}$ $[H_{3}^{+}] = 1.1 \times 10^{-7} \text{ cm}^{-3}$

Observed Column density

 $[H_3^+]L=3.8\times10^{14} \text{ cm}^{-2} \text{ Cyg OB2 No.12}$ $\Rightarrow L=400\sim1200 \text{ pc}$

High-resolution Spectroscopy of Negative ions

OH⁻ (OD⁻) IR, FIR
SH⁻ (SD⁻) IR, sub-mm
FHF⁻, C1HCl⁻, NH₂⁻, NCO⁻, NCS⁻, N₃⁻ IR

Mystery of "B1377"

- Kawaguchi et al (1995)
 Detected a series of emission lines toward IRC+10216. Linear molecule of the rotational constant of 1376.86868 MHz.
- Aoki (2000)

"Carrier of B1377 is very likely to be $C_6 H^{-}$."

• McCarthy et al (2006)

Succeeded in the laboratory detection of B1377, and in astronomical detection in TMC-1.

 $C_5 N^-$ (Cernicharo *et al*, 2008)

Waterloo sub-mm system

- The frequency range of 270-890 GHz is covered with four BWOs (Backward-wave oscillator) with ~1 mW power.
- The absorption cell is designed to detect positive ions.
- Mostly operated in extended negative glow discharge mode with longitudinal magnetic field of ~250 Gauss.

Double modulation sub-mm system at Waterloo

Submillimeter-wave system in Ibaraki Now moved to Waterloo

Three types of discharges are tried for detection of anions

Glow discharge
Hollow anode discharge
Extended negative glow discharge

Hollow-anode cell

CN⁻ in "hollow anode" discharge

C_4H^{-} in extended negative glow discharge

Sub-mm observations of C₃N⁻

 Production ; C₂N₂ ≤1 mTorr + C₂H₂ ~2 mTorr + Ar 12 mTorr in either "hollow anode discharge" or extended negative glow discharge of 4~10 mA, cooled to 210 K. Freq. range ~ 504 GHz

Thaddeus et al, $HC_3N(20\%) + Ar(80\%) \sim 15 \text{ mTorr}$ dc discharge current of 20 mA at 200 K.

Extended Negative Glow

Hollow-anode discharge

Why sub-mm now?

- Ground- and satellite-based astronomical and/or atmospheric observation platforms.
 Higher spatial resolution with shorter wavelength.
 Better sensitivity.
- Easy to use laboratory system. multipliers. BWOs.

Atmospheric Opacity in the submillimeter-wave region

Original CG courtesy of ESO, modified by NAOJ

ALMAは、日本・北アメリカ・ヨーロッパの諸国が協力して、チリ・アンデス山中の標高 5000mの高原に建設することを計画している、アタカマ大型ミリ波サブミリ波干渉計(Atacama Large Millimeter/submillimeter Array)の略称です。直径12mの高精度アンテナ64台と「ACA システム」と呼ばれる超高精度アンテナ16台からなる、全部で80台のアンテナを干渉計方式で組み 合わせ、ひとつの巨大な電波望遠鏡を合成します。電波の中で最も波長が短く、最高の周波数帯であ る「ミリ波・サブミリ波」を使って、ビッグバン後間もない宇宙初期における銀河の誕生、今も続くさ まざまな惑星系の誕生、そして生命につながる物質の進化を解き明かします。

Getting the WHOLE picture

An object can look radically different depending on the type of light collected from it:

Constellation Orion left: visual wavelengths right: far-infrared image

From NASA web page

• Visible: dark nebula, heavily obscured by interstellar dust

- Near-IR: dust is transparent, embedded protostars can be observed
- Mid- and far-IR: glow from cold dust is directly observable

From NASA web page

Visible

Near Infrared

Mid-Infrared

THE ASTROPHYSICAL JOURNAL, 619:914–930, 2005 February 1 © 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A RIGOROUS ATTEMPT TO VERIFY INTERSTELLAR GLYCINE

L. E. SNYDER,¹ F. J. LOVAS,² J. M. HOLLIS,³ D. N. FRIEDEL,¹ P. R. JEWELL,⁴ A. REMIJAN,^{1,3,5} V. V. ILYUSHIN,⁶ E. A. ALEKSEEV,⁶ AND S. F. DYUBKO⁶ Received 2004 May 25; accepted 2004 October 7

ABSTRACT

In 2003, Kuan and coworkers reported the detection of interstellar glycine (NH₂CH₂COOH) based on observations of 27 lines in 19 different spectral bands in one or more of the sources Sgr B2(N-LMH), Orion KL, and W51 e1/e2. They supported their detection report with rotational temperature diagrams for all three sources. In this paper we present essential criteria that can be used in a straightforward analysis technique to confirm the identity of an interstellar asymmetric rotor such as glycine. We use new laboratory measurements of glycine as a basis for applying this analysis technique, both to our previously unpublished 12 m telescope data and to the previously published Swedish-ESO Submillimetre Telescope (SEST) data of Nummelin and colleagues. We conclude that key lines necessary for an interstellar glycine identification have not yet been found. We identify some common molecular candidates that should be examined further as more likely carriers of several of the lines reported as glycine. Finally, we illustrate that a rotational temperature diagram used without the support of correct spectroscopic assignments is not a reliable tool for the identification of interstellar molecules.

Subject headings: ISM: abundances — ISM: clouds —

ISM: individual (Sagittarius B2(N-LMH), Orion Kleinmann-Low, W51 e1/e2) — ISM: molecules — radio lines: ISM

Fig. 1.—Orion KL spectra from 113323 to 113355 MHz (centered at 113339 MHz) observed with the hybrid spectrometer on the NRAO 12 m telescope. The spectral positions of the negative results for the nearly fourfold degenerate J = 19-18 glycine lines are marked by the four vertical lines centered at 113336 MHz. U113326 is on the left, and CH₃OD is on the right. The ordinate is in units of mK on the T_R^* scale. The abscissa is rest frequency calculated with respect to $V_{LSR} = 9 \text{ km s}^{-1}$ (for the Orion compact ridge), except for the CH₃OD rest frequency, which is with respect to $V_{LSR} = 5.6 \text{ km s}^{-1}$ (representative of the Orion hot core). The rms noise level for the spectral region between U113326 and CH₃OD is 3.7 mK.

L. E. Snyder et al, *Astrophys. J.* **619**, 914-930(2005)

Glycine in Comet Tail

Glycine has been identified in a dust sample collected by the Stardust Spacecraft from the tail of Comet Wild 2.

http://www.newscientist.com/article/ dn17628-found-first-amino-acid-on-a-comet.html

http://scientificinquiry.suite101.com/article.cfm/
comet_tail_with_glycine_amino_acid_amazes_all

In future • • • • •

• Sub-mm astronomical observations with very high spatial resolution.

ALMA

- In the process of star and planet formation, what kind of molecules can survive and be entrained into the planetary system? Life related molecules?
- Lab. data are essential in such identifications.

"To understand hydrogen is to understand all of physics, chemistry, and biology."

Victor Weisskopf

Hydrogen, light colorless odorless gas, which given enough time turns into human being

氢, 軽質量 無色 無味的気体, 如果給它足够的時間 它会逐漸演変成今天的人類

Discovery of multiply deuterated species in space $[D]/[H] \sim 1.5 \times 10^{-5}$ D_2CO : Turner(1990) Ori-KL 0.3% Ceccarelli et al (1998) IRAS 16293-2422 5% Loinard *et al* (2001) 16293E 26% NHD_2 (2000), ND_3 (2002) CHD₂OH (2002), CD₃OH (2004) $D_2S(2003)$

Formation of Deuterated Species

 H/D exchange reactions of H₃⁺ with HD are exothermic.

 $H_{3}^{+} + HD \rightarrow H_{2}D^{+} + H_{2} + 230 \text{ K}$ $H_{2}D^{+} + HD \rightarrow D_{2}H^{+} + H_{2} + 180 \text{ K}$ $D_{2}H^{+} + HD \rightarrow D_{3}^{+} + H_{2} + 230 \text{ K}$

 Under liquid-N₂ cooled environment, such reactions become dominant.

Spectroscopy of H₂D⁺ and D₂H⁺

IR

- Shy, Farley, Wing (1981): Ion beam
- Amano & Watson (1984), Amano (1985): v_1 band (H_2D^+)
- Lubic & Amano (1984): v_1 band (D_2H^+)
- Foster et al. (1986): v_2 / v_3 bands (H₂D⁺)
- Foster, McKellar, Watson. (1986): v_2 / v_3 bands (D_2H^+)
- Polyansky & McKellar (1990): All available data were fitted together to improve molecular constants. (D_2H^+)
- Fárník et al. (2002):

Molecular beam experiments of vibrational overtone and combination bands $(2v_2, 2v_3, v_2+v_3)$. mm-, sub-mm, FIR

- Bogey et al. (1984): $1_{10}-1_{11}$ H₂D⁺ (372.4 GHz) Warner et al.(1984):
- Saito, Kawaguchi, Hirota (1985): $2_{20}-2_{21}$ H₂D⁺ (156.0 GHz)
- Jennings, Demuynck, Banek, Evenson (unpublished):

H_2D^+	(1370.1 GHz)
D_2H^+	(1476.6 GHz)
D_2H^+	(1370.1 GHz)
D_2H^+	(691.7 GHz)
H_2D^+	(646.4 GHz)
	H_2D^+ D_2H^+ D_2H^+ D_2H^+ H_2D^+

- Hirao & Amano (2003):
- Amano & Hirao (2005):

Energy Level Diagram of H₂D⁺

Energy Level Diagram of D₂H⁺

Experimental Details

- Extended negative glow discharge source. (Magnetic field: 200G).
- Double modulation.
- $H_2/D_2/Ar = 3/2/17$ mTorr, I = 8 mA, T ~ 77 K

Search around 691.705 (90) GHz. (Polyansky and McKellar)

J

T. Hirao and T. Amano, Astrophys. J. Lett. 597, L85(2003).

D₂H⁺ HAS

C. Vastel, T. G. Ph Ap. J. Lett. 606

16293E pre-stellar $[D_2H^+] \sim [H_2D^+]$

Fig. 3.— Spectra of the ortho- H_2D^+ 1_{10} - 1_{11} and para- D_2H^+ 1_{10} - 1_{01} transitions towards 16293E.

Table 1. Results of Gaussian fits to the H_2D^+ and D_2H^+ spectra. -

Line		Δv (km s ⁻¹)	V_{LSR} (km s ⁻¹)
$ \begin{array}{l} H_2 D^+ \ (1_{10} - 1_{11}) \\ D_2 H^+ \ (1_{10} - 1_{01}) \end{array} \end{array} $	$372.42134(20)^{a}$ 1.31	0.36 ± 0.04	3.55 ± 0.02
	691.660440(19) ^b 0.34	0.29 ± 0.07	3.76 ± 0.03

^aMeasured frequency by Bogey et al. (1984).

^bMeasured frequency by Hirao and Amano (2003).

 \Rightarrow Prompted us to remeasure H₂D⁺ line

Fig. 1. (Top) The $H_2D^+(1_{10}-1_{11})$ line at the dust peak of L1544 (RA(1950) = 05:01:13.1, Dec(1950) = 25:06:35.0). The black curve is the Gaussian fit (see Table 1). (Bottom) The $H_2D^+(1_{10}-1_{11})$ spectrum averaged in the four positions 20" off the dust peak.

