Atomic, Molecular and Optical Physics Seminar

Fall Semester 2009

Birefringence and **Dichroism** — From Gas-phase to Vacuum

~~ 國立清華大學

National Tsing Hua University

Hsien-Hao Mei 梅賢豪 Nov 24 2009 14:00 @ Rm 620, Phys Bldg

Q&A • Who

• Why

• What

• How

• When

NTHU AMO Seminar Hsien-Hao M

Q & A Collaboration

• Center for Gravitation and Cosmology:

- Wei-Tou Ni (Dept. of Phys, National Tsing Hua Univ.)
- Hsien-Hao Mei (Dept. of Physics, National Tsing Hua Univ.)
- Coordinate with:
 - Sheau-shi Pan (Center for Measurement Standards, ITRI)
- Sheng-Jui Chen (Center for Measurement Standards, ITRI)
 Former member:
- Jeah-Sheng Wu (Innolux Display Corp→Chimei Innolux Corp)
 Location:

Rm 005 & Rm 006, Dept. of Physics, NTHU, Hsinchu, Taiwan Contact:

Tel: +886-5715131(ext. 33211) / Fax: +886-5723052 E-mail: /

Q&A • Who • Q&A Collaboration • Why

• What

• How

• When

NTHU AMO Seminar Hsien-Hao Mei

Motivation: Q(ED) & A(xion) experiment

(i) QED (ii) (Pseudo)scalar-Photon Interaction Bottom Up Approach: *CP* violation Weinberg: *PRL* **40** 233 (1978) Wilczek: PRL 40 279 (1978) [Kim: PRL 43 103 (1979) invisible - Dine et al.: PLB 104 1999 (1981) Shifman el al.: NPB 166 493 (1980) Top Down Approach: String

Delbruck scattering

Primakoff effect Phenomenological Study Approach From analysis of Equivalence Principles (1973-1977)

NTHU AMO Seminar

Hsien-Hao Mei

(Pseudo)scalar field: WEP & EEP in EM field

A NON-METRIC THEORY OF GRAVITY*

PHYSICAL REVIEW LETTERS

Wei-Tou Ni

Department of Physics, Montana State University

Bozeman, Montana

59715

December, 1973

VOLUME 38

14 FEBRUARY 1977

NUMBER 7

Equivalence Principles and Electromagnetism*

Wei-Tou Ni Department of Physics, Montana State University, Bozeman, Montana 59715, and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China† (Received 16 June 1976)

The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, I show that the universality of free-fall trajectories {Galileo weak equivalence principle (WEP[I])} does not imply the validity of the Einstein equivalence principle (EEP). However, WEP[I] plus the universality of free-fall rotation states (WEP[II]) does imply EEP. To test WEP[II] and EEP, I suggest that Eötvös-type experiments on polarized bodies be performed.

 $L_I = -(1/16\pi)\phi F_{ij}F_{kl}e^{ijkl}$

 $F \equiv A_{j,i} - A_{i,j}$ $e^{0123} = 1$

Modified Maxwell Equations \rightarrow Polarization Rotation in EM Propagation Constraints from CMB polarization observation \rightarrow Ni: *Chin Phys Lett* 22 33 (2005) NTHU AMO Seminar Hsien-Hao Mei Q & A
• Who
• Q & A Collaboration
• Why
• QED & Axion/(Pseudo-)scalar Field from WEP/EEP
• What

• How

• When

NTHU AMO Seminar Hsien-Hao Mei

Axion / Axion-Like-Particles (ALPs)

ALPs: Birefringence vs Dichroism

2007 ALPs & MCPs results from dichroism

the second s		int –	- 10.9 III		and a second
007 (λ	BFRT : 514 nm)	PVLAS (λ: 1,064 nm	Q & A n) (λ: 1,064 nm)	- 1.	$\gamma \qquad A \qquad \gamma$
2	.63–3.87	5	2.3	1.3	·····
)	8.8	1	0.6	-	BSBS
ions	254	44,000	18,700	1	
	78,700	1,100,000	29,900		* 🔼 *
0.35	$\pm 0.30 (2\sigma)$	172 ± 22 (3a	$-0.4 \pm 5.3 (1\sigma)$		LSW: Light Shining through a Wall
0.	45 ± 0.38	15.6 ± 2.0	1 ± 18		
) for	$m_{arphi} < 0.8$	1-1.5	for $m_{arphi} < 1.7$	PVI	AS excluded their earlier result in 2008: $10(2-) \odot 2.2$ T
⁶ GeV)	> 2.8	0.2-0.6	> 0.6	6.5 ± 9.1 ±	$\pm 10 (2\sigma) @ 2.5 T$ $\pm 12 (2\sigma) @ 5 T$ Phys. Rev. D77 032006 (2008)
2007 BFRT (λ: 514 nm)	Ρ (λ: 1	VLAS 1,064 nm)	Q & A (λ: 1,064 nm)	10	Axion-like particle (ALP) interpretation:
2.63 - 3.87		5	2.3		10-5
8.8		1	0.6	_	
254		44,000	18,700	/GeV	
2,650	1	23,500	18,600	g []	BFRT 10 ⁻⁶ PVLAS –
0.35 ± 0.30 (26	7) 172	$\pm 22 (3\sigma)$	$-0.4\pm5.3(1\sigma)$		Q&A
$(1.3 \pm 1.1) \times 10$	$^{-13}$ (13.9 ±	$1.8) \times 10^{-13}$	$(-0.2 \pm 2.8) \times 10^{-13}$		ALP 0 ⁻ (5σ)
3.5 (+1.0, -2.	3) 8.	5 ± 0.4	0(+4.6,-0)	-	10^{-4} 10^{-3} $m_{\phi} [eV]$
	$\begin{array}{c} 007 \\ (\lambda \\ 2 \\) \\ \text{ions} \\ 0.35 \\ 0 \\ 0.35 \\ 0 \\ 0 \\ 0 \\ 1007 \\ \text{BFRT} \\ (\lambda \\ 514 \text{ nm}) \\ 2.63 \\ -3.87 \\ 8.8 \\ 254 \\ 2.650 \\ 0 \\ .35 \pm 0 \\ .30 \\ (2a \\ (1.3 \pm 1.1) \times 10 \\ 3.5 \\ (+1.0, -2.3 \\ -2.63 \\ 0 \\ -2.63 \\ $	$\begin{array}{c cccc} 007 & \mathrm{BFRT} \\ (\lambda: 514 \ \mathrm{nm}) \\ \hline 2.63-3.87 \\) & 8.8 \\ \mathrm{ions} & 254 \\ & 78,700 \\ 0.35 \pm 0.30 \ (2\sigma) \\ & 0.45 \pm 0.38 \\ \end{array}$ $\begin{array}{c ccccc} 0.45 \pm 0.38 \\ \mathrm{O} & 0.45 \pm 0.38 \\ \end{array}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Mod. Phys. Lett. A 22 2815 (2007) NTHU AMO Seminar Hsien-Hao Mei

Laser experiments: History & Presence

Experiment	Reference	$\Delta \theta$	ψ	LSW
ALPS (DESY/D) "Axion-Like Particle Search"	arXiv:0905.4159	×	×	~
BFRT (BNL-Fermilab-Rochester-Trieste)	Phys.Rev. D47 (1993)	~	~	~
BMV (LULI/F) "Biréfringence Magnétique du Vide"	Phys.Rev.Lett. 99 (2007) Phys.Rev.D 78 (2009)	×	×	~
GammeV (Fermilab/USA) "Gamma to meV particle search"	Phys.Rev.Lett. 100 (2008) Phys.Rev.Lett. 102 (2009)	×	×	~
LIPSS (Jefferson Lab/USA) "Light Pseudoscalar or Scalar particle Search"	Phys.Rev.Lett.101 (2008) arXiv:0810.4189	×	×	~
OSQAR (CERN/CH) "Optical Search for QED vacuum magnetic birefrin- gence, Axions and photon Regeneration"	Phys.Rev.D 78 (2008)	×	×	~
PVLAS (INFN/I) "Polarizzazione del Vuoto con LASer"	Phys.Rev.Lett. 96 (2006) Erratum-ibid. 99 (2007) Phys.Rev.D 77 (2008)	~	~	(v)
Q&A (Hsinchu/Taiwan) "QED & Axion"	Mod.Phys. A22 (2007)	~	×	×

ዏ

Probing **QED** effect

11

QED vs Gaseous CME (Cotton-Mouton Effect)

Historical Review of CME

 A. Cotton & H. Mouton: first discover/separate this effect from axial Faraday rotation in 1905.

Faraday: B//k, linear (∝BL); CME: B⊥k, nonlinear (∝B²L).

• Analogy: Kerr birefringence under transverse **E** (∝E²L).

- Voigt: treated as interactions between electrons & B in 1908.
 Born: Introduced the magnetic hyper-polarizability or 2nd order susceptibility to explain the source of CME in 1933.
- Buckingham & Pople: developed the fundamental model for CME in 1956, and systematically and quantitatively measured CME over 40 gases in 1967.

• C. Rizzo, A. Rizzo, D. M. Bishop: Reviewed and Summarized all theoretical models with measurements before 1997.

B: 2.3 T P: 0.5 – 300 Torr T: 295 – 298 K

Systematic uncertainty: less than 3.86%.

Statistical uncertainty: limited by pressure gauge readings at the 10 – 100 Torr range.

In agreement with the PVLAS results within 1.2σ.

M. Bregant et al., Chem. Phys. Lett. 392 (2004) 276, M. Bregant et al., Chem. Phys. Lett. 410 (2005) 288, F. Brandi et al., J. Opt. Soc. Am. B 15 (1998) 1278.

NTHU AMO Seminar Hsien-Hao Mei

Q&A• Who **Q & A Collaboration** • Why QED & Axion/[(Pseudo-)scalar Field from WEP/EEP] • What Birefringence (ALPs/QED/CME) & Dichroism (ALPs) How

When

NTHU AMO Seminar Hsien-Hao Mei

Apparatus for vacuum/CME Lock-in detection

Seismic Noise Isolation: Suspension of FPI

5 Q & A Suspension of FPI cavity mirrors

X-pendulum (Cross-wired-pendulum): Designed by TAMA Collaboration Simulate simple pendulum with long wire Resonance: **0.24 Hz & 0.29 Hz** Displacement: 80 μ m (no damping) \rightarrow 3 μ m (eddy current) \approx 6 *FSR* Isolation ratio (by X-pendulum): 27 & 72

Double pendulum:

Upper layer: Intermediate mass (IM) Bottom layer: Cavity mirror (CM), Recoil mass (RM) Main Resonance: **1.53 Hz & 4 Hz Pound-Drever-Hall** locking of FPI cavity-length

Optical signal is isolated from environmental seismic noise at $2\omega_m$ (10-20 Hz).

Intermediate Mass IM

NTHU AMO Seminar Hs

Hsien-Hao Mei

5 PDH Control loop

Laser frequency H_1A_1 : Dynamic range ± 200 MHz Control band width 13 kHz FPI cavity length H_2A_2 : Dynamic range ± 1 mm Control band width 220 Hz Best performance: $H_1A_1 >> H_2A_2$

NTHU AMO Seminar Hsien-Hao Mei

Finesse fitting of FPI/3 Magnetic field profile

Detection & Integration considerations

6 Signal transformation QWP(birefingent)/VWP(dichroic)
7 Double modulation(η₀ ≅1 mrad) FC (Faraday Cell) @ ω_f (= 2π×390 Hz) Optical signal @ ω_f ±2ω_m **8 Lock-in detection** LA₁ (/LA₂) demodulating ($\hat{\omega}_{f}$ (/2 ω_{f}) Optical signal recovered ($\hat{\omega}_{f}$ 2 ω_{m} **9 Data Resampling via Interpolation w. r. t.** ω_{m} NTHU AMO Seminar Hsien-Hao Mei 2

378.3 hr Polarization Rotation Integration @ 3 mTorr

156.05 hr Ellipticity Integration @ 3 mTorr

Jones Matrix: Birefringence vs Dichroism

Prospect: New magnet after Sept. 2009

Main specs for design: B = 2.3 T L = 1.8 m $\omega_m/2\pi = 600$ rpm

 $egin{aligned} &\psi_{ ext{QED}} \propto \lambda^{-1} N B^2 L \ &arepsilon_{ ext{Axion}} \propto \lambda^0 N B^2 L^2 \end{aligned}$

NTHU AMO Seminar Hsien-Hao Mei

Simulation for magnetic leakage

Simulation for transverse $(B_Z)/axial(B_Y)$ fields

28

3.50

3.50

A & A• Who **Q** & A Collaboration Why QED & Axion/[(Pseudo-)scalar Field from WEP/EEP] • What Birefringence (ALPs/QED/CME) & Dichroism (ALPs) • How Ellipsometry, Vibration Isolation, Lock-in Detection Signal Enhancement ($\lambda^{\alpha}NB^{\beta}L^{\gamma}$), Sensitivity Improving Calibration, Magnetic Shielding, IBR Compensation When

Phase II \rightarrow Phase III Transition

NTHU AMO Seminar

Hsien-Hao Mei

30

Phase II \rightarrow Phase III Transition

Phase II

 $L_{FP}: 7 m$ L: 2.4 m $\lambda: 532 nm$ $F: 10^5$

Oct/2009

NTHU AMO Seminar

Mei

Prospects of Q & A experiment

	achieved (2007 / 2008)	implementing (2009-2010)	next stage (2011?)	
Length of cavity (L _{FP})	3.5 M	7 m	7 m	
Length of magnetic active zone (L)	o.6 m	2.4 m	4.2 m	
Laser wavelength (λ ; together with optics)	1064 nm	532 nm	532 nm	
Finesse of cavity mirrors (F)	29900 / 30000	10 ⁵	10 ⁵	
Number of passage (N = $2F/\pi$)	18700 / 19100	63700	63700	
Magnet's rotational modulation ($f_{\rm m} = \omega_{\rm m}/2\pi$)	5 rps/7rps	10 rps	20 rps	
Sensitivity $(\mathbf{S}_{N\psi_{o}} \text{ or } \mathbf{S}_{N\epsilon_{o}})$	(1.4 / 0.9) µrad/Hz ^{1/2}	10 nrad/Hz ^{1/2} ↓ Mirrors' birefringence	2 nrad/Hz ^{1/2} shot noise limit @ 0.1 W	
Integration time (T _{int})	18.9 hr / 378 hr	1000 hr (~42 d)	1000 hr (~ 42 d)	
Noise floor after T_{int} ($\sigma_{N\psi_o}$ or $\sigma_{N\epsilon_o}$)	5.3 nrad/0.8 nrad [(7·10³/10³)Nψ _{0,QED}]	5.3 prad (28%×Nψ _{o,QED})	1.1 prad (3.3%×Nψ _{o,QED})	
QED effect in ellipticity $(N\psi_{o,QED} \propto NB^{2}L/\lambda)$	0.72 prad	19.1 prad	33.4 prad	
ALPs coupling scale $[\mathbf{M} = \mathbf{g}_{a\gamma\gamma}^{-1} \sim (\mathbf{BL}/4)(\mathbf{N}/\sigma_{\mathbf{N}\epsilon_{o}})^{1/2}]$	$M > 0.6 \times 10^{6} \text{ GeV}$ for $m_a < 1.7 \text{ meV}$	$M > 1.4 \times 10^8 \text{ GeV}$ for $m_a < 0.8 \text{ meV}$	$M > 5.3 \times 10^8 \text{ GeV}$ for m _a < 0.8 meV	
§: No results for 2008 due to CMs	NTHU AMO Seminar	Hsien-Hao Mei	32	

 $\mathbf{A}\mathbf{A}$ • Who **Q** & A Collaboration Why QED & Axion/[(Pseudo-)scalar Field from WEP/EEP] • What Birefringence (ALPs/QED/CME) & Dichroism (ALPs) • How Ellipsometry, Vibration Isolation, Lock-in Detection Signal Enhancement ($\lambda^{\alpha}NB^{\beta}L^{\gamma}$), Sensitivity Improving Calibration, Magnetic Shielding, IBR Compensation When Hopefully, 2010-2011 NTHU AMO Seminar Hsien-Hao Mei

Summary & Outlook

- Q & A experiment searches for QED or (pseudo)scalar predictions through ellipsometer-measured birefringence and dichroism.
- Cavity mirrors are **suspended** for seismic noise **isolation**.
- Magnetic field shielding around cavity mirrors is improved.
- Sensitivity in polarization rotation and in ellipticity detection are both around 1 μrad/Hz^{1/2} with a 78% duty cycle within 48 days.
- A **new magnet** with **B** = 2.3 **T** and **L** = 1.8 **m** is set up with a rotational speed up to 13 **rps** to enhance the physical effects. A copy will be added in the next stage.
- A **7 m FPI** with **F** ~ 10⁵ cavity using **532 nm** mirrors is under construction.
- We are currently **aiming at 10 nrad/Hz^{1/2}** sensitivity.
- With these improvement and upgrading of vacuum, <u>QED</u> birefringence would be <u>measured to 28 % in about 50 days</u>.

Thank you very much!

Phase II