MAGNETO-OPTICAL TRAPPING OF CADMIUM ATOMS

Ming-Shien Chang

Institute of Atomic and Molecular Sciences Academia Sinica www.iams.sinica.edu.tw

IAMS

Outline

- Introduction to ultracold atomic physics
- How does laser cooling work
- Cadmium MOT
- Outlook

NTHU, Dec. 2009

Define the "Ultracold"

• Laboratory energy scales

Atomic velocities

room temperature gas: ultracold gas: 300 meters/sec 6 meters/hour

$$\frac{1}{2}mv^2 = k_B T$$

Cold atoms: much more than just cool atomic physics

Cold atoms: much more than just cool atomic physics

How does lasers cooling work?

Manipulating atoms with light - I

Photons carry momentum: can be used to accelerate/decelerate an object

Photon energy $E = \hbar \omega \sim eV$ Photon recoil energy $E_r = (\hbar \vec{k})^2 / 2m \sim 10^{-7} eV$ Thermal energy (@ 293K) $E_{R.T.} \sim 25 \times 10^{-3} eV$

Laboratory applications:

- 1. Laser cooling
- 2. Raman cooling
- 3. Coherent control of Motional D.O.F.

Manipulating atoms with light - I

Photons carry momentum: can be used to accelerate/decelerate an object

Photon energy $E = \hbar \omega \sim eV$ Photon recoil energy $E_r = (\hbar \vec{k})^2 / 2m \sim 10^{-7} eV$ Thermal energy (@ 293K) $E_{R.T.} \sim 25 \times 10^{-3} eV$

Laboratory applications:

- 1. Laser cooling
- 2. Raman cooling
- 3. Coherent control of Motional D.O.F.

Manipulating atoms with light - II

When external motional-states are spectroscopically resolved and quantized, light can be used to control the quantum states of the external degrees of freedom (DOF). Let's assume no spontaneous decay from $|e\rangle$ $|e\rangle$ $\hat{H}_{I} = \hbar \Omega \hat{\sigma}^{\dagger} e^{-i\delta t} \frac{e^{ik\hat{x}}}{e^{ik\hat{x}}} + h.c.$ When $kx_0 \ll 1$, (Lamb-Dicke regime) $e^{ik\hat{x}} \sim 1 + ik\hat{x}$ Internal DOF $=1+ikx_{0}(\hat{a}+\hat{a}^{+}).$ (two-level sys) External DOF (harmonic motion) $\hat{H}_{I} \sim \hbar \Omega e^{-i\delta t} \hat{\sigma}^{+} (1 + ik(\hat{a} + \hat{a}^{+})) + h.c.$ detuning carrier Valid when Lamb-Dicke Parameter Motional sidebands $\left\{ \begin{array}{c} red sideband \\ 1 \\ 1 \\ 1 \end{array} \right\}$

 $\eta = kx_0 \propto \frac{x_0}{2} \ll 1$

Doppler cooling

Doppler shift
$$\omega_D = 2\pi \frac{v}{c} f = \frac{2\pi v}{\lambda} = kv$$

 $\vec{F} = \vec{F}_+ + \vec{F}_-$
 $\vec{F}_{\pm} = \pm \frac{\hbar \vec{k} \Gamma}{2} \frac{s_0}{1 + s_0 + [2(\delta \mp kv)/\Gamma]^2}$
 $F \approx \frac{8\hbar k^2 \delta s_0 \vec{v}}{\Gamma(1 + s_0 + (2\delta/\Gamma)^2)^2} \equiv -\beta \vec{v}, if(\frac{kv}{\Gamma})^2 <<1$

For a red-detuned (δ <0) laser, the force damps the velocity.

How to make a MOT?

3D Monte-Carlo simulation of a MOT

 σ^+

σ

Initial position: uniform distribution, initial velocity: Boltzmann distribution

Acceleration: $a_x(\vec{r}, v_x) = \frac{\hbar k\gamma}{2m} s_x(\vec{r}) \left[\sum_{\vec{r}} \frac{p_{+,q}(\vec{r})}{1 + s_{\text{tot}}(\vec{r}) + (2\delta_{+,q}(\vec{r}, v_x))^2} \right]$ $-\sum_{r} \frac{p_{-,q}(\vec{r})}{1 + s_{\text{tot}}(\vec{r}) + (2\delta_{-,q}(\vec{r}, v_x))^2}$ $s_x(\vec{r}) = \frac{I_x}{I_x} e^{\frac{-2(y^2+z^2)}{w_0^2}},$ Saturation parameter: $s_{\text{tot}}(\vec{r}) = 2s_x(\vec{r}) + 2s_y(\vec{r}) + 2s_z(\vec{r}),$ $\begin{array}{l} \text{Polarization:} \\ p_{\pm,q}(\vec{r}) = \begin{cases} \left(\frac{1}{2}[1 \mp \frac{1}{2}\frac{xB'}{B(\vec{r})}]\right)^2, & q = -1 \quad (\sigma^-) \\ \left(\frac{1}{2}[1 \pm \frac{1}{2}\frac{xB'}{B(\vec{r})}]\right)^2, & q = +1 \quad (\sigma^+) \\ 1 - (p_{\pm,-1} + p_{\pm,+1}), & q = 0 \quad (\pi) \end{cases} \end{array}$

Effective detuning: $\delta_{\pm,q}(\vec{r}, v_x) = (\Delta \mp k v_x)/\gamma + q \frac{\mu_B g_F B(\vec{r})}{\gamma \hbar}$

Demonstrated laser cooling of neutral atoms

Demonstrated laser cooling of ionic atoms

Magneto-Optical Trapping of Cadmium

Demonstrated laser cooling of neutral atoms

Why two-electron atoms?

- Textbook two-level atom
- Possess intercombination transition lines
 - Lower Doppler limit temperature
 - atomic clock: Sr, Mg, Hg, Yb
- EDM, T/CP violation: ²²⁵Ra, ¹⁹⁹Hg
- Trappable neutrals and ions
 - Build a hybrid system

Intercombination lines: ${}^{1}S_{0} - {}^{3}P0_{0,1,2}$

Cadmium overview

Large $k=2\pi/\lambda$

- Large linewidth
- Photo-ionization

Large I_{sat} (1.0 W/cm²)
Large photon recoil acceleration (~50x Rb)
Large B-field gradients

Laser System and freq stabilization

Vacuum chamber:

Cd vapor pressure $P \sim 10^{-11}$ Torr at 300K

Ion trap: Four-rod linear Paul trap

Permanent magnets give large magnetic field gradients: B' ~ 300-1500 G/cm

Cadmium MOT parameters

•MOT Atom Number (N): ~10 - 10000

- •MOT Density: ~10⁸ 10⁹ cm⁻³
- •Beam waist (w₀): 0.5 1.5 mm
- •Beam power: 0.7 2.5 mW
- •Saturation parameter (s): 0.02 0.77
- •Magnetic field gradient (B'): 300 1200 G/cm
- •Gaussian cloud shape: temperature limited
- •Thus not density limited: two-body collision loss ignored

In a vapor cell:

Dominant loss: photoionization

MOT growth rate independent of the vapor pressure: one-body collision loss is small and ignored.

$$\Pr(s,\delta) = \frac{s/2}{1+s+4(\frac{\delta}{\gamma})^2}$$

 σ_{PI} : Photoionization cross-section from P state

D.N. Madsen, et. al, J. Phys. B **35**, 2173 (2002)

Photoionization cross-section

 σ_{PI} : Photoionization cross-section from P state Limited by intensity and detuning uncertainty

Power / intensity:

3-D Monte Carlo
 1 D Analytical

- 1-D Analytical
- Expt Data

Optimum intensity is lower than that of typical MOTs due to photoionization

Parameters:

- w₀=1.25 mm
- δ=-0.6γ
- B'=500 G/cm

Detuning:

Large DAVLL capture range leads to uncertainty in detuning

Magnetic field gradient

Odd vs. even isotopes

MOT for odd isotopes were not observed.

Similar results observed in Yb: H. Katori, et. al, PRL **82**, 1116 (1999) Odd isotopes of Cd (I=1/2):

Linewidth ~ the ${}^{1}P_{1}$ state hyperfine splitting: bad for laser cooling.

Possible solutions:

- Dichroic MOT
- •Operates in a very high B gradient (Paschen-Bach regime)
- •Large laser power with large red detuning

Improve Cd MOT: generate even higher B field gradient

AH coil w/ up to 400 Amp But ... bulky needs water cooling B' up to <200 G/cm only

B' up to 10⁴ G/cm compact switchable

V. Vuletic et al., Europhys. Lett., 36, 349 (1996)

A pair of NdFeB magnets compact **B' up to 1500 G/cm !** But ... not switchable Improve Cd MOT: generate higher laser power at 229 nm - I

Improve Cd MOT: generate higher laser power at 229 nm - II

Single Mode 457 nm high power DPSS Laser for Ultracold Atomic Physics

LD, 808 nm

Freq. doubling of the 457 nm output => a high power laser at 229 nm.

Q. H. Xue et al., Opt. Lett. v. 31, 1070 (2006)

What can we do with a Cadmium MOT?

Cadmium for an optical lattice clock?

Currently lowest BBRS: ²⁷Al⁺ ion. $\Delta v/v$ (T=300 K) ~ 8(3) $\cdot 10^{-18}$ T. Rosenband *et al., arXiv:physics/0611125*

Hg MOT & Opt Lattice Clock H. Hacish et al., PRL, **100**, 053001 (2008)

Combining Cd neutrals and ions

MOT

Linear Paul Trap

Combining neutrals and ions

- Transport effects
 - Ultracold charge-exchange collisions
 - "Hole" transport through disordered media
 - Ultracold Quantum chemistry
- Coherence-preserving charge exchange

Single ion and a single neutral atom

Ensemble of Yb neutrals and ions: A. Grier, et al. PRL **102**, 223201 (2009)

Contradictory requirements for neutral/ion traps: MOT: large trap volume Paul trap: prefer small trap volume in our case

BROOM MEN!

0266

Neutral-Ion hybrid-trap design

Yb MOT / ion surface trap: M. Cetina, et al. PRA 76, 041401(R) (2007)

Summary

- Realized a magneto-optical trap for Cadmium
 - MOT with extreme trapping parameters: large linewidth, short wavelength, low laser power, PI loss
 - Determined photo-ionization cross-section
 - Characterized the data with 1D and 3D models
- Outlook
 - Possible research avenues in the future
 - Key enabling techniques for Cd MOT and proposed experiments

University of Michigan Trapped Ion Quantum Computing

http://iontrap.physics.lsa.umich.edu/

<u>Grad Students</u> Kathy-Anne Brickman

Louis Deslauriers Patricia Lee Martin Madsen David Moehring Steven Olmschenk Jon Sterk Yisa Rumala Daniel Stick Kelly Younge

Prof. Chris Monroe

<u>Postdocs</u> Boris Blinov Paul Haljan Winfried Hensinger Peter Maunz Ming-Shien Chang, Dzmitry Matsukevich

<u>Undergrads</u> Jacob Burress Andrew Chew, Dan Cook David Hucul Rudy Kohn Elizabeth Otto Mark Yeo

Collaborators

Vanderlei Bagnato (Sao Paolo) Luming Duan (Michigan) Jim Rabchuk (W. Illinois) Keith Schwab (Cornell)

University of Maryland Trapped Ion Quantum Computing

http://www.iontrap.umd.edu/

<u>Grad Students</u> Kathy-Anne Brickman

Louis Deslauriers Patricia Lee Martin Madsen David Moehring Steven Olmschenk Jon Sterk Yisa Rumala Daniel Stick Kelly Younge

Prof. Chris Monroe

<u>Postdocs</u> Boris Blinov Paul Haljan Winfried Hensinger Peter Maunz Ming-Shien Chang, Dzmitry Matsukevich

<u>Undergrads</u> Jacob Burress Andrew Chew, Dan Cook David Hucul Rudy Kohn Elizabeth Otto Mark Yeo

Collaborators

Vanderlei Bagnato (Sao Paolo) Luming Duan (Michigan) Jim Rabchuk (W. Illinois) Keith Schwab (Cornell)

