COLD MOLECULE AND PHOTOASSOCIATION

Yi-Wei Liu Physics, NTHU 2010.10.25

WHAT IS COLD MOLECULE?

- A neutral bound system with more than one atom has a very low kinetic energy (translational, vibrational, rotational)
- K₂, KRb, Rb₂,Cs₂....

New problems in molecular system

WHY COLD MOLECULE?

- Fundamental research: fundamental constant, EDM, PNC
- New era of chemistry: superchemistry
- Quantum simulator for solid state physics
- Quantum Computer.

TEMPERATURE, DENSITY AND COOLING

TWO MAINSTREAMS IN COLD MOLECULE INDUSTRY

- Cool down a molecule
- Produce molecule from cold atoms

Association: Perform chemistry using very cold ingredients

HEAT INCREASES INTERACTION, BUT WE ARE GOING TO COOL EVERYTHING

Heat helps chemical reaction, because:
I. higher collision rate
2.higher kinetic energy to penetrate chemical energy barrier

Then, why shall we go cold?

WHAT AND WHY "ULTRACOLD"

- The ingredients (atoms) must be cold to have cold products (molecules).
- "Ultracold" → S wave scattering → enhance inelastic collision and chemical reaction. (increase by 10³) ↔It contradicts with our experience in chemical practice.

Scattering of various partial wave

The collision complex can be decomposed according to the angular momentum. s, p, d ...

During the process of the collision, the angular momentum must be conserved.

Head-to-Head collision

ULTRACOLD COLLISION

Dipole-Dipole interaction

$$V_{d} (\hat{\mathbf{r}}) = \frac{\vec{\mathbf{D}}_{1} \cdot \vec{\mathbf{D}}_{2} - 3 (\vec{\mathbf{D}}_{1} \cdot \hat{\mathbf{r}}) (\vec{\mathbf{D}}_{2} \cdot \hat{\mathbf{r}})}{\mathbf{r}^{3}}$$

Rank-2 Tensor: **T(2)q**

Wavefunction of the complex during collision: **|I,m>** The potential is: **<I,m|T⁽²⁾q|I,m> =0** =0, s-wave scattering

dipole-dipole interaction is vanished inelastic collision is enhanced

CROSS SECTION ENHANCEMENT

Head-to-Head collision Averaged force is zero No potential barrier Furthermore, external field can be used to control the alignment, then the interaction of atoms

H₂ -Ar collision v.s temperature

OUR ULTIMATE GOAL : TO THE GROUND STATE

FROM COLD ATOMS TO COLD MOLECULES

- Energy conservation: How to remove internal energy?
- Vibration of neutral particles can not emit photons→ no radiative decay!

AVAILABLE APPROACHES

- Feshbach resonance : tuning interaction by external field, transfer kinetic energy to internal hyperfine(Adiabatic)
- Photoassociation : using photons to take out energy.(Adiabatic or Not)

Low rate, complicate laser system

A WEAKLY BOUND SYSTEM CAN INCREASE PADATE DEUTSC

STIMULATED RAMAN ADIABATIC PASSAGE: STIRAP

 $|A \rangle = (a_1 || > +a_2 |3 \rangle) e^{i\alpha t} : \text{coupled by laser } |$ $|B \rangle = (b_1 |2 \rangle + b_2 |3 \rangle) e^{i\beta t} : \text{coupled by laser } 2$ $|f |aser |, 2 \text{ are$ **coherent** $,}$ $|f |aser || > and |2 \rangle \text{ are coupled into a$ **coherent dark state** $} |$ $|coherent dark state \rangle = (r_1 || > +r_2 |2 \rangle) e^{i\gamma t}$

Population can be transferred between || > and |2> with no access to |3>, therefore no spontaneous decay

 $|b\rangle$

 Δ

FESHBACH RESONAL INSTITUTE OF Physics (DE

Apply external field to shift energy level and tune the interaction between atoms K+U_{IowHF}→U_{highHF} Free→Bound

The external fields can be: magnetic, optical, electrical

THE BEST SOLUTION SO FAR

- Feshbach resonance+STRAP (stimulated Raman adiabatic passage)
- Form a very large (R, and high ν) molecule, then remove vibrational energy by stimulation emission.
- CsRb and KRb have been successfully produced (Ni and et al, JILA, Science, 2008. Sage and et al, Yale, PRL, 2005)

Internuclear distance

Very classical, and low rate.....

A PROPOSAL TO INCREASE PA RATE

Can we drive population in all levels using one laser?
 A broad band laser!

 Can we pump up population only, without stimulating it down?

A pulse laser!

⇒The femtosecond laser

BANDWIDTH OF PUMP LASER

- The typical linewidth of molecular absorption without overlap with neighboring band $\rightarrow \Delta v = 10^2 10^3$ cm⁻¹
- By uncertainty principle (Fourier transform-limited),
 T=femtosecond

MAXIMUM INVERSION USING Π

- Short pulse to perform π population transfer.
- $\tau E_0 \mu / \hbar = \pi$
 - Problems: very large E₀ ~ 10¹²-10¹⁴ W/cm².
 Many subtle effects should be taken into account, such as multi-photon transition

CHIRPED FEMTOSECOND LASER

- $\tau E_0 \mu/\hbar = \pi$, a longer τ can lower required E_0
- To maintain the same Δv with a long τ (>1/ Δv), we need a chirped pulse, rather than transform-limited.

Blue chirp

Red chirp

Transform-limited **Longer pulse with the same power spectrum**

• The Blue Chirped pulse can remove energy (proposed by J. Cao et al, PRL 1998)

just like Raman cooling

CHIRP EXPERIMENT

COMB LASER CONTROL PHASE OF WAVE PACKET USING COHERENCE BETWEEN PULSES

- The phase of the final products from each pulse is fixed, due to the coherent nature of comb laser.
- $|\Phi\rangle_{f=}e^{i\theta}|\Phi\rangle+e^{i2\theta}|\Phi\rangle+e^{i3\theta}|\Phi\rangle$ interference of grating

Proposed by Pe'er and et al, JILA, PRL, 2007

OUR APPROACH

- KRb mixture
- Polarization Gradient cooling
- Dipole trap
- FechBach resonance combination
- Photo-association (pulsed coherent Raman)

LASER SYSTEM FOR DOUBLE SPECIES COOLING SYSTEM

KAND RB MIXTURE

A LITTLE BIT COLDER USING PG COOLING PG 20msec PG 3 msec PG 20msec PG 20msec

DIPOLE TRAP FOR ULTRACOLD ATOM

release time 0 ms

release time 5 ms

release time 10 ms

release time 15 ms

release time 30 ms

release time 20 ms

release time 40 ms

release time 25 ms

release time 50 ms

CONCLUSIONS

- JILA experiment (KRb) is very successful, but the laser system of two cw lasers, one comb laser, and one ionization laser is very complicate.
- Direct comb driving PA is attractive and promising. Although, the oxford experiment discouraged. How to optimize pulse shape and spectrum is still unclear. There is a long way to go.