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Al IS COLD MOLECUES

* A neutral bound system with more than one
atom has a very low kinetic energy
(translational, vibrational, rotational)

S <Rb Rby, Cso.... \

New problems in molecular system




WHY COLD MOLECULE?

* Fundamental research: fundamental constant, EDM,
EINE@

* New era of chemistry: superchemistry
» Quantum simulator for solid state physics

* Quantum Computer.
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TWO MAINSTREAMS IN
COLD MOLECULE INDUSTRY

*Cool down a molecule

*Produce molecule from cold atoms

¥

Association: Perform chemistry using very
cold ingredients
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WHAT AND WHY
"ULTRACOLD”

* [he Ingredients (atoms) must be cold to have
cold products (molecules).

» “Ultracold” = S wave scatterir
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SCAT TERING

Scattering of various partial wave

The collision complex

can be decomposed
according to the

angular momentum. s,

0, @l

the collision, the angu
momentum must be
conserved.

During the process of

alr

Head-to-Head collision




ULTRACOLD COLLISION

Dipole-Dipole interaction

Rank-2 Tensor: T(3)q

Wavetunction of the complex during collision: [l,m>
The potential is: <l,m|T®q|l,m> =0
=0, s-wave scattering

dipole-dipole interaction is vanished
inelastic collision is enhanced
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OUR ULTIMATE GOAL :
1O THE GROUND STATE
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FROM COLD ATOMS TO
COLD MOLECULES

* Energy conservation: How to remove internal
energy!

* Vibration of neutral particles can not emit
photons— no radiative decay! lo2X @

* The third party Is needed: photon or particle(three-
body collision)
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AVAILABLE APPROACHES

* Feshbach resonance :tuning interaction by
external field, transfer kinetic energy to internal

hyperfine(Adiabatic)

* Photoassociation : using photons to take out
energy.(Adiabatic or Not)




PHOTOASSOCIATION

45+5P

Red detuned PA lakser

CW pumping
low excitation rat

4S+5S

* Low rate, complicate laser system



A WEAKLY BOUND SYSTEM
CAN H\ICREASE PA RATE
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STIMULATED RAMAN ADIABATIC

PASSAGE: STIRAP

A>=(a; ||1>+ay|3>)e'*":coupled by laser |
B>=(b, [2>+b,|3>)et:coupled by laser 2

f laser | 2 are coherent, X\

then |1 > and |2> are coupled Into a coherent dark state

lcoherent dark state>= (| || >+r|2>)eV!
13>

Population can be transfered
between |1> and |2> with no
access to |3>, therefore no
spontaneous decay

laser 2

laser 1

1>

-"F'|2>



FESHBACH RESONANCE

Apply external field to
shift energy level anc Energy \V(R)

tune the Interaction
between atoms " : v

KA+UlowHrF = UnighHr e
Free—Bound EbdQI g field B
;o CO--Q»
The external e
fields can be:
magnetic, * it
optical, r<R
electrical » R ®  Bolls




Energy

THE BEST SOLUTION sorar

o4

Step 1:

Step 2: magneto-association
laser transfer

[ Laser pulses \
(B B

Intensity

Internuclear distance

* Feshbach resonance+STRAP (stimulated

Raman adiabatic passage)

* Form a very large (R, and high V) molecule,

then remove vibrational energy by
stimulation emission.

+ CsRb and KRb have been successfully

produced (NI and et al, JILA,Science, 2008.
Sage and et al, Yale, PRL, 2005)

b celessical anel o raie s



A PROPOSAL TO INCREASE PA
RATE

- Can we drive population In all levels using one laser?
A broad band laser!

» Can we pump up population only, without;
stimulating it down? ”“’

A pulse laser!

=The femtosecond laser =~



BANDWIDTH OF PUMP LASER

* The typical linewidth of molecular absorption

without overlap with neighboring band —
Av=10%-103 cm"!

* By uncertainty principle (Fourier transtorm-limrted),
T=femtosecond



MAXIMUM INVERSION USING [
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Mt Phase TT, very

high population
] \/WMA Rabi

i Oscillation

excited state population

* Short pulse to perform Tt population transfer.

S TEoL/h=TT

® Problems: very large Eo ~ 10'%-10" W/cm?.
Many subtle effects should be taken into
account, such as multi-photon transition




CHIRPED FEMTOSECOND
LASER

* TEoU/h=TT, a longer T can lower required Eg

* To maintain the same AV with a long T (> |/Av), we need a
chirped pulse, rather than transform—limhtﬁd.

M 4\ Nijlue chirp
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BLUE OR RED/?

+hAvV
2hv-hAvV ‘ -*Zh(v AV)

h(V32Xkw) -)‘ Stimulated

HReel Ciin *
Excrted Stk Avg _)Zh(VJrAV)
-NAV

* The Blue Chirped pulse can remove energy (proposed
by J. Cao et al, PRL 1998)

* Just like Raman cooling



EHIRP EXPERIMENSS
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COMB LASER

e RO PIHASE OF WAVE PACKET USING COIRIERISINES
BETWEEN PULSES

(a) Molecular configuration (b) Time domain picture
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* [he phase of the final products from each pulse Is
fixed, due to the coherent nature of comb laser.

o |P>e0D>+e20|D>+e309D>. . interference of oratin
8 2

Proposed by Pe'er and et al, JILA, PRL, 2007/



OUR APPROACH

« KRb mixture

» Polarization Gradient cooling

* Dipole trap
e FechBach resonance combination

* Photo-association (pulsed coherent Raman)



| ASER SYSTEM FOR DOUBLE
SPECIES COOLING SYSTEM
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KAND RB MIXTURE
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A LITTLE BIT COLDER USING
PG COOLING
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B PG cooling time O ms

- ® PG cooling time 2 ms
PG cooling time 5 ms

A PG cooling time 10 ms

T=33ukK
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DIPOLE TRAP FOR
ULTRACOLD ATOM

release time O ms

release time 5 ms release time 10 ms

release time 15 ms release time 20 ms release time 25 ms

release time 30 ms release time 40 ms release time 50 ms



CONCLUSIONS

* JILA experiment (KRb) Is very successful, but the
laser system of two cw lasers, one comb laser; and
one lonization laser is very complicate.

* Direct comb driving PA Is attractive and promising.
Although, the oxford experiment discouraged. How

to optimize pulse shape and spectrum is still unclear.
There is a long way to go.



