Ultrashort pulse train synthesized by light waveform control

Wei-Jan Chen 陳蔚然

AMO Seminar, National Tsing Hua University Sep. 27, 2010

Outline

- Introduction
- Review of basic concepts
- High Harmonic Generation
- Molecular Modulation
- Multicolor synthesized
- Outlook

Outline

- Introduction
- Review of basic concepts
- High Harmonic Generation
- Molecular Modulation
- Multicolor synthesized
- Outlook

Attoworld

www.attoworld.de/attoworld.html

Request for Ultrashort Pulse

molecular and electronic motion

Electronic Motion

F. Krausz & M. Ivanov, Rev. Mod. Phys. 81 163 (2009)

Evolution of Ultrafast Science

F. Krausz & M. Ivanov, Rev. Mod. Phys. 81 163 (2009)

Laser pulses got shorter over the years

Ultrafast science

Peak intensity increased

High field physics

Outline

- Introduction
- Review of basic concepts
- High Harmonic Generation
- Molecular Modulation
- Multicolor synthesized
- Outlook

Correlation Between Time and Frequency

Principle of optical interference of coherent light fields

In phase

Random phase

What is a single cycle optical pulse

(a) Many waves propagating to form a wave packet (left) (b) Ultimate wavepacket is a single-cycle and sub-cycle pulse pulse (right)

(a)

Optical cycle

 $E(t) = \widetilde{E}(t) + c.c.$

$$\widetilde{E}(t) = A(t)e^{i(\omega_0 t + \phi)}$$

$$\omega_0 = \frac{\int_0^\infty \omega |E(\omega)|^2 d\omega}{\int_0^\infty |E(\omega)|^2 d\omega}$$

Carrier frequency

$E(\omega)$: Fourier transform of E(t)

T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997)

Carrier envelope phase $E(t) = E_0(t)\cos(\omega_0 t + \phi)$

Single cycle waveforms

Constant carrier envelope phase $E(t) = \sum E_n(t)\cos(\omega_n t + \phi_n)$ constant nhase difference d=0

 $\omega_n = n\omega_m + \omega_{ceo}$ $\phi_n = \omega_{ceo}t + \phi'_n$

incommensurate

commensurate

Constant CEP requires that the frequencies are commensurate and the relative phases form an arithmetic series

Ingredients of an attosecond single-cycle optical pulse:

- 1. Broad spectrum 2 or more octaves
- 2. In phase condition
- 3. Constant carrier envelope phase:
 - Commensurate frequencies
 - Constant phase difference between adjacent spectral components
- 4. Stable and controllable carrier envelope phase

Light Waveform Control

Outline

- Introduction
- Review of basic concepts
- High Harmonic Generation
- Molecular Modulation
- Multicolor synthesized
- Outlook

Methods of Generating Attosecond Pulses

High-order harmonic generation of phase-stabilized femtosecond pulse

Α

Optical field ionization **b** or acceleration and re-collision **c**_L(t) **c**_L(t)
<p

single pulse 100 attosecond 30-100 eV photons very low power constitutes a few cycles

Krauze et.al., Nature 421, 611 (2003) R. Lopez-Martens et. al., PRL 94, 033001 (2005)

Three-step model

P. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

Isolated Attosecond-pulse production

M. Hentschel et al, Nature 414, 509 (2001)

Attosecond spectroscopy in condensed matter

A. L. Cavalieri¹, N. Müller², Th. Uphues^{1,2}, V. S. Yakovlev³, A. Baltuška^{1,4}, B. Horvath¹, B. Schmidt⁵, L. Blümel⁵, R. Holzwarth⁵, S. Hendel², M. Drescher⁶, U. Kleineberg³, P. M. Echenique⁷, R. Kienberger¹, F. Krausz^{1,3} & U. Heinzmann²

а 4f-states kinetic energy (eV) 65 63 61 59 57 55 -6 -4 -2 0 2 Relative delay (fs) b 4f states Cond. band 0.5 Energy shift (eV) -0.5 $\Delta r = 110 \pm 70$ as -6 -4 -2 0 2 Relative delay (fs)

Figure 3 | Evidence of delayed photoemission. a, The 4f and conductionband spectrograms, following cubic-spline interpolation of the measured data

Nature 449, 1029 (2007)

Outline

- Introduction
- Review of basic concepts
- High Harmonic Generation
- Molecular Modulation
- Multicolor synthesized
- Outlook

Methods of Generating Attosecond Pulses

B)

High-order stimulated Raman scattering using molecular modulation

M.Y. Shverdin et.al., PRL 94, 033904 (2005)

Molecular Modulation

Molecular modulation is analogous to electro-optic modulation

Coherent Molecular Excitation

Two strong laser fields adiabatically drive the molecules into a maximally coherent state.

Maximal coherence, ρ_{ab} = 0.5

 \mathcal{O}

$$\frac{\partial \rho_{aa}}{\partial \tau} = i(\Omega_{ab}\rho_{ba} - \Omega_{ba}\rho_{ab}) + \gamma_{\parallel}\rho_{bb}$$

$$\frac{\partial \rho_{bb}}{\partial \tau} = -i(\Omega_{ab}\rho_{ba} - \Omega_{ba}\rho_{ab}) - \gamma_{b}\rho_{bb}$$

$$\frac{\partial \rho_{ab}}{\partial \tau} = i(\Omega_{aa} - \Omega_{bb} + \delta + i\gamma_{\perp})\rho_{ab} + i\Omega_{ab}(\rho_{bb} - \rho_{aa})$$

$$\Omega_{aa} = \frac{1}{2}\sum_{q}a_{q}|E_{q}|^{2}$$

$$\Omega_{bb} = \frac{1}{2}\sum_{q}b_{q}|E_{q}|^{2}$$

$$\Omega_{ab} = \Omega_{ba}^{*} = \frac{1}{2}\sum_{q}d_{q}E_{q}E_{q+1}^{*}$$

$$\rho_{ab}^{(\pm)} = \frac{1}{2}e^{i\varphi}\sin 2\theta^{(\pm)} = \pm \frac{\Omega_{ab}}{\sqrt{(\Omega_{aq} - \Omega_{bb} + \delta)^{2} + 4|\Omega_{ab}|^{2}}}$$

$$|\Omega_{ab}| >> |\Omega_{aa} - \Omega_{bb} + \delta|$$

Sideband Generation and Propagation

• Adiabatically prepared molecules modulate the driving fields producing a wide comb

Propagation equation for the *q*th sideband $\omega_q = \omega_{q-1} + \omega_0 - \omega_{-1}$

 $\frac{\partial E_q}{\partial z} = -j\eta\hbar\omega_q N\left(a_q\rho_{aa}E_q + d_q\rho_{bb}E_q + b_q^*\rho_{ab}E_{q-1} + c_q^*\rho_{ab}^*E_{q+1}\right)$ dispersion coupling

At maximum coherence, $\rho_{ab} = 0.5$ the dispersion and coupling terms become comparable. Phase-matching is then not important, and generation is collinear.

Courtesy M. Shverdin

Stimulated Raman Scattering

Traditional SRS:

★ Generation occurs at high gas pressure Molecular excitation occurs on-resonance Anti-Stokes generation occurs off-axis Few Stokes and anti-Stokes orders are observed.

Courtesy M. Shverdin

H₂ Rotation Spectra: 29 sidebands, spaced by 587 cm⁻¹

Phys. Rev. A (R)(1997) Phys. Rev. Lett. 81 (1998) Opt. Lett. 24 (1999) Phys. Rev. Lett. 84 (2000) Phys. Rev. Lett. 85 (2000) Phys. Rev. A 63 (2001) Phys. Rev. Lett. 91 (2003) Phys. Rev. Lett. 93 (2005)

Multiplicative Spectra: ~ 200 sidebands, spaced by < 587 cm⁻¹

Raman Spectrum

$$\omega_q = n\omega_m$$

Note:

589 nm \leftrightarrow 16978 cm⁻¹ (4 x 4155.2 = 16621 cm⁻¹)

780 nm \leftrightarrow 12822.8 cm⁻¹ (3 x 4155.2 cm⁻¹ = 12465.6 cm⁻¹)

The sidebands are not commensurate.

New input wavelengths:

 ω_0 = 16621 cm⁻¹ (602 nm) ω_{-1} = 12465.6 cm⁻¹ (802 nm)

These wavelengths produce a commensurate set of sidebands, as shown on the right:

R	taman Order	nm	cm⁻¹	4 wave- mixing order
		ø	0	
	-3	2407	4155	
	-2	1203	8310	1
	-1	802	12465	2
	0	602	16620	3
	1	481	20775	4
	2	401	24930	5
	3	344	29085	6
	4	301	33240	7
	5	267	37395	8
	6	241	41550	9
	7	219	45705	10
	8	201	49860	11
	9	185	54015	

Experiment Setup

M. Y. Shverdin et al. PRL 94, 033904 (2005)

Multiple quantum paths interference

Four wave mixing:

$$\omega_5 + \omega_7 - \omega_4 = \omega_8$$

$$\omega_6 + \omega_5 - \omega_3 = \omega_8$$

$$\omega_6 + \omega_7 - \omega_5 = \omega_8$$

In phase condition

1.1202nm

			1. 12031111
7-6+6	2: 802nm		
	3: 602nm		
5+5-	-3, 5+4-2, 5+3-1.		4: 481nm
4+4-	-1		5: 401nm
			6: 344nm
6, 5, 4	4 : 6+6-5, 6+5-4	Φ ₆₅ =Φ ₅₄	7: 301nm
+3	: 6+4-3 <i>,</i> 5+5-3	$\Phi_{65} = \Phi_{54} = \Phi_{43}$	
+2	: 6+3-2, 5+4-2	$\Phi_{65} = \Phi_{54} = \Phi_{43} = \Phi_{32}$	
+1	: 6+2-1, 5+3-1, 4+4-1	$\Phi_{65} = \Phi_{54} = \Phi_{43} = \Phi_{32} = \Phi_{21}$	L

Searching in phase condition

How to check the pulse shape?

Autocorrelation is standard way to measure ultrafast pulsewidth. However it could not be done here because of the wide bandwidth.

Solution: Correlation using pulses formed by the sidebands themselves.

Synthesize two pulses from the subsets of sidebands and electronically delay one pulse with respect to the other. Measure the resulting four-wave signal with a photomultiplier.

simulation

Cross Correlation of Single Cycle Pulse Train

20

Cross correlation signal of incommensurate pulses

CEO frequency ~ 349 cm-1 Waveform repeats every 96 fs

Pulse train

7 beam correlation in Xe

Carrier envelope phase is constant to ~ 2.5 part in 10^6

Total phase slip of <0.18 cycles over 1 million pulses

Status of sub-cycle optical pulse generation by molecular modulation

IAMS sub-cycle source

0.833 cycle per pulse
1.4 fs envelope
440 as cycle width
constant carrier envelope phase
2 ns pulse train duration
8.0 fs pulse spacing
~1 MW peak power

Total spectral span >70,000 cm⁻¹

Wei-Jan Chen et al., Phys. Rev. Lett. 100, 163906 (2008) Zhi-Ming Hsieh et al., Phys. Rev. Lett. 102, 213902 (2009)

Ingredients of an attosecond single-cycle optical pulse:

- 1. Broad spectrum 2 or more octaves
- 2. In phase condition
- 3. Constant carrier envelope phase:
 - Commensurate frequencies
 - Constant phase difference between adjacent spectral components

4. Stable and controllable carrier envelope phase

CEP control

Brief Summary and Outlook

- Generated commensurate pulse train
- Single pulse duration 1.4fs
- Sub-single-cycle pulse: 0.8 cycles
- CEP (carrier-envelope phase) control
- Sub-femtosecond pulse generation
- Arbitrary waveform
- Application for ultra-fast dynamics

Outline

- Introduction
- Review of basic concepts
- High Harmonic Generation
- Molecular Modulation
- Multicolor synthesized
- Outlook

Motivation

- Broadband source coherent and commensurate
- High peak power enough 10¹³-10¹⁴ W/cm²
- Simple experiment setup
- Light waveform control

Methods of Generating Attosecond Pulses

1064

532

355

266

213

Harmonics Generation

1203	0.833 cycle per pulse	
802	1.4 fs envelope	
602	440 as cycle width	
	constant carrier	
481	envelope phase	
	2 ns pulse train	
401	duration	
344	8.0 fs pulse spacing	
	~1 MW peak power	
301		

~25,000cm⁻¹

С

Single-cycle Nonlinear Optics

Simulation of subfemtosecond XUV emission from neon atoms ionized by a linearly polarized, sub-1.5-cycle, 720 nm laser field.

E. Goulielmakis, et al., Science 320, 1614 (2008)

Two-color multi-cycle field

Few-cycle pulse

Two-color pulse train

J Mauritsson et al., J. Phys. B: At. Mol. Opt. Phys. 42, 134003 (2009)

Experimental Setup

Harmonics generation

Relative Phase Measurement

(a) The relative phase between 1064 nm and 532 nm

(b) The relative phase between 1064 nm and 355 nm

Waveform by linear cross-correlation

(a) Square wave synthesized by 3 harmonics

(b) Square wave shown by linear cross-correlation process

Outline

- Introduction
- Review of basic concepts
- High Harmonic Generation
- Molecular Modulation
- Multicolor synthesized
- Outlook

The characteristics of the waveform

Pulse train: period 3.55 fs Pulse energy 1064 nm: 380 mJ 532 nm: 178 mJ 355 nm: 70 mJ 266 nm: 41 mJ 213 nm: 22 mJ

When CEP=0

After these modulator, assume each effective pulse energy is half of original energy =>The pulse width ~ 340 as Focusing to a Φ20μm spot, the intensity will reach 10¹⁴ W/cm².

Outlook

- The further waveform control
- The HHG setup and measurement

Juan J. Carrera and Shih-I Chu, Phys. Rev. A 75, 033807 (2007)

Outlook

Photoelectron and/or ion measurement

F. Krausz & M. Ivanov, Rev. Mod. Phys. 81 163 (2009)

Collaboraters

National Tsing Hua University

Andy Kung(孔慶昌) Či-Ling Pan(潘犀靈) Wei-Jan Chen(陳蔚然) Han-Sung Chan(詹翰松) Hong-Zhe Wang(王宏哲) Wei-Hsiang Wang(王韋翔)

IAMS Zhi-Ming Hsieh(謝智明) Shu Wei Huang(黃書偉) Hao-Yu Su(蘇皓瑜) Chien-Jen Lai(賴建任) Sih-Ying Wu(吳思螢)

National Chiao Tung University: Ru-Pin Pan(趙如蘋) Tsung-Ta Tang(湯宗達) Ruei-Yin Lin(林睿茵)

National Sun-Yat-Sen University Chao-Kuei Lee(李晁逵)

Acknowledgement

Stanford: Steve Harris and his students

TAMU: Alexei Sokolov

Berkeley: Ron Shen

Research supported by Academia Sinica and the NSC

Thanks for your attention