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• Source: Polarization-entangled photon pairs              
(SPDC source)

1

2vertical

horizontal
BBO-crystal

UV-pump

* http://www.physics.uiuc.edu/
People/Faculty/profiles/Kwiat/
index.html

Kwiat, P. G., Mattle, K., Weinfurter, H., Zeilinger, 
A., Alexander, V. S. & Shih, Y. H. New high-
intensity source of polarization-entangled photon 
pairs. Phys. Rev. Lett. 75, 4337-4341 (1995).
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Q. Zhang et al., Experimental quantum 
teleportation of a two-qubit composite 
system, Nature Phys. 2, 678-682 (2006)

C. H. Bennett, G. Brassard, C. Crépeau, R. 
Jozsa, A. Peres, W. K. Wootters, 

Teleporting an Unknown Quantum State via Dual 
Classical and Einstein-Podolsky-Rosen 

Channels, Phys. Rev. Lett. 70, 1895-1899 (1993)
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R. Ursin et al., Entanglement-based quantum communication over 144 km, 
Nature Phys. 3, 481-486 (2007)

A. K. Ekert, 
Quantum cryptography 

based on Bellʼs theorem, 
Phys. Rev. Lett. 67, 661–

663 (1991).
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• Quantum Computation -One-way quantum computer

Quantum Entanglement & 
Quantum Information Processing

cluster, leaving a smaller cluster state. Such operations can be used
tomodify the structure of the cluster and thus the imprinted circuit.
The measurements that perform the actual quantum information
processing are made in the basis BjðaÞ ¼ jþalj; j2alj

! "
, where

j^alj ¼ j0lj ^ eiaj1lj
# $

=
ffiffiffi
2

p
(a is a real number). The choice of

measurement basis determines the single-qubit rotation,
RzðaÞ ¼ expð2iajz=2Þ, followed by a Hadamard operation,
H ¼ jx þ jzð Þ=

ffiffiffi
2

p
, on encoded qubits in the cluster (jx;jy;jz

being the usual Pauli matrices). Combinations of rotations
about the z axis and Hadamard operations can implement
RxðaÞ ¼ expð2iajx=2Þ rotations through the matrix identity
RxðaÞ ¼HRzðaÞH. General quantum logic operations can be
carried out by the correct choice of BjðaÞ on a sufficiently large
cluster state. We define the outcome s j of a measurement on the

physical qubit j as 0 if the measurement outcome is jþalj, and as 1
if the outcome is j2alj. In those cases where the 0 outcome is
found, the computation proceeds as desired. However, in those
cases where the 1 outcome is found, a well-defined Pauli error is
introduced. Feedforward, such that the output controls future
measurement, compensates for these known errors.

For the implementations of single- and two-qubit quantum logic,
we post-select only those cases where the 0 outcome is found. In
these cases the computation proceeds error-free and requires no
feedforward. In the final section, where we report the implemen-
tation of Grover’s search algorithm, the feedforward determines
the final, classical, measurement. There we measured all possible
combinations of the measurement results individually, and
applied the feedforward relation in such a way that the earlier

Figure 1 Few-qubit cluster states and the quantum circuits they implement. For each

three- and four-qubit cluster, its quantum state and the computation carried out in the

one-way quantum computer model are shown. For the case of the linear clusters jFlin3l
(a) and jFlin4l (b), consecutive measurements on the qubits 1, 2 and 3 will perform a

computation as a series of one-qubit rotation gates. The encoded input state undergoes

single-qubit rotations with controllable angles, and the output is left on physical qubit 4. In

contrast, the horseshoe clusters jF,4l (c) and jF.4l (d) and the box cluster jFA4l (e)
form more complex circuits containing both single-qubit and two-qubit gates, both of

which are necessary to form a universal set of logic gates for quantum computation. In

particular, measurements on two of the physical qubits (2 and 3 in the case of jF,4l, and
1 and 4 in the case of jF.4l or jFA4l) will perform the circuit defined by the particular

cluster and transfer the logical output onto the remaining two physical qubits (1 and 4 in

the case of jF,4l, and 2 and 3 in the case of jF.4l or jFA4l). When these cluster states
are not a part of a larger cluster, the encoded input states are always jWinl¼ jþ l1E for
the one-qubit gates and jWinl¼ jþ l1Ejþ l2E for the two-qubit gates. f, General input
states can be prepared and processed through these operations when these clusters are

subunits of larger clusters.

articles

NATURE | VOL 434 | 10 MARCH 2005 | www.nature.com/nature170
©!!""#!Nature Publishing Group!

!

R. Raussendorf & H. J. Briegel, A one-
way quantum computer, Phys. Rev. Lett. 
86, 5188−5191 (2001)

P. Walther et al., Experimental one-way quantum 
comuting, Nature 434, 169−176(2005)
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Kai Chen, Che-Ming Li, Qiang Zhang, Yu-Ao Chen, Alexander 
Goebel, Shuai Chen, Alois Mair, and Jian-Wei Pan, Experimental 
Realization of One-Way Quantum Computing with Two-Photon 
Four-Qubit Cluster States. Phys. Rev. Lett. 99, 120503 (2007).

visibility of 0:842! 0:008, 0:943! 0:006, 0:968! 0:004,
and 0:949! 0:006 for coincidences among detectors D1-
D2, D1-D4, D3-D2, and D3-D4, respectively.

A cluster state can be represented by an array of nodes
where each node is initially in the state of j"i # $j0i"
j1i%=

!!!
2

p
. Every connected line between nodes experiences

a controlled-phase (CPHASE) gate acting as jjijki !
$&1%jkjjijki, j; k 2 f0; 1g [1]. For a given cluster state,
consecutive single-qubit measurements in basis Bk$!% #
fj!"ik; j!&ikg will define a quantum computing in addition
to feed forward of measurement outputs, where j!!ik #
$j0i! ei!j1i%k=

!!!
2

p
(! 2 R). A measurement output of

j!"ik means ‘‘0’’ while j!&ik signifies ‘‘1.’’ This
measurement basis determines a rotation Rz$!% #
exp$&i!Z=2%, followed by a Hadamard operation H #
$X" Z%=

!!!
2

p
of encoded qubits. The state jC4i can be

represented by a box-type graph shown in Fig. 2(a), up to
a local unitary transformation.

Grover’s algorithm.—For an unsorted database with N
entries, Grover’s search algorithm gives a quadratic speed
up for '

!!!!
N

p
consultations on average [22]. Striking linear

optics implementations have been achieved in [23,24],
although it is questionable whether the algorithm is truly
‘‘quantum’’ due to a demonstration [24] based on interfer-
ence of classical waves. One-way realizations have been
carried out [7,8] recently. In the case of four entries j00i,
j01i, j10i, j11i, a single quantum search will find the
marked element An execution goes as follows: an oracle
encodes a desired entry by changing its sign through a
black box with initial state j""i. After an inversion-
about-the-mean operation, the labeled element will be
found with certainty by readout. It is shown in [7] that
this can be exactly finished with the box cluster state in
Fig. 2(a). For demonstration, we experimentally tag the
element j00i on qubits 2,3 and make the readout on qu-

bits 1,4 all along basis B$"%. Because of the fact that the
state Eq. (2) distinguishes the box cluster from an H trans-
formation on every qubit and a swap between qubits 2 and
3, this amounts to measuring along the V=H basis after
apparatus (iii) in Fig. 1(b). Two polarizing beam splitters
(PBS) here are for interfering, to ensure the desired cluster
state. In the meantime they are acting as polarization
measurement devices, which is equivalent to using
apparatus (i) in this case. The outputs of the algorithm
are 2 bits fs3 ( s4; s1 ( s2g in lab basis by feed forwarding
outcomes of qubits 2,3, where si are measurement out-
comes on qubits i. The experimental results are sketched in
Fig. 2(b).

Quantum gates.—Nontrivial two-qubit quantum gates
such as the CPHASE gate are at the heart of universal
quantum computation that can be realized by cluster states
conveniently. Depending on the initial cluster state and
measurement basis, states with different degrees of entan-
glement can be generated. The horseshoe or box cluster
shown in Figs. 3(a) and 3(c) can realize such important
gates. For the case of horseshoe cluster in Fig. 3(a), de-
pending on the outcomes when measuring along basis
B2$!% and B3$#%, the output state on qubits 1,4 would be
j!outi#$Xs2)Xs3%$H)H%!Rz$&!%)Rz$&#%"CPhasej!ini,
where j!ini # j""i. The state j!outi is always a maxi-

FIG. 2 (color online). Demonstration of Grover’s algorithm.
(a) Equivalent quantum circuit of Grover’s algorithm using box
cluster state. The ‘‘oracle’’ encodes the element ‘‘00’’ by mea-
suring along basis B2;3$"%, while the inverse and readout sections
will find this entry with certainty by a single query. (b) A
successful identification probability of $96:1! 0:2%% is
achieved deterministically with feed forward, while it is $24:9!
0:4%% without feed forward. This is in excellent agreement with
theoretical expectations. The trick is that the black box provides
only outcomes but not basis information for feed forward. Thus
the oracle encoding is hidden before feed forward on readout.

FIG. 3 (color online). Two-qubit quantum gate realizations.
(a) CPHASE gate realization with the horseshoe cluster.
(b) Experimental measured fidelities of output states to the ideal
Bell states (unnormalized) in the lab basis. They are 0:954!
0:003, 0:940! 0:004, 0:936! 0:005, 0:910! 0:005 for out-
comes 00, 01, 10, 11 on qubits 2,3, respectively. (c) Quantum
gate implementation that does not generate entanglement with
the box cluster. (d) Measured fidelities of output states to the
ideal product states in the lab basis. They are 0:935! 0:005,
0:962! 0:004, 0:969! 0:003, 0:975! 0:003 for outcomes 00,
01, 10, 11 on qubits 2,3, respectively.

PRL 99, 120503 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
21 SEPTEMBER 2007

120503-3

 

!"jHiAjHiB # jViAjViB$jLiAjLiB # ei!"jHiAjHiB % jViAjViB$jRiAjRiB&
2

: (1)

By properly adjusting the distance between the concave mirror and the crystal such that ! ' 0, the generated state will be
exactly the desired cluster state

 jC4i '
"j0000i1234 # j0011i1234 # j1100i1234 % j1111i1234$

2
; (2)

if we identify the polarization and spatial modes of photon A to be qubits 2,3, respectively, and photon B’s polarization and
spatial modes to be qubits 1,4 and encode logical qubits as jH"V$iB $ j0"1$i1, jH"V$iA $ j0"1$i2, jL"R$iA $ j0"1$i3,
jL"R$iB $ j0"1$i4. We observe a cluster state generation rate about 1:2( 104 per second for 200 mW UV pump, which is
4 orders of magnitude brighter than the usual 4-photon cluster state production [6–8] where only a rate of )1 is achieved
per second.

To evaluate the quality of the state, we apply an optimal entanglement witness [21]. The witness is of the form

 W ' !4I*4 % "XXIZ# XXZI # IIZZ# IZXX# ZIXX# ZZII$&
2

; (3)

where I is a 2-dimensional identity matrix while Z '
"j0ih0j% j1ih1j$, X ' "j0ih1j# j1ih0j$ are Pauli matrices.
A negative value for the witness implies 4-partite entan-

glement for a state close to jC4i and will be optimally as
%1 for a perfect cluster state. Two experimental settings of
XXZZ and ZZXX are needed. XXZZ can be attained by
measuring in the #=% basis for the polarization in each
output arm after apparatus (i) in Fig. 1(b), while ZZXX can
be realized by measuring in the H=V basis after
apparatus (ii). This is because the beam splitter (BS) acts
exactly as a Hadamard transformation for the path
modes to change Z basis to X basis for measurement;
namely, jLiA;B ! "jR0iA;B # jL0iA;B$=

!!!
2

p
, jRiA;B !

"jR0iA;B % jL0iA;B$=
!!!
2

p
. All of the observables for evaluat-

ing the witness are listed in Table I. Substituting their
experimental values into Eq. (3) yields hW iexp '
%0:766+ 0:004, which clearly proves the genuine four-
partite entanglement by about 200 standard deviations. As
shown in [21], one can obtain a lower bound for fidelity of
experimental prepared state to jC4i

 F , 1
2 % 1

2hW iexp ' 0:883+ 0:002: (4)

This proves to be a better source than the ones in [6–8]
where fidelities are about 0.63 [7,8] and 0.74 [6], respec-
tively. We attribute impurity of our state to imperfect over-
lapping on BS, deviations of BS from 50%, as well as
imperfections in the polarization and path modes analysis
devices. To get a qualitative depiction for these imperfec-
tions, we scan the concave mirror with nanometer displace-
ments and observe interference after BS1;2. By measuring
along H=V basis in each output arm, we have obtained

TABLE I. Experimental values of all the observable on the
state jC4i for the entanglement witness W measurement. Each
experimental value corresponds to measure in an average time of
1 sec and considers the Poissonian counting statistics of the raw
detection events for the experimental errors.

Observable Value Observable Value

XXIZ 0:9070+ 0:0036 IZXX 0:9071+ 0:0037
XXZI 0:9076+ 0:0035 ZIXX 0:8911+ 0:0040
IIZZ 0:9812+ 0:0016 ZZII 0:9372+ 0:0030

FIG. 1 (color online). Schematic of experimental setup. (a) By
pumping a two-crystal structured BBO in a double pass con-
figuration, one polarization entangled photon pair is generated
either in the forward direction or in the backward direction. The
UV pulsed laser (5 ps) has a central wavelength of 355 nm with a
repetition rate of 80 MHz, and an average power of 200 mW.
Two quarter wave plates (QWPs) are tilted along their optic axis
to vary relative phases between polarization components to
attain two desired possibilities for entangled pair creation.
Concave mirror and prism are mounted on translation stages to
optimize interference on two beam splitters (BS1;2) or polarizing
beam splitters (PBS1;2) for achieving the target cluster state. Half
wave plates (HWPs) together with PBS and eight single-photon
detectors (D1–D8) are used for polarization analysis of the
output state. IFs are 3-nm bandpass filters with central wave-
length 710 nm. (b) In the place where BS1;2 or PBS1;2 are
located, three apparatuses are for measuring all necessary ob-
servables. Setup (i) is for Z measurement while setup (ii) is used
for X measurement for spatial modes. If an " phase shifter is
inserted at one of the input modes in (ii) an arbitrary measure-
ment along basis B""$ can be achieved. Setup (iii) can be for Z
measurement of spatial mode and, simultaneously, for Z mea-
surement of polarization.

PRL 99, 120503 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
21 SEPTEMBER 2007

120503-2
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• Orbital Angular Momentum (OAM)-entangled photon 
pairs

• The OAM is associated with the transverse phase front of light beam

• Such light beams are conveniently described in terms of Laguerre-
Gaussian modes

High-order Entanglement
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The phase fronts of light beams in OAM eigenstates rotate 
OAM = -1 hbar OAM = 0 hbar OAM = +1 hbar

http://www.physics.gla.ac.uk/Optics/

Encoding Qutrit (3-level Quantum System) in OAM of light:
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• Orbital Angular Momentum (OAM)-entangled photon 
pairs

High-order Entanglement
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306 nature physics | VOL 3 | MAY 2007 | www.nature.com/naturephysics

Current technology o! ers several di! erent approaches for 
generating and controlling OAM states. Appropriately designed spiral 
phase plates can be used to produce the required phase distribution 
for generating or detecting a vortex beam. Computer-generated 
holograms are particularly important22,23 in the context of both 
classical and quantum optics. A suitable combination of astigmatic 
optical elements can also be used to generate light with OAM24. 
Properly designed quantum OAM superpositions can be generated 
by using light vortex pancakes made of a certain distribution of single-
charge screw dislocations nested into a gaussian host21. In this area, 
spatial light modulators are becoming an increasingly useful tool, 
as they enable complex spatial phase and amplitude light patterns 
to be generated and modi" ed in a prompt and e#  cient manner. 
One technique consists of generating light " elds with arbitrary 
superpositions of OAM states through the coherent transfer of the 
mechanical OAM of atoms to the light " eld25. In this scheme, the 
mechanical OAM of atoms is controlled with a spatially varying 
external magnetic " eld that determines the quantum phase of the 
atomic spin.

HIGH-DIMENSIONAL ENTANGLEMENT

Of particular current interest is the generation of paired photons 
entangled in OAM. Entanglement is an inherently quantum 
mechanical phenomenon with no analogue in classical physics. 
Spontaneous parametric down-conversion (SPDC), the process 
by which two low-frequency photons (signal and idler) are 
generated from a single high-frequency photon that belongs to 
an intense pump laser, when it interacts with a nonlinear crystal, 

is a reliable source for generating entangled pairs of photons. 
Such photon pairs not only can be polarization entangled, but 
can also exhibit OAM entanglement26. In a breakthrough 2001 
experiment that " rst measured OAM at the single photon level, 
Mair and co-workers demonstrated the existence of quantum 
OAM correlations between pairs of photons generated by SPDC27. 
In this experiment, the key results of which are shown in Fig. 2, 
a combination of computer-generated phase holograms, single-
mode " bres, and single-photon-counting module detectors was 
used to detect speci" c OAM quantum states. Appropriately 
designed phase holograms can perform nearly arbitrary 
transformations between di! erent sets of OAM superposition 
states28–30. A single-mode " bre projects the incoming photon into 
the fundamental mode of the " bre, a nearly gaussian mode with 
m = p = 0. A$ er this experiment, alternative schemes to detect 
the OAM of single photons have been proposed, like the use of 
concatenated interferometers where the introduction of OAM-
dependent phase-shi$ s discriminate desired OAM modes31.

Determining the OAM spectra of downconverted photons is 
crucial in this endeavour, as all quantum information applications 
are based on the availability and use of speci" c quantum states. To 
this end, there are two di! erent ways to go about describing the 
processes that generate these spectra. At its most fundamental, this 
involves recognizing that the conservation of angular momentum 
means that the contributions of not only the electromagnetic " eld, 
but of the electronic spins and orbitals, and even the atomic lattice, 
of the nonlinear optical crystal in which SPDC takes place must be 
simultaneously considered32. % is requires that the whole geometry 
of the down-conversion process be taken into account in order to 
include azimuthal variations of the nonlinear coe#  cient26 and the 
phase-matching conditions33.

Conversely, however, all relevant experiments reported so far 
have involved collecting (and using) only a small angular section of 
the full downconversion light cone that is produced in this process. 

Figure 1 Properties of light with orbital angular momentum. a,b, The typical 
transverse intensity pattern of a light beam with orbital angular momentum. a is a 
theoretical plot, and b corresponds to the experimentally obtained image of a light 
beam with OAM produced with a computer-generated hologram. The light beam 
exhibits a dark spot in the centre, and a ring-like intensity profi le. c, The phase of 
the beam twists around the central dark spot, producing a staircase-like phase 
wavefront. d, Such a spiralling phase means that the local momentum of the beam 
mimics the velocity pattern of a tornado or vortex fl uid, a similarity that causes these 
singular spots to be named optical vortices. To visualize such a spiral phase, we use 
the interference of the light beam with OAM and with a vorticity-free plane wave 
propagating at a slightly different angle. e, The typical interference pattern obtained 
for m = 1, as revealed by the characteristic fork-like structure.
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Figure 2 Observation of orbital angular momentum correlations with single 
photons. a, Illustration of the experimental confi guration used to detect the quantum 
correlations in OAM of paired photons generated in an SPDC. b, Experimental data 
demonstrating that the OAM of the pump beam (mp) is transferred to the sum of 
OAM of the generated photons (m1 and m2). In this particular case, the state of the 
down-converted photons is a coherent quantum superposition of all the different 
possibilities for the OAM state of the photons fulfi lling the condition mp = m1 + m2. 
Reprinted from ref. 27.
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The quantum correlation between Laguerre-Gaussian modes can be 
created in a down-conversion experiment:

a, Experimental configuration used to 
detect the quantum correlations in 
OAM of paired photons generated in 
an SPDC

b, Experimental data demonstrating 
that the OAM of the pump beam (mp) 
is transferred to the sum of OAM of 
the generated photons (m1 and m2). 
In this particular case, the state of 
the down-converted photons is a 
coherent quantum superposition of 
all the different possibilities for the 
OAM state of the photons fulfilling 
the condition mp = m1 + m2. 
Ex: mp =0

Mair, A., Vaziri, A.,Weihs, G. & Zeilinger, A. Entanglement of the orbital angular 
momentum states of photons. Nature 412, 313–316 (2001).
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Detecting Genuine High-order 
Entanglement

Local Measurement Settings

Correlation Criterion
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P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, "New 
high-intensity source of polarization-entangled photon pairs", Phys. Rev. Lett. 75, 4337 (1995).

• HWP + QWP: 
Single Qubit Rotation

• PBS or Polarizer: 
Qubit State Selection

• Single Photon Detector: 
Qubit Detection

Local Measurement Settings (for qubits)

polarization 
analyzer
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Phys. Rev. Lett. 75, 4337 (1995).
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Shih, "New high-intensity source of polarization-entangled photon pairs", 
Phys. Rev. Lett. 75, 4337 (1995).
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S>2: Quantum Correlation
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Correlation Criterion (for qubits)

ρΦ

ŴΦ =
1

2
I − |Φ��Φ|

Correlation Criterion:
is a Entangled state close to

Tr[ŴΦρΦ] < 0 |Φ� = 1√
2
(|HH�+ |V V �)

|Φ� = 1√
2
(|HH�+ |V V �)

ρΦ
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Correlation Criterion (for qubits)

Correlation Criterion:

Tr[ŴΦρΦ] < 0

Local Operator Decomposition (LOD) i.e. Measuring State Fidelity

is a Entangled state close to
|Φ� = 1√

2
(|HH�+ |V V �)

ρΦ

ŴΦ =
1

2
I − |Φ��Φ| |Φ��Φ| = 1

4
(I + σz ⊗ σz + σx ⊗ σx − σy ⊗ σy)

σz = |H��H|− |V ��V |
σx = |+��+|− |−��−|
σy = |R��R|− |L��L|
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Correlation Criterion (for qubits)

Correlation Criterion:

Tr[ŴΦρΦ] < 0

Quantum State Tomography (QST)

is a Entangled state close to
|Φ� = 1√

2
(|HH�+ |V V �)

ρΦ

ρΦ =
ρ00 ρ01 ρ02 ρ03
ρ10 ρ11 ρ12 ρ13
ρ20 ρ21 ρ22 ρ23
ρ30 ρ31 ρ32 ρ33
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Correlation Criterion (for qubits)

Correlation Criterion:

Tr[ŴΦρΦ] < 0

# of Local Measurement Settings

Quantum State Tomography (QST)

Local Operator Decomposition (LOD) i.e. Measuring State Fidelity

QST LOD

is a Entangled state close to
|Φ� = 1√

2
(|HH�+ |V V �)

ρΦ

315
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Detecting Genuine High-order 
Entanglement

Local Measurement Settings

Correlation Criterion
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• Hologram: 
Single Qutrit Rotation

• Single-mode Fiber: 
Qutriit State Selection

• Single Photon Detector: 
Qutrit Detection

Local Measurement Settings (for qutrits)
PROGRESS ARTICLE

306 nature physics | VOL 3 | MAY 2007 | www.nature.com/naturephysics

Current technology o! ers several di! erent approaches for 
generating and controlling OAM states. Appropriately designed spiral 
phase plates can be used to produce the required phase distribution 
for generating or detecting a vortex beam. Computer-generated 
holograms are particularly important22,23 in the context of both 
classical and quantum optics. A suitable combination of astigmatic 
optical elements can also be used to generate light with OAM24. 
Properly designed quantum OAM superpositions can be generated 
by using light vortex pancakes made of a certain distribution of single-
charge screw dislocations nested into a gaussian host21. In this area, 
spatial light modulators are becoming an increasingly useful tool, 
as they enable complex spatial phase and amplitude light patterns 
to be generated and modi" ed in a prompt and e#  cient manner. 
One technique consists of generating light " elds with arbitrary 
superpositions of OAM states through the coherent transfer of the 
mechanical OAM of atoms to the light " eld25. In this scheme, the 
mechanical OAM of atoms is controlled with a spatially varying 
external magnetic " eld that determines the quantum phase of the 
atomic spin.

HIGH-DIMENSIONAL ENTANGLEMENT

Of particular current interest is the generation of paired photons 
entangled in OAM. Entanglement is an inherently quantum 
mechanical phenomenon with no analogue in classical physics. 
Spontaneous parametric down-conversion (SPDC), the process 
by which two low-frequency photons (signal and idler) are 
generated from a single high-frequency photon that belongs to 
an intense pump laser, when it interacts with a nonlinear crystal, 

is a reliable source for generating entangled pairs of photons. 
Such photon pairs not only can be polarization entangled, but 
can also exhibit OAM entanglement26. In a breakthrough 2001 
experiment that " rst measured OAM at the single photon level, 
Mair and co-workers demonstrated the existence of quantum 
OAM correlations between pairs of photons generated by SPDC27. 
In this experiment, the key results of which are shown in Fig. 2, 
a combination of computer-generated phase holograms, single-
mode " bres, and single-photon-counting module detectors was 
used to detect speci" c OAM quantum states. Appropriately 
designed phase holograms can perform nearly arbitrary 
transformations between di! erent sets of OAM superposition 
states28–30. A single-mode " bre projects the incoming photon into 
the fundamental mode of the " bre, a nearly gaussian mode with 
m = p = 0. A$ er this experiment, alternative schemes to detect 
the OAM of single photons have been proposed, like the use of 
concatenated interferometers where the introduction of OAM-
dependent phase-shi$ s discriminate desired OAM modes31.

Determining the OAM spectra of downconverted photons is 
crucial in this endeavour, as all quantum information applications 
are based on the availability and use of speci" c quantum states. To 
this end, there are two di! erent ways to go about describing the 
processes that generate these spectra. At its most fundamental, this 
involves recognizing that the conservation of angular momentum 
means that the contributions of not only the electromagnetic " eld, 
but of the electronic spins and orbitals, and even the atomic lattice, 
of the nonlinear optical crystal in which SPDC takes place must be 
simultaneously considered32. % is requires that the whole geometry 
of the down-conversion process be taken into account in order to 
include azimuthal variations of the nonlinear coe#  cient26 and the 
phase-matching conditions33.

Conversely, however, all relevant experiments reported so far 
have involved collecting (and using) only a small angular section of 
the full downconversion light cone that is produced in this process. 

Figure 1 Properties of light with orbital angular momentum. a,b, The typical 
transverse intensity pattern of a light beam with orbital angular momentum. a is a 
theoretical plot, and b corresponds to the experimentally obtained image of a light 
beam with OAM produced with a computer-generated hologram. The light beam 
exhibits a dark spot in the centre, and a ring-like intensity profi le. c, The phase of 
the beam twists around the central dark spot, producing a staircase-like phase 
wavefront. d, Such a spiralling phase means that the local momentum of the beam 
mimics the velocity pattern of a tornado or vortex fl uid, a similarity that causes these 
singular spots to be named optical vortices. To visualize such a spiral phase, we use 
the interference of the light beam with OAM and with a vorticity-free plane wave 
propagating at a slightly different angle. e, The typical interference pattern obtained 
for m = 1, as revealed by the characteristic fork-like structure.
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Figure 2 Observation of orbital angular momentum correlations with single 
photons. a, Illustration of the experimental confi guration used to detect the quantum 
correlations in OAM of paired photons generated in an SPDC. b, Experimental data 
demonstrating that the OAM of the pump beam (mp) is transferred to the sum of 
OAM of the generated photons (m1 and m2). In this particular case, the state of the 
down-converted photons is a coherent quantum superposition of all the different 
possibilities for the OAM state of the photons fulfi lling the condition mp = m1 + m2. 
Reprinted from ref. 27.
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angular momentum states of photons. Nature 412, 313–316 (2001).
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Correlation Criterion

Bell kernel

S>2: Quantum Correlation

(4 Local Measurement Settings)

(for qutrits)

which means an overall detection efficiency of 3%. This
result is also in reasonable agreement with the overall
collection efficiency if taking into account Fresnel losses
at all optical surfaces ( ! 95% transmission), imperfect
coupling into optical fibers ( ! 70% for a Gaussian
beam), nonideal interference filters ( ! 75% center trans-
mission), the diffraction efficiency of the holograms
( ! 80%), and the efficiency of the detectors ( ! 30%).

In order to demonstrate that the correlation observed
cannot be explained by local realistic models we made use
of a generalized type of Clauser-Horne-Shimony-Holt
(CHSH) Bell inequalities [29] introduced by Collins et
al. In their work [17] they give an explicit term I3 for the
special case of a three-dimensional entangled system
with I3 " 2 for local realistic models. However, in anal-
ogy to the usual CHSH Bell’s inequality we will denote I3
as S3 which is given by

S3 #$ P%A1 # B1& $ P%B1 # A2 $ 1& $ P%A2 # B2&
$ P%B2 # A1& ' P%A1 # B1 ' 1& ' P%B1 # A2&
' P%A2 # B2 ' 1& ' P%B2 # A1 ' 1&; (1)

where

P%Aa # Bb $ k& #
X

2

j#0

P%Aa # j; Bb # j$ kmod3& (2)

denote the probabilities of the joint measurements on both
sides. A1; A2 and B1; B2 denote two possible settings of the
local analyzers on each side. Measurements in a three-
dimensional entangled system have three possible out-
comes denoted by 0, 1, or 2. Each of the settings A1; A2
and B1; B2 corresponds experimentally to a specific con-
figuration of the holograms of a holographic module. For
certain choices of the local analyzers, the conflict
between the local realistic models and quantum mechan-
ics becomes maximal. For maximally entangled states
the quantum prediction yields S3%max& # 4=6

!!!

3
p

'
9 ’ 2873.

As mentioned above, many different settings for the
local analyzers were realized in our experiment by se-
quential scanning of the two holograms of each module.
Their actual positions represent a possible setting of the
local analyzer Ai or Bj, respectively. After performing
the measurement, the probability P%Ai; Bj& for a joint
measurement between the outcome m on the one side
and the outcome n on the other side, with m; n # 0; 1; 2
was calculated. This was done for a given set of Ai; Bj by
dividing the number of coincidences Cm;n, between the
detector with the outcome m and the detector with
the outcome n, by the total number of coincidences.
The measurement time was 2 s for each setting of
the local analyzers. For about 21:5( 106 quadruples
(A1; A2;B1; B2) the expression S3 was calculated. The
sorted distribution of the values violating the three-
dimensional CHSH Bell inequality is shown in Fig. 2.
For about 35 000 quadruples S3 was greater than 2 with

the maximum of S3%maxexp& # 2:9045) 0:0517 which
means a violation by more than 18 standard deviations.
The errors were calculated assuming Poisson statistics. In
Fig. 2 the envelope of the bars can be regarded as a
measure for the frequency distribution of the values con-
tradicting local realism.

It is known [30] that the threshold for maximally
entangled states not violating a Bell’s inequality drops
when one goes to higher dimensions. In our experiment
by measuring the coincidence rates for the zero setting of
the holographic modules, we could calculate the ampli-
tudes of the three-dimensional orbital angular momen-
tum entangled state. Denoting a state represented by the
coincidence measurement of a photon at the output m and
a photon at the output n by jm; ni we found the state
yielding to the above violation was given by

 # 0:65j0; 0i$ 0:60j1; 1i$ 0:47j2; 2i: (3)

Although the state (3) is not a maximal entangled state,
the greatest violation of the Bell’s inequality achieved
with this state experimentally S3%maxexp& is very close to
the maximum possible value S3%max&.

As theoretically shown [30], one of the important
aspects of higher dimensional entangled states is that
they are more resistant to noise. This fact makes long-
distance quantum communication, which usually suffers
from the noisy channels, more feasible when using qunits
instead of qubits.

One major application for higher dimensional en-
tangled states is quantum cryptography with higher al-
phabets [10,11]. In contrast to the usual two-dimensional
cryptography protocols [31] where the message is encoded
in a binary way via the two eigenstates of the system, in a
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FIG. 2. Two-photon, two-qutrit violations of a Bell-type in-
equality. The graph shows the frequency with which a violation
of the generalized CHSH Bell inequality was observed. The
upper limit for the correlation parameter for local realistic
theories is 2.0. The inset shows the violations close to the
theoretical quantum upper limit. The numbers should be com-
pared with the total number of 164 measured correlations
altogether observed.
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Correlation Criterion

Bell kernel

S>2: Quantum Correlation

(4 Local Measurement Settings)

(for qutrits)

which means an overall detection efficiency of 3%. This
result is also in reasonable agreement with the overall
collection efficiency if taking into account Fresnel losses
at all optical surfaces ( ! 95% transmission), imperfect
coupling into optical fibers ( ! 70% for a Gaussian
beam), nonideal interference filters ( ! 75% center trans-
mission), the diffraction efficiency of the holograms
( ! 80%), and the efficiency of the detectors ( ! 30%).

In order to demonstrate that the correlation observed
cannot be explained by local realistic models we made use
of a generalized type of Clauser-Horne-Shimony-Holt
(CHSH) Bell inequalities [29] introduced by Collins et
al. In their work [17] they give an explicit term I3 for the
special case of a three-dimensional entangled system
with I3 " 2 for local realistic models. However, in anal-
ogy to the usual CHSH Bell’s inequality we will denote I3
as S3 which is given by

S3 #$ P%A1 # B1& $ P%B1 # A2 $ 1& $ P%A2 # B2&
$ P%B2 # A1& ' P%A1 # B1 ' 1& ' P%B1 # A2&
' P%A2 # B2 ' 1& ' P%B2 # A1 ' 1&; (1)

where

P%Aa # Bb $ k& #
X

2

j#0

P%Aa # j; Bb # j$ kmod3& (2)

denote the probabilities of the joint measurements on both
sides. A1; A2 and B1; B2 denote two possible settings of the
local analyzers on each side. Measurements in a three-
dimensional entangled system have three possible out-
comes denoted by 0, 1, or 2. Each of the settings A1; A2
and B1; B2 corresponds experimentally to a specific con-
figuration of the holograms of a holographic module. For
certain choices of the local analyzers, the conflict
between the local realistic models and quantum mechan-
ics becomes maximal. For maximally entangled states
the quantum prediction yields S3%max& # 4=6

!!!

3
p

'
9 ’ 2873.

As mentioned above, many different settings for the
local analyzers were realized in our experiment by se-
quential scanning of the two holograms of each module.
Their actual positions represent a possible setting of the
local analyzer Ai or Bj, respectively. After performing
the measurement, the probability P%Ai; Bj& for a joint
measurement between the outcome m on the one side
and the outcome n on the other side, with m; n # 0; 1; 2
was calculated. This was done for a given set of Ai; Bj by
dividing the number of coincidences Cm;n, between the
detector with the outcome m and the detector with
the outcome n, by the total number of coincidences.
The measurement time was 2 s for each setting of
the local analyzers. For about 21:5( 106 quadruples
(A1; A2;B1; B2) the expression S3 was calculated. The
sorted distribution of the values violating the three-
dimensional CHSH Bell inequality is shown in Fig. 2.
For about 35 000 quadruples S3 was greater than 2 with

the maximum of S3%maxexp& # 2:9045) 0:0517 which
means a violation by more than 18 standard deviations.
The errors were calculated assuming Poisson statistics. In
Fig. 2 the envelope of the bars can be regarded as a
measure for the frequency distribution of the values con-
tradicting local realism.

It is known [30] that the threshold for maximally
entangled states not violating a Bell’s inequality drops
when one goes to higher dimensions. In our experiment
by measuring the coincidence rates for the zero setting of
the holographic modules, we could calculate the ampli-
tudes of the three-dimensional orbital angular momen-
tum entangled state. Denoting a state represented by the
coincidence measurement of a photon at the output m and
a photon at the output n by jm; ni we found the state
yielding to the above violation was given by

 # 0:65j0; 0i$ 0:60j1; 1i$ 0:47j2; 2i: (3)

Although the state (3) is not a maximal entangled state,
the greatest violation of the Bell’s inequality achieved
with this state experimentally S3%maxexp& is very close to
the maximum possible value S3%max&.

As theoretically shown [30], one of the important
aspects of higher dimensional entangled states is that
they are more resistant to noise. This fact makes long-
distance quantum communication, which usually suffers
from the noisy channels, more feasible when using qunits
instead of qubits.

One major application for higher dimensional en-
tangled states is quantum cryptography with higher al-
phabets [10,11]. In contrast to the usual two-dimensional
cryptography protocols [31] where the message is encoded
in a binary way via the two eigenstates of the system, in a

2,0 2,2 2,4 2,6 2,8

14000

12000

10000

8000

6000

4000

2000

0

Fr
eq

ue
nc

y

2,70 2,75 2,80 2,85 2,90 2,95
0

4

8

12

16

20

Fr
eq

ue
nc

y

FIG. 2. Two-photon, two-qutrit violations of a Bell-type in-
equality. The graph shows the frequency with which a violation
of the generalized CHSH Bell inequality was observed. The
upper limit for the correlation parameter for local realistic
theories is 2.0. The inset shows the violations close to the
theoretical quantum upper limit. The numbers should be com-
pared with the total number of 164 measured correlations
altogether observed.
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which means an overall detection efficiency of 3%. This
result is also in reasonable agreement with the overall
collection efficiency if taking into account Fresnel losses
at all optical surfaces ( ! 95% transmission), imperfect
coupling into optical fibers ( ! 70% for a Gaussian
beam), nonideal interference filters ( ! 75% center trans-
mission), the diffraction efficiency of the holograms
( ! 80%), and the efficiency of the detectors ( ! 30%).

In order to demonstrate that the correlation observed
cannot be explained by local realistic models we made use
of a generalized type of Clauser-Horne-Shimony-Holt
(CHSH) Bell inequalities [29] introduced by Collins et
al. In their work [17] they give an explicit term I3 for the
special case of a three-dimensional entangled system
with I3 " 2 for local realistic models. However, in anal-
ogy to the usual CHSH Bell’s inequality we will denote I3
as S3 which is given by

S3 #$ P%A1 # B1& $ P%B1 # A2 $ 1& $ P%A2 # B2&
$ P%B2 # A1& ' P%A1 # B1 ' 1& ' P%B1 # A2&
' P%A2 # B2 ' 1& ' P%B2 # A1 ' 1&; (1)

where

P%Aa # Bb $ k& #
X

2

j#0

P%Aa # j; Bb # j$ kmod3& (2)

denote the probabilities of the joint measurements on both
sides. A1; A2 and B1; B2 denote two possible settings of the
local analyzers on each side. Measurements in a three-
dimensional entangled system have three possible out-
comes denoted by 0, 1, or 2. Each of the settings A1; A2
and B1; B2 corresponds experimentally to a specific con-
figuration of the holograms of a holographic module. For
certain choices of the local analyzers, the conflict
between the local realistic models and quantum mechan-
ics becomes maximal. For maximally entangled states
the quantum prediction yields S3%max& # 4=6

!!!

3
p

'
9 ’ 2873.

As mentioned above, many different settings for the
local analyzers were realized in our experiment by se-
quential scanning of the two holograms of each module.
Their actual positions represent a possible setting of the
local analyzer Ai or Bj, respectively. After performing
the measurement, the probability P%Ai; Bj& for a joint
measurement between the outcome m on the one side
and the outcome n on the other side, with m; n # 0; 1; 2
was calculated. This was done for a given set of Ai; Bj by
dividing the number of coincidences Cm;n, between the
detector with the outcome m and the detector with
the outcome n, by the total number of coincidences.
The measurement time was 2 s for each setting of
the local analyzers. For about 21:5( 106 quadruples
(A1; A2;B1; B2) the expression S3 was calculated. The
sorted distribution of the values violating the three-
dimensional CHSH Bell inequality is shown in Fig. 2.
For about 35 000 quadruples S3 was greater than 2 with

the maximum of S3%maxexp& # 2:9045) 0:0517 which
means a violation by more than 18 standard deviations.
The errors were calculated assuming Poisson statistics. In
Fig. 2 the envelope of the bars can be regarded as a
measure for the frequency distribution of the values con-
tradicting local realism.

It is known [30] that the threshold for maximally
entangled states not violating a Bell’s inequality drops
when one goes to higher dimensions. In our experiment
by measuring the coincidence rates for the zero setting of
the holographic modules, we could calculate the ampli-
tudes of the three-dimensional orbital angular momen-
tum entangled state. Denoting a state represented by the
coincidence measurement of a photon at the output m and
a photon at the output n by jm; ni we found the state
yielding to the above violation was given by

 # 0:65j0; 0i$ 0:60j1; 1i$ 0:47j2; 2i: (3)

Although the state (3) is not a maximal entangled state,
the greatest violation of the Bell’s inequality achieved
with this state experimentally S3%maxexp& is very close to
the maximum possible value S3%max&.

As theoretically shown [30], one of the important
aspects of higher dimensional entangled states is that
they are more resistant to noise. This fact makes long-
distance quantum communication, which usually suffers
from the noisy channels, more feasible when using qunits
instead of qubits.

One major application for higher dimensional en-
tangled states is quantum cryptography with higher al-
phabets [10,11]. In contrast to the usual two-dimensional
cryptography protocols [31] where the message is encoded
in a binary way via the two eigenstates of the system, in a
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FIG. 2. Two-photon, two-qutrit violations of a Bell-type in-
equality. The graph shows the frequency with which a violation
of the generalized CHSH Bell inequality was observed. The
upper limit for the correlation parameter for local realistic
theories is 2.0. The inset shows the violations close to the
theoretical quantum upper limit. The numbers should be com-
pared with the total number of 164 measured correlations
altogether observed.
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The Stokes and anti-Stokes photons coupled into SMF3
and SMF4 are directed onto the single-photon-counting
modules SPCM1 and SPCM2 (Perkin-Elmer model
SPCM-AQR-14). From the Stokes photon counting, the
excitation probability is estimated to be 5! 10"4. Their
outputs are then fed into the start and stop inputs of the
time interval analyzer. The experimental results for the
coincidence rate between the Stokes and anti-Stokes pho-
tons in an LG0;0 mode are displayed versus time delay in
Fig. 2(c), from which the normalized cross-intensity cor-

relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
coincidence count rate was 5:2 s"1.

To determine the full state of the atoms and Stokes
photon, two-qutrit state tomography [14,15] was per-
formed, where the density matrix was reconstructed from
the set of 81 measurements represented by the operators
!̂i ' !̂j (with i, j ¼ 0; 1; ( ( ( ; 8) and where !̂k ) jkihkj.
The ket jki for the Stokes photon was chosen from among
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ments are implemented using SLMs and SMFs; the SLMs
produce spatial phase modulation, and the SMFs filter the
LG0;0 mode [16]. As reported in [17] in detail, arbitrary
superpositions of an LG0;0 and an LG0;&1 mode can be
converted into an LG0;0 mode by application of the phase

modulation T corresponding to the relative phase differ-
ence between the superposition mode and the LG0;0 mode.
As is clear from Fig. 1, such conversions can be achieved
by moving the singularity in the phase modulation to a
particular location. Our reflective SLMs have an active
region of 768 px! 768 px. Even if the phase modulation
is discrete, the fractional intensity diffracted into higher
orders can be decreased by adding the blazed phase grating
structure. The spatial period of the grating is 4 px+
100 !m with a diffraction efficiency of 25%. In order to
check the SLMs, the Gaussian components of a beam
diffracted with a spatial phase modulation of Tðx; yÞ ¼
ei arg½x"x0þiðy"y0Þ- were measured. Here, argðzÞ is the argu-
ment of the complex number z. The results are plotted in
Figs. 3(a) and 3(b), and are in good agreement with nu-
merical calculations of the superposition modes. The loca-
tion of the singularity that converts the superposition mode
into a Gaussian can therefore be determined. At position
ðx0; y0Þ ¼ ð0; 0Þ, where an incoming Gaussian mode is
converted into an LG0;&1 mode, the normalized intensity
was measured to be 3! 10"3, indicating a high extinction
ratio. Similarly, the superposition mode ðLG0;"1 þ
ei"LG0;þ1Þ=

ffiffiffi
2

p
can be converted into an LG0;0 mode by

applying a discontinuous phase modulation. The Gaussian
components of the beam diffracted by an SLM with a
spatial phase modulation of Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ was
also measured, where sgnðxÞ is the sign of x. The experi-
mental results are shown in Fig. 3(c), and are again in good
agreement with numerical calculations.
Figure 4 shows the graphical representation of density

matrix $exp reconstructed from the 81 coincidences. The
typical coincidence rate was roughly 5 s"1, and the data
acquisition time of each measurement was 100 s. From the
density matrix, the fidelity to a maximally entangled state
Fexp ) hMESj$̂expjMESi ¼ 0:74& 0:02 was obtained.
Here, jMESi was chosen from the set of maximally en-
tangled states ðei%#jLijriþ jGijgiþ ei&#jRijliÞ=

ffiffiffi
3

p
so as

to maximize the fidelity, where the values of % and & were
0:019# and "0:058#, respectively. The error in Fexp is
calculated by using Monte Carlo method from the statisti-
cal uncertainties in the coincidences. An optimal witness
operator of Schmidt number 3 inC3 ' C3 is given by Ŵ3 ¼
1" 3jMESihMESj=2 [18], resulting in TrðŴ3$̂Þ< 0 ,
hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06

"0:07,
which is larger than 2=3 even at the lowest error bound.

FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
w0 ¼ 2:2 mm. (a) Tðx; yÞ ¼ ei arg½x"x0þiðy"y0Þ-. The left panel
plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.
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time interval analyzer. The experimental results for the
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tons in an LG0;0 mode are displayed versus time delay in
Fig. 2(c), from which the normalized cross-intensity cor-

relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
coincidence count rate was 5:2 s"1.
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converted into an LG0;0 mode by application of the phase

modulation T corresponding to the relative phase differ-
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As is clear from Fig. 1, such conversions can be achieved
by moving the singularity in the phase modulation to a
particular location. Our reflective SLMs have an active
region of 768 px! 768 px. Even if the phase modulation
is discrete, the fractional intensity diffracted into higher
orders can be decreased by adding the blazed phase grating
structure. The spatial period of the grating is 4 px+
100 !m with a diffraction efficiency of 25%. In order to
check the SLMs, the Gaussian components of a beam
diffracted with a spatial phase modulation of Tðx; yÞ ¼
ei arg½x"x0þiðy"y0Þ- were measured. Here, argðzÞ is the argu-
ment of the complex number z. The results are plotted in
Figs. 3(a) and 3(b), and are in good agreement with nu-
merical calculations of the superposition modes. The loca-
tion of the singularity that converts the superposition mode
into a Gaussian can therefore be determined. At position
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also measured, where sgnðxÞ is the sign of x. The experi-
mental results are shown in Fig. 3(c), and are again in good
agreement with numerical calculations.
Figure 4 shows the graphical representation of density

matrix $exp reconstructed from the 81 coincidences. The
typical coincidence rate was roughly 5 s"1, and the data
acquisition time of each measurement was 100 s. From the
density matrix, the fidelity to a maximally entangled state
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0:019# and "0:058#, respectively. The error in Fexp is
calculated by using Monte Carlo method from the statisti-
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operator of Schmidt number 3 inC3 ' C3 is given by Ŵ3 ¼
1" 3jMESihMESj=2 [18], resulting in TrðŴ3$̂Þ< 0 ,
hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06
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which is larger than 2=3 even at the lowest error bound.

FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
w0 ¼ 2:2 mm. (a) Tðx; yÞ ¼ ei arg½x"x0þiðy"y0Þ-. The left panel
plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.
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The Stokes and anti-Stokes photons coupled into SMF3
and SMF4 are directed onto the single-photon-counting
modules SPCM1 and SPCM2 (Perkin-Elmer model
SPCM-AQR-14). From the Stokes photon counting, the
excitation probability is estimated to be 5! 10"4. Their
outputs are then fed into the start and stop inputs of the
time interval analyzer. The experimental results for the
coincidence rate between the Stokes and anti-Stokes pho-
tons in an LG0;0 mode are displayed versus time delay in
Fig. 2(c), from which the normalized cross-intensity cor-

relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
coincidence count rate was 5:2 s"1.

To determine the full state of the atoms and Stokes
photon, two-qutrit state tomography [14,15] was per-
formed, where the density matrix was reconstructed from
the set of 81 measurements represented by the operators
!̂i ' !̂j (with i, j ¼ 0; 1; ( ( ( ; 8) and where !̂k ) jkihkj.
The ket jki for the Stokes photon was chosen from among

fjLi;jGi;jRi;ðjGiþ jLiÞ=
ffiffiffi
2

p
;ðjGiþ jRiÞ=

ffiffiffi
2

p
;ðjGiþ ijLiÞ=ffiffiffi

2
p

;ðjGi" ijRiÞ=
ffiffiffi
2

p
;ðjLiþ jRiÞ=

ffiffiffi
2

p
;ðjLiþ ijRiÞ=

ffiffiffi
2

p
g, and

for the collective atomic excitation from among fjli; jgi;
jri; ðjgi þ jliÞ=

ffiffiffi
2

p
; ðjgi þ jriÞ=

ffiffiffi
2

p
; ðjgi " ijliÞ=

ffiffiffi
2

p
; ðjgi þ

ijriÞ=
ffiffiffi
2

p
; ðjli þ jriÞ=

ffiffiffi
2

p
; ðjli " ijriÞ=

ffiffiffi
2

p
g. These measure-

ments are implemented using SLMs and SMFs; the SLMs
produce spatial phase modulation, and the SMFs filter the
LG0;0 mode [16]. As reported in [17] in detail, arbitrary
superpositions of an LG0;0 and an LG0;&1 mode can be
converted into an LG0;0 mode by application of the phase

modulation T corresponding to the relative phase differ-
ence between the superposition mode and the LG0;0 mode.
As is clear from Fig. 1, such conversions can be achieved
by moving the singularity in the phase modulation to a
particular location. Our reflective SLMs have an active
region of 768 px! 768 px. Even if the phase modulation
is discrete, the fractional intensity diffracted into higher
orders can be decreased by adding the blazed phase grating
structure. The spatial period of the grating is 4 px+
100 !m with a diffraction efficiency of 25%. In order to
check the SLMs, the Gaussian components of a beam
diffracted with a spatial phase modulation of Tðx; yÞ ¼
ei arg½x"x0þiðy"y0Þ- were measured. Here, argðzÞ is the argu-
ment of the complex number z. The results are plotted in
Figs. 3(a) and 3(b), and are in good agreement with nu-
merical calculations of the superposition modes. The loca-
tion of the singularity that converts the superposition mode
into a Gaussian can therefore be determined. At position
ðx0; y0Þ ¼ ð0; 0Þ, where an incoming Gaussian mode is
converted into an LG0;&1 mode, the normalized intensity
was measured to be 3! 10"3, indicating a high extinction
ratio. Similarly, the superposition mode ðLG0;"1 þ
ei"LG0;þ1Þ=

ffiffiffi
2

p
can be converted into an LG0;0 mode by

applying a discontinuous phase modulation. The Gaussian
components of the beam diffracted by an SLM with a
spatial phase modulation of Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ was
also measured, where sgnðxÞ is the sign of x. The experi-
mental results are shown in Fig. 3(c), and are again in good
agreement with numerical calculations.
Figure 4 shows the graphical representation of density

matrix $exp reconstructed from the 81 coincidences. The
typical coincidence rate was roughly 5 s"1, and the data
acquisition time of each measurement was 100 s. From the
density matrix, the fidelity to a maximally entangled state
Fexp ) hMESj$̂expjMESi ¼ 0:74& 0:02 was obtained.
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0:019# and "0:058#, respectively. The error in Fexp is
calculated by using Monte Carlo method from the statisti-
cal uncertainties in the coincidences. An optimal witness
operator of Schmidt number 3 inC3 ' C3 is given by Ŵ3 ¼
1" 3jMESihMESj=2 [18], resulting in TrðŴ3$̂Þ< 0 ,
hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06

"0:07,
which is larger than 2=3 even at the lowest error bound.

FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
w0 ¼ 2:2 mm. (a) Tðx; yÞ ¼ ei arg½x"x0þiðy"y0Þ-. The left panel
plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.
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relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
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hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06

"0:07,
which is larger than 2=3 even at the lowest error bound.

FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
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plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.
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The major diagonal elements of the recon-
structed density matrix are hLjhrj!expjLijri ¼ 0:25,
hGjhgj!expjGijgi ¼ 0:37, and hRjhlj!expjRijli ¼ 0:26.
The summation of remaining elements 1" 0:25" 0:37"
0:26 ¼ 0:12 suggests that components of nonzero total
OAM, which may originate mainly from stray light, are
one of the dominant factors limiting the fidelity. The

normalized cross-intensity correlation gð2Þs;as ¼ 74:6% 7:4
is significantly smaller than the value 2000 expected
from the measured excitation probability of 5& 10"4.
Therefore, stray light appears to have strongly affected
the photon statistics and decreased the fidelity. The imbal-
ance of the diagonal elements may also affect the fidelity.
However, even supposing that the Stokes photons are
locally filtered so as to balance the relative amplitude,
the fidelity is still expected to be 0.74. This result confirms
that the imbalance is not the dominant factor decreasing
the fidelity in our case. Note that the diagonal elements can
be balanced by changing parameters such as the beam

waist of the write pulse since the relative amplitude is
dependent on the spatial shape of the effective interaction
volume [19]. The other factor limiting the fidelity is the
decoherence caused by the environmental noise, such as
the Larmor precession of the ground-state Zeeman suble-
vels and the ballistic expansion of the atomic ensemble.
In conclusion, higher dimensionality of the entangle-

ment of OAM states has been observed for an atomic
ensemble and a photon by estimating the Schmidt number
of the reconstructed density matrix. The experiment de-
scribed here enables one to communicate quantum infor-
mation encoded in the spatial degrees of freedom of a
photon and an atomic ensemble [20].
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The Stokes and anti-Stokes photons coupled into SMF3
and SMF4 are directed onto the single-photon-counting
modules SPCM1 and SPCM2 (Perkin-Elmer model
SPCM-AQR-14). From the Stokes photon counting, the
excitation probability is estimated to be 5! 10"4. Their
outputs are then fed into the start and stop inputs of the
time interval analyzer. The experimental results for the
coincidence rate between the Stokes and anti-Stokes pho-
tons in an LG0;0 mode are displayed versus time delay in
Fig. 2(c), from which the normalized cross-intensity cor-

relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
coincidence count rate was 5:2 s"1.

To determine the full state of the atoms and Stokes
photon, two-qutrit state tomography [14,15] was per-
formed, where the density matrix was reconstructed from
the set of 81 measurements represented by the operators
!̂i ' !̂j (with i, j ¼ 0; 1; ( ( ( ; 8) and where !̂k ) jkihkj.
The ket jki for the Stokes photon was chosen from among
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g. These measure-

ments are implemented using SLMs and SMFs; the SLMs
produce spatial phase modulation, and the SMFs filter the
LG0;0 mode [16]. As reported in [17] in detail, arbitrary
superpositions of an LG0;0 and an LG0;&1 mode can be
converted into an LG0;0 mode by application of the phase

modulation T corresponding to the relative phase differ-
ence between the superposition mode and the LG0;0 mode.
As is clear from Fig. 1, such conversions can be achieved
by moving the singularity in the phase modulation to a
particular location. Our reflective SLMs have an active
region of 768 px! 768 px. Even if the phase modulation
is discrete, the fractional intensity diffracted into higher
orders can be decreased by adding the blazed phase grating
structure. The spatial period of the grating is 4 px+
100 !m with a diffraction efficiency of 25%. In order to
check the SLMs, the Gaussian components of a beam
diffracted with a spatial phase modulation of Tðx; yÞ ¼
ei arg½x"x0þiðy"y0Þ- were measured. Here, argðzÞ is the argu-
ment of the complex number z. The results are plotted in
Figs. 3(a) and 3(b), and are in good agreement with nu-
merical calculations of the superposition modes. The loca-
tion of the singularity that converts the superposition mode
into a Gaussian can therefore be determined. At position
ðx0; y0Þ ¼ ð0; 0Þ, where an incoming Gaussian mode is
converted into an LG0;&1 mode, the normalized intensity
was measured to be 3! 10"3, indicating a high extinction
ratio. Similarly, the superposition mode ðLG0;"1 þ
ei"LG0;þ1Þ=

ffiffiffi
2

p
can be converted into an LG0;0 mode by

applying a discontinuous phase modulation. The Gaussian
components of the beam diffracted by an SLM with a
spatial phase modulation of Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ was
also measured, where sgnðxÞ is the sign of x. The experi-
mental results are shown in Fig. 3(c), and are again in good
agreement with numerical calculations.
Figure 4 shows the graphical representation of density

matrix $exp reconstructed from the 81 coincidences. The
typical coincidence rate was roughly 5 s"1, and the data
acquisition time of each measurement was 100 s. From the
density matrix, the fidelity to a maximally entangled state
Fexp ) hMESj$̂expjMESi ¼ 0:74& 0:02 was obtained.
Here, jMESi was chosen from the set of maximally en-
tangled states ðei%#jLijriþ jGijgiþ ei&#jRijliÞ=

ffiffiffi
3

p
so as

to maximize the fidelity, where the values of % and & were
0:019# and "0:058#, respectively. The error in Fexp is
calculated by using Monte Carlo method from the statisti-
cal uncertainties in the coincidences. An optimal witness
operator of Schmidt number 3 inC3 ' C3 is given by Ŵ3 ¼
1" 3jMESihMESj=2 [18], resulting in TrðŴ3$̂Þ< 0 ,
hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06

"0:07,
which is larger than 2=3 even at the lowest error bound.

FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
w0 ¼ 2:2 mm. (a) Tðx; yÞ ¼ ei arg½x"x0þiðy"y0Þ-. The left panel
plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.
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outputs are then fed into the start and stop inputs of the
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coincidence rate between the Stokes and anti-Stokes pho-
tons in an LG0;0 mode are displayed versus time delay in
Fig. 2(c), from which the normalized cross-intensity cor-

relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
coincidence count rate was 5:2 s"1.

To determine the full state of the atoms and Stokes
photon, two-qutrit state tomography [14,15] was per-
formed, where the density matrix was reconstructed from
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produce spatial phase modulation, and the SMFs filter the
LG0;0 mode [16]. As reported in [17] in detail, arbitrary
superpositions of an LG0;0 and an LG0;&1 mode can be
converted into an LG0;0 mode by application of the phase

modulation T corresponding to the relative phase differ-
ence between the superposition mode and the LG0;0 mode.
As is clear from Fig. 1, such conversions can be achieved
by moving the singularity in the phase modulation to a
particular location. Our reflective SLMs have an active
region of 768 px! 768 px. Even if the phase modulation
is discrete, the fractional intensity diffracted into higher
orders can be decreased by adding the blazed phase grating
structure. The spatial period of the grating is 4 px+
100 !m with a diffraction efficiency of 25%. In order to
check the SLMs, the Gaussian components of a beam
diffracted with a spatial phase modulation of Tðx; yÞ ¼
ei arg½x"x0þiðy"y0Þ- were measured. Here, argðzÞ is the argu-
ment of the complex number z. The results are plotted in
Figs. 3(a) and 3(b), and are in good agreement with nu-
merical calculations of the superposition modes. The loca-
tion of the singularity that converts the superposition mode
into a Gaussian can therefore be determined. At position
ðx0; y0Þ ¼ ð0; 0Þ, where an incoming Gaussian mode is
converted into an LG0;&1 mode, the normalized intensity
was measured to be 3! 10"3, indicating a high extinction
ratio. Similarly, the superposition mode ðLG0;"1 þ
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components of the beam diffracted by an SLM with a
spatial phase modulation of Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ was
also measured, where sgnðxÞ is the sign of x. The experi-
mental results are shown in Fig. 3(c), and are again in good
agreement with numerical calculations.
Figure 4 shows the graphical representation of density

matrix $exp reconstructed from the 81 coincidences. The
typical coincidence rate was roughly 5 s"1, and the data
acquisition time of each measurement was 100 s. From the
density matrix, the fidelity to a maximally entangled state
Fexp ) hMESj$̂expjMESi ¼ 0:74& 0:02 was obtained.
Here, jMESi was chosen from the set of maximally en-
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0:019# and "0:058#, respectively. The error in Fexp is
calculated by using Monte Carlo method from the statisti-
cal uncertainties in the coincidences. An optimal witness
operator of Schmidt number 3 inC3 ' C3 is given by Ŵ3 ¼
1" 3jMESihMESj=2 [18], resulting in TrðŴ3$̂Þ< 0 ,
hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06
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FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
w0 ¼ 2:2 mm. (a) Tðx; yÞ ¼ ei arg½x"x0þiðy"y0Þ-. The left panel
plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.
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The major diagonal elements of the recon-
structed density matrix are hLjhrj!expjLijri ¼ 0:25,
hGjhgj!expjGijgi ¼ 0:37, and hRjhlj!expjRijli ¼ 0:26.
The summation of remaining elements 1" 0:25" 0:37"
0:26 ¼ 0:12 suggests that components of nonzero total
OAM, which may originate mainly from stray light, are
one of the dominant factors limiting the fidelity. The

normalized cross-intensity correlation gð2Þs;as ¼ 74:6% 7:4
is significantly smaller than the value 2000 expected
from the measured excitation probability of 5& 10"4.
Therefore, stray light appears to have strongly affected
the photon statistics and decreased the fidelity. The imbal-
ance of the diagonal elements may also affect the fidelity.
However, even supposing that the Stokes photons are
locally filtered so as to balance the relative amplitude,
the fidelity is still expected to be 0.74. This result confirms
that the imbalance is not the dominant factor decreasing
the fidelity in our case. Note that the diagonal elements can
be balanced by changing parameters such as the beam

waist of the write pulse since the relative amplitude is
dependent on the spatial shape of the effective interaction
volume [19]. The other factor limiting the fidelity is the
decoherence caused by the environmental noise, such as
the Larmor precession of the ground-state Zeeman suble-
vels and the ballistic expansion of the atomic ensemble.
In conclusion, higher dimensionality of the entangle-

ment of OAM states has been observed for an atomic
ensemble and a photon by estimating the Schmidt number
of the reconstructed density matrix. The experiment de-
scribed here enables one to communicate quantum infor-
mation encoded in the spatial degrees of freedom of a
photon and an atomic ensemble [20].
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The Stokes and anti-Stokes photons coupled into SMF3
and SMF4 are directed onto the single-photon-counting
modules SPCM1 and SPCM2 (Perkin-Elmer model
SPCM-AQR-14). From the Stokes photon counting, the
excitation probability is estimated to be 5! 10"4. Their
outputs are then fed into the start and stop inputs of the
time interval analyzer. The experimental results for the
coincidence rate between the Stokes and anti-Stokes pho-
tons in an LG0;0 mode are displayed versus time delay in
Fig. 2(c), from which the normalized cross-intensity cor-

relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
coincidence count rate was 5:2 s"1.

To determine the full state of the atoms and Stokes
photon, two-qutrit state tomography [14,15] was per-
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is discrete, the fractional intensity diffracted into higher
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operator of Schmidt number 3 inC3 ' C3 is given by Ŵ3 ¼
1" 3jMESihMESj=2 [18], resulting in TrðŴ3$̂Þ< 0 ,
hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06

"0:07,
which is larger than 2=3 even at the lowest error bound.

FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
w0 ¼ 2:2 mm. (a) Tðx; yÞ ¼ ei arg½x"x0þiðy"y0Þ-. The left panel
plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.
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The Stokes and anti-Stokes photons coupled into SMF3
and SMF4 are directed onto the single-photon-counting
modules SPCM1 and SPCM2 (Perkin-Elmer model
SPCM-AQR-14). From the Stokes photon counting, the
excitation probability is estimated to be 5! 10"4. Their
outputs are then fed into the start and stop inputs of the
time interval analyzer. The experimental results for the
coincidence rate between the Stokes and anti-Stokes pho-
tons in an LG0;0 mode are displayed versus time delay in
Fig. 2(c), from which the normalized cross-intensity cor-

relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
coincidence count rate was 5:2 s"1.

To determine the full state of the atoms and Stokes
photon, two-qutrit state tomography [14,15] was per-
formed, where the density matrix was reconstructed from
the set of 81 measurements represented by the operators
!̂i ' !̂j (with i, j ¼ 0; 1; ( ( ( ; 8) and where !̂k ) jkihkj.
The ket jki for the Stokes photon was chosen from among
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ments are implemented using SLMs and SMFs; the SLMs
produce spatial phase modulation, and the SMFs filter the
LG0;0 mode [16]. As reported in [17] in detail, arbitrary
superpositions of an LG0;0 and an LG0;&1 mode can be
converted into an LG0;0 mode by application of the phase

modulation T corresponding to the relative phase differ-
ence between the superposition mode and the LG0;0 mode.
As is clear from Fig. 1, such conversions can be achieved
by moving the singularity in the phase modulation to a
particular location. Our reflective SLMs have an active
region of 768 px! 768 px. Even if the phase modulation
is discrete, the fractional intensity diffracted into higher
orders can be decreased by adding the blazed phase grating
structure. The spatial period of the grating is 4 px+
100 !m with a diffraction efficiency of 25%. In order to
check the SLMs, the Gaussian components of a beam
diffracted with a spatial phase modulation of Tðx; yÞ ¼
ei arg½x"x0þiðy"y0Þ- were measured. Here, argðzÞ is the argu-
ment of the complex number z. The results are plotted in
Figs. 3(a) and 3(b), and are in good agreement with nu-
merical calculations of the superposition modes. The loca-
tion of the singularity that converts the superposition mode
into a Gaussian can therefore be determined. At position
ðx0; y0Þ ¼ ð0; 0Þ, where an incoming Gaussian mode is
converted into an LG0;&1 mode, the normalized intensity
was measured to be 3! 10"3, indicating a high extinction
ratio. Similarly, the superposition mode ðLG0;"1 þ
ei"LG0;þ1Þ=

ffiffiffi
2

p
can be converted into an LG0;0 mode by

applying a discontinuous phase modulation. The Gaussian
components of the beam diffracted by an SLM with a
spatial phase modulation of Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ was
also measured, where sgnðxÞ is the sign of x. The experi-
mental results are shown in Fig. 3(c), and are again in good
agreement with numerical calculations.
Figure 4 shows the graphical representation of density

matrix $exp reconstructed from the 81 coincidences. The
typical coincidence rate was roughly 5 s"1, and the data
acquisition time of each measurement was 100 s. From the
density matrix, the fidelity to a maximally entangled state
Fexp ) hMESj$̂expjMESi ¼ 0:74& 0:02 was obtained.
Here, jMESi was chosen from the set of maximally en-
tangled states ðei%#jLijriþ jGijgiþ ei&#jRijliÞ=

ffiffiffi
3

p
so as

to maximize the fidelity, where the values of % and & were
0:019# and "0:058#, respectively. The error in Fexp is
calculated by using Monte Carlo method from the statisti-
cal uncertainties in the coincidences. An optimal witness
operator of Schmidt number 3 inC3 ' C3 is given by Ŵ3 ¼
1" 3jMESihMESj=2 [18], resulting in TrðŴ3$̂Þ< 0 ,
hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06

"0:07,
which is larger than 2=3 even at the lowest error bound.

FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
w0 ¼ 2:2 mm. (a) Tðx; yÞ ¼ ei arg½x"x0þiðy"y0Þ-. The left panel
plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.
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and SMF4 are directed onto the single-photon-counting
modules SPCM1 and SPCM2 (Perkin-Elmer model
SPCM-AQR-14). From the Stokes photon counting, the
excitation probability is estimated to be 5! 10"4. Their
outputs are then fed into the start and stop inputs of the
time interval analyzer. The experimental results for the
coincidence rate between the Stokes and anti-Stokes pho-
tons in an LG0;0 mode are displayed versus time delay in
Fig. 2(c), from which the normalized cross-intensity cor-

relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
coincidence count rate was 5:2 s"1.

To determine the full state of the atoms and Stokes
photon, two-qutrit state tomography [14,15] was per-
formed, where the density matrix was reconstructed from
the set of 81 measurements represented by the operators
!̂i ' !̂j (with i, j ¼ 0; 1; ( ( ( ; 8) and where !̂k ) jkihkj.
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ments are implemented using SLMs and SMFs; the SLMs
produce spatial phase modulation, and the SMFs filter the
LG0;0 mode [16]. As reported in [17] in detail, arbitrary
superpositions of an LG0;0 and an LG0;&1 mode can be
converted into an LG0;0 mode by application of the phase

modulation T corresponding to the relative phase differ-
ence between the superposition mode and the LG0;0 mode.
As is clear from Fig. 1, such conversions can be achieved
by moving the singularity in the phase modulation to a
particular location. Our reflective SLMs have an active
region of 768 px! 768 px. Even if the phase modulation
is discrete, the fractional intensity diffracted into higher
orders can be decreased by adding the blazed phase grating
structure. The spatial period of the grating is 4 px+
100 !m with a diffraction efficiency of 25%. In order to
check the SLMs, the Gaussian components of a beam
diffracted with a spatial phase modulation of Tðx; yÞ ¼
ei arg½x"x0þiðy"y0Þ- were measured. Here, argðzÞ is the argu-
ment of the complex number z. The results are plotted in
Figs. 3(a) and 3(b), and are in good agreement with nu-
merical calculations of the superposition modes. The loca-
tion of the singularity that converts the superposition mode
into a Gaussian can therefore be determined. At position
ðx0; y0Þ ¼ ð0; 0Þ, where an incoming Gaussian mode is
converted into an LG0;&1 mode, the normalized intensity
was measured to be 3! 10"3, indicating a high extinction
ratio. Similarly, the superposition mode ðLG0;"1 þ
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can be converted into an LG0;0 mode by

applying a discontinuous phase modulation. The Gaussian
components of the beam diffracted by an SLM with a
spatial phase modulation of Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ was
also measured, where sgnðxÞ is the sign of x. The experi-
mental results are shown in Fig. 3(c), and are again in good
agreement with numerical calculations.
Figure 4 shows the graphical representation of density

matrix $exp reconstructed from the 81 coincidences. The
typical coincidence rate was roughly 5 s"1, and the data
acquisition time of each measurement was 100 s. From the
density matrix, the fidelity to a maximally entangled state
Fexp ) hMESj$̂expjMESi ¼ 0:74& 0:02 was obtained.
Here, jMESi was chosen from the set of maximally en-
tangled states ðei%#jLijriþ jGijgiþ ei&#jRijliÞ=
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so as

to maximize the fidelity, where the values of % and & were
0:019# and "0:058#, respectively. The error in Fexp is
calculated by using Monte Carlo method from the statisti-
cal uncertainties in the coincidences. An optimal witness
operator of Schmidt number 3 inC3 ' C3 is given by Ŵ3 ¼
1" 3jMESihMESj=2 [18], resulting in TrðŴ3$̂Þ< 0 ,
hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06

"0:07,
which is larger than 2=3 even at the lowest error bound.

FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
w0 ¼ 2:2 mm. (a) Tðx; yÞ ¼ ei arg½x"x0þiðy"y0Þ-. The left panel
plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.

PRL 103, 110503 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

11 SEPTEMBER 2009

110503-3

Quantum Entanglement & Quantum Information Processing Entanglement Detection Summary

The major diagonal elements of the recon-
structed density matrix are hLjhrj!expjLijri ¼ 0:25,
hGjhgj!expjGijgi ¼ 0:37, and hRjhlj!expjRijli ¼ 0:26.
The summation of remaining elements 1" 0:25" 0:37"
0:26 ¼ 0:12 suggests that components of nonzero total
OAM, which may originate mainly from stray light, are
one of the dominant factors limiting the fidelity. The

normalized cross-intensity correlation gð2Þs;as ¼ 74:6% 7:4
is significantly smaller than the value 2000 expected
from the measured excitation probability of 5& 10"4.
Therefore, stray light appears to have strongly affected
the photon statistics and decreased the fidelity. The imbal-
ance of the diagonal elements may also affect the fidelity.
However, even supposing that the Stokes photons are
locally filtered so as to balance the relative amplitude,
the fidelity is still expected to be 0.74. This result confirms
that the imbalance is not the dominant factor decreasing
the fidelity in our case. Note that the diagonal elements can
be balanced by changing parameters such as the beam

waist of the write pulse since the relative amplitude is
dependent on the spatial shape of the effective interaction
volume [19]. The other factor limiting the fidelity is the
decoherence caused by the environmental noise, such as
the Larmor precession of the ground-state Zeeman suble-
vels and the ballistic expansion of the atomic ensemble.
In conclusion, higher dimensionality of the entangle-

ment of OAM states has been observed for an atomic
ensemble and a photon by estimating the Schmidt number
of the reconstructed density matrix. The experiment de-
scribed here enables one to communicate quantum infor-
mation encoded in the spatial degrees of freedom of a
photon and an atomic ensemble [20].
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FIG. 4 (color online). Graphical representation of the density
matrix !exp of a state as estimated by quantum state tomography

from the experimentally obtained coincidences. The upper plot is
the real part, and the lower plot is the imaginary part.
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(1) Quantum State Tomography 

The Stokes and anti-Stokes photons coupled into SMF3
and SMF4 are directed onto the single-photon-counting
modules SPCM1 and SPCM2 (Perkin-Elmer model
SPCM-AQR-14). From the Stokes photon counting, the
excitation probability is estimated to be 5! 10"4. Their
outputs are then fed into the start and stop inputs of the
time interval analyzer. The experimental results for the
coincidence rate between the Stokes and anti-Stokes pho-
tons in an LG0;0 mode are displayed versus time delay in
Fig. 2(c), from which the normalized cross-intensity cor-

relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
coincidence count rate was 5:2 s"1.

To determine the full state of the atoms and Stokes
photon, two-qutrit state tomography [14,15] was per-
formed, where the density matrix was reconstructed from
the set of 81 measurements represented by the operators
!̂i ' !̂j (with i, j ¼ 0; 1; ( ( ( ; 8) and where !̂k ) jkihkj.
The ket jki for the Stokes photon was chosen from among
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ments are implemented using SLMs and SMFs; the SLMs
produce spatial phase modulation, and the SMFs filter the
LG0;0 mode [16]. As reported in [17] in detail, arbitrary
superpositions of an LG0;0 and an LG0;&1 mode can be
converted into an LG0;0 mode by application of the phase

modulation T corresponding to the relative phase differ-
ence between the superposition mode and the LG0;0 mode.
As is clear from Fig. 1, such conversions can be achieved
by moving the singularity in the phase modulation to a
particular location. Our reflective SLMs have an active
region of 768 px! 768 px. Even if the phase modulation
is discrete, the fractional intensity diffracted into higher
orders can be decreased by adding the blazed phase grating
structure. The spatial period of the grating is 4 px+
100 !m with a diffraction efficiency of 25%. In order to
check the SLMs, the Gaussian components of a beam
diffracted with a spatial phase modulation of Tðx; yÞ ¼
ei arg½x"x0þiðy"y0Þ- were measured. Here, argðzÞ is the argu-
ment of the complex number z. The results are plotted in
Figs. 3(a) and 3(b), and are in good agreement with nu-
merical calculations of the superposition modes. The loca-
tion of the singularity that converts the superposition mode
into a Gaussian can therefore be determined. At position
ðx0; y0Þ ¼ ð0; 0Þ, where an incoming Gaussian mode is
converted into an LG0;&1 mode, the normalized intensity
was measured to be 3! 10"3, indicating a high extinction
ratio. Similarly, the superposition mode ðLG0;"1 þ
ei"LG0;þ1Þ=

ffiffiffi
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can be converted into an LG0;0 mode by

applying a discontinuous phase modulation. The Gaussian
components of the beam diffracted by an SLM with a
spatial phase modulation of Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ was
also measured, where sgnðxÞ is the sign of x. The experi-
mental results are shown in Fig. 3(c), and are again in good
agreement with numerical calculations.
Figure 4 shows the graphical representation of density

matrix $exp reconstructed from the 81 coincidences. The
typical coincidence rate was roughly 5 s"1, and the data
acquisition time of each measurement was 100 s. From the
density matrix, the fidelity to a maximally entangled state
Fexp ) hMESj$̂expjMESi ¼ 0:74& 0:02 was obtained.
Here, jMESi was chosen from the set of maximally en-
tangled states ðei%#jLijriþ jGijgiþ ei&#jRijliÞ=

ffiffiffi
3

p
so as

to maximize the fidelity, where the values of % and & were
0:019# and "0:058#, respectively. The error in Fexp is
calculated by using Monte Carlo method from the statisti-
cal uncertainties in the coincidences. An optimal witness
operator of Schmidt number 3 inC3 ' C3 is given by Ŵ3 ¼
1" 3jMESihMESj=2 [18], resulting in TrðŴ3$̂Þ< 0 ,
hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06

"0:07,
which is larger than 2=3 even at the lowest error bound.

FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
w0 ¼ 2:2 mm. (a) Tðx; yÞ ¼ ei arg½x"x0þiðy"y0Þ-. The left panel
plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.
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The Stokes and anti-Stokes photons coupled into SMF3
and SMF4 are directed onto the single-photon-counting
modules SPCM1 and SPCM2 (Perkin-Elmer model
SPCM-AQR-14). From the Stokes photon counting, the
excitation probability is estimated to be 5! 10"4. Their
outputs are then fed into the start and stop inputs of the
time interval analyzer. The experimental results for the
coincidence rate between the Stokes and anti-Stokes pho-
tons in an LG0;0 mode are displayed versus time delay in
Fig. 2(c), from which the normalized cross-intensity cor-

relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
coincidence count rate was 5:2 s"1.

To determine the full state of the atoms and Stokes
photon, two-qutrit state tomography [14,15] was per-
formed, where the density matrix was reconstructed from
the set of 81 measurements represented by the operators
!̂i ' !̂j (with i, j ¼ 0; 1; ( ( ( ; 8) and where !̂k ) jkihkj.
The ket jki for the Stokes photon was chosen from among
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ments are implemented using SLMs and SMFs; the SLMs
produce spatial phase modulation, and the SMFs filter the
LG0;0 mode [16]. As reported in [17] in detail, arbitrary
superpositions of an LG0;0 and an LG0;&1 mode can be
converted into an LG0;0 mode by application of the phase

modulation T corresponding to the relative phase differ-
ence between the superposition mode and the LG0;0 mode.
As is clear from Fig. 1, such conversions can be achieved
by moving the singularity in the phase modulation to a
particular location. Our reflective SLMs have an active
region of 768 px! 768 px. Even if the phase modulation
is discrete, the fractional intensity diffracted into higher
orders can be decreased by adding the blazed phase grating
structure. The spatial period of the grating is 4 px+
100 !m with a diffraction efficiency of 25%. In order to
check the SLMs, the Gaussian components of a beam
diffracted with a spatial phase modulation of Tðx; yÞ ¼
ei arg½x"x0þiðy"y0Þ- were measured. Here, argðzÞ is the argu-
ment of the complex number z. The results are plotted in
Figs. 3(a) and 3(b), and are in good agreement with nu-
merical calculations of the superposition modes. The loca-
tion of the singularity that converts the superposition mode
into a Gaussian can therefore be determined. At position
ðx0; y0Þ ¼ ð0; 0Þ, where an incoming Gaussian mode is
converted into an LG0;&1 mode, the normalized intensity
was measured to be 3! 10"3, indicating a high extinction
ratio. Similarly, the superposition mode ðLG0;"1 þ
ei"LG0;þ1Þ=

ffiffiffi
2

p
can be converted into an LG0;0 mode by

applying a discontinuous phase modulation. The Gaussian
components of the beam diffracted by an SLM with a
spatial phase modulation of Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ was
also measured, where sgnðxÞ is the sign of x. The experi-
mental results are shown in Fig. 3(c), and are again in good
agreement with numerical calculations.
Figure 4 shows the graphical representation of density

matrix $exp reconstructed from the 81 coincidences. The
typical coincidence rate was roughly 5 s"1, and the data
acquisition time of each measurement was 100 s. From the
density matrix, the fidelity to a maximally entangled state
Fexp ) hMESj$̂expjMESi ¼ 0:74& 0:02 was obtained.
Here, jMESi was chosen from the set of maximally en-
tangled states ðei%#jLijriþ jGijgiþ ei&#jRijliÞ=

ffiffiffi
3

p
so as

to maximize the fidelity, where the values of % and & were
0:019# and "0:058#, respectively. The error in Fexp is
calculated by using Monte Carlo method from the statisti-
cal uncertainties in the coincidences. An optimal witness
operator of Schmidt number 3 inC3 ' C3 is given by Ŵ3 ¼
1" 3jMESihMESj=2 [18], resulting in TrðŴ3$̂Þ< 0 ,
hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06

"0:07,
which is larger than 2=3 even at the lowest error bound.

FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
w0 ¼ 2:2 mm. (a) Tðx; yÞ ¼ ei arg½x"x0þiðy"y0Þ-. The left panel
plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.
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tons in an LG0;0 mode are displayed versus time delay in
Fig. 2(c), from which the normalized cross-intensity cor-

relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
coincidence count rate was 5:2 s"1.

To determine the full state of the atoms and Stokes
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is discrete, the fractional intensity diffracted into higher
orders can be decreased by adding the blazed phase grating
structure. The spatial period of the grating is 4 px+
100 !m with a diffraction efficiency of 25%. In order to
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ment of the complex number z. The results are plotted in
Figs. 3(a) and 3(b), and are in good agreement with nu-
merical calculations of the superposition modes. The loca-
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into a Gaussian can therefore be determined. At position
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mental results are shown in Fig. 3(c), and are again in good
agreement with numerical calculations.
Figure 4 shows the graphical representation of density

matrix $exp reconstructed from the 81 coincidences. The
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acquisition time of each measurement was 100 s. From the
density matrix, the fidelity to a maximally entangled state
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cal uncertainties in the coincidences. An optimal witness
operator of Schmidt number 3 inC3 ' C3 is given by Ŵ3 ¼
1" 3jMESihMESj=2 [18], resulting in TrðŴ3$̂Þ< 0 ,
hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06
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FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
w0 ¼ 2:2 mm. (a) Tðx; yÞ ¼ ei arg½x"x0þiðy"y0Þ-. The left panel
plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.
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The major diagonal elements of the recon-
structed density matrix are hLjhrj!expjLijri ¼ 0:25,
hGjhgj!expjGijgi ¼ 0:37, and hRjhlj!expjRijli ¼ 0:26.
The summation of remaining elements 1" 0:25" 0:37"
0:26 ¼ 0:12 suggests that components of nonzero total
OAM, which may originate mainly from stray light, are
one of the dominant factors limiting the fidelity. The

normalized cross-intensity correlation gð2Þs;as ¼ 74:6% 7:4
is significantly smaller than the value 2000 expected
from the measured excitation probability of 5& 10"4.
Therefore, stray light appears to have strongly affected
the photon statistics and decreased the fidelity. The imbal-
ance of the diagonal elements may also affect the fidelity.
However, even supposing that the Stokes photons are
locally filtered so as to balance the relative amplitude,
the fidelity is still expected to be 0.74. This result confirms
that the imbalance is not the dominant factor decreasing
the fidelity in our case. Note that the diagonal elements can
be balanced by changing parameters such as the beam

waist of the write pulse since the relative amplitude is
dependent on the spatial shape of the effective interaction
volume [19]. The other factor limiting the fidelity is the
decoherence caused by the environmental noise, such as
the Larmor precession of the ground-state Zeeman suble-
vels and the ballistic expansion of the atomic ensemble.
In conclusion, higher dimensionality of the entangle-

ment of OAM states has been observed for an atomic
ensemble and a photon by estimating the Schmidt number
of the reconstructed density matrix. The experiment de-
scribed here enables one to communicate quantum infor-
mation encoded in the spatial degrees of freedom of a
photon and an atomic ensemble [20].
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FIG. 4 (color online). Graphical representation of the density
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The Stokes and anti-Stokes photons coupled into SMF3
and SMF4 are directed onto the single-photon-counting
modules SPCM1 and SPCM2 (Perkin-Elmer model
SPCM-AQR-14). From the Stokes photon counting, the
excitation probability is estimated to be 5! 10"4. Their
outputs are then fed into the start and stop inputs of the
time interval analyzer. The experimental results for the
coincidence rate between the Stokes and anti-Stokes pho-
tons in an LG0;0 mode are displayed versus time delay in
Fig. 2(c), from which the normalized cross-intensity cor-

relation is estimated to be gð2Þs;as ¼ 74:6& 7:4, confirming
that the excitation probability of a Stokes photon into a
specified mode is much less than unity for each pulse. The
coincidence count rate was 5:2 s"1.

To determine the full state of the atoms and Stokes
photon, two-qutrit state tomography [14,15] was per-
formed, where the density matrix was reconstructed from
the set of 81 measurements represented by the operators
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ments are implemented using SLMs and SMFs; the SLMs
produce spatial phase modulation, and the SMFs filter the
LG0;0 mode [16]. As reported in [17] in detail, arbitrary
superpositions of an LG0;0 and an LG0;&1 mode can be
converted into an LG0;0 mode by application of the phase

modulation T corresponding to the relative phase differ-
ence between the superposition mode and the LG0;0 mode.
As is clear from Fig. 1, such conversions can be achieved
by moving the singularity in the phase modulation to a
particular location. Our reflective SLMs have an active
region of 768 px! 768 px. Even if the phase modulation
is discrete, the fractional intensity diffracted into higher
orders can be decreased by adding the blazed phase grating
structure. The spatial period of the grating is 4 px+
100 !m with a diffraction efficiency of 25%. In order to
check the SLMs, the Gaussian components of a beam
diffracted with a spatial phase modulation of Tðx; yÞ ¼
ei arg½x"x0þiðy"y0Þ- were measured. Here, argðzÞ is the argu-
ment of the complex number z. The results are plotted in
Figs. 3(a) and 3(b), and are in good agreement with nu-
merical calculations of the superposition modes. The loca-
tion of the singularity that converts the superposition mode
into a Gaussian can therefore be determined. At position
ðx0; y0Þ ¼ ð0; 0Þ, where an incoming Gaussian mode is
converted into an LG0;&1 mode, the normalized intensity
was measured to be 3! 10"3, indicating a high extinction
ratio. Similarly, the superposition mode ðLG0;"1 þ
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applying a discontinuous phase modulation. The Gaussian
components of the beam diffracted by an SLM with a
spatial phase modulation of Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ was
also measured, where sgnðxÞ is the sign of x. The experi-
mental results are shown in Fig. 3(c), and are again in good
agreement with numerical calculations.
Figure 4 shows the graphical representation of density

matrix $exp reconstructed from the 81 coincidences. The
typical coincidence rate was roughly 5 s"1, and the data
acquisition time of each measurement was 100 s. From the
density matrix, the fidelity to a maximally entangled state
Fexp ) hMESj$̂expjMESi ¼ 0:74& 0:02 was obtained.
Here, jMESi was chosen from the set of maximally en-
tangled states ðei%#jLijriþ jGijgiþ ei&#jRijliÞ=
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so as

to maximize the fidelity, where the values of % and & were
0:019# and "0:058#, respectively. The error in Fexp is
calculated by using Monte Carlo method from the statisti-
cal uncertainties in the coincidences. An optimal witness
operator of Schmidt number 3 inC3 ' C3 is given by Ŵ3 ¼
1" 3jMESihMESj=2 [18], resulting in TrðŴ3$̂Þ< 0 ,
hMESj$̂jMESi> 2=3. The experimental result Fexp >
2=3 therefore confirms that the Schmidt number of the
mixed state of the atomic ensemble, and the photon is
greater than or equal to 3.
The OAM measurements were achieved using mode

conversion by SLMs and mode filtering by SMFs in this
experiment. However, as frequently occurs in experiments
utilizing a spatial phase modulation, the measurement
bases cannot be realized completely accurately, resulting
in unwanted radial and azimuthal components comprising
up to 20%. While this systematic effect increases the error
in Fexp, the resultant fidelity is nevertheless 0:74þ0:06

"0:07,
which is larger than 2=3 even at the lowest error bound.

FIG. 3 (color online). Gaussian components of applied phase
modulations Tðx; yÞ to an incoming Gaussian beam of waist
w0 ¼ 2:2 mm. (a) Tðx; yÞ ¼ ei arg½x"x0þiðy"y0Þ-. The left panel
plots the simulation while the right panel shows the experimental
result. (b) Tðx; yÞ ¼ ei argðx"x0þiyÞ. (c) Tðx; yÞ ¼ eið#=2Þsgnðx"x0Þ. In
panels (b) and (c), the dots are experimental results, and the solid
curves are obtained from the numerical simulation.
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(2) Experimental State Fidelity: 

(3) The experimental state is identified as 
Genuine three-level entangled through the 
correlation criterion:

Fexp > 2/3

Correlation Criterion (for qutrits)

Ex: Entanglement Witness
Target state:
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Q1: 2-local measurement settings are enough for detecting, e.g., states 
close to

                                                                            ?

Q2: 2-local measurement settings are enough for estimating 
experimental state fidelity without full Quantum State Tomography??

Q3: 2-local measurement settings are enough for detecting Genuine 
General High-order Entanglement and for estimating experimental 
state fidelity without taking full Quantum State Tomography???

Detecting Genuine High-order 
Entanglement
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• Detecting states close to

Observation:

Efficient Detection of Genuine 
High-order Entanglement
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|ψ� = 1√
3
(|00�zx + |12�zx + |21�zx)

|ψ� = 1√
3
(|00�xz + |12�xz + |21�xz)

z: normal basis
x: fourier basis

|ab�zx : a+ b
.
= 0

|ab�xz : a+ b
.
= 0
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3
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ĉ1 = (0̂z − 1̂z)⊗ 0̂x

+(1̂z − 2̂z)⊗ 2̂x

+(2̂z − 0̂z)⊗ 1̂x

where k̂o = |k�oo �k| , k ∈ {0, 1, 2}, o ∈ z, x

|ψ� = 1√
3
(|00�xz + |12�xz + |21�xz)

|ψ� = 1√
3
(|00�zz + |11�zz + |22�zz)

(1) Correlator 1 (2) Correlator 2

2010年10月11日星期一



• Detecting states close to

Efficient Detection of Genuine 
High-order Entanglement

32

Quantum Entanglement & Quantum Information Processing Entanglement Detection Summary

|ψ� = 1√
3
(|00�zx + |12�zx + |21�zx)
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Correlation Criterion: is a Genuine 3-level 
Entangled State close to
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|ψ� = 1√
3
(|00�zz + |11�zz + |22�zz)

ρψ

Ŵψ = 3I − (ĉ1 + ĉ2)

Tr[Ŵψρψ] < 0

ρψ

|ψ� = 1√
3
(|00�zz + |11�zz + |22�zz)
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Experimental Implementations

A. Vaziri, G. Weihs, & A. Zeilinger, Experimental two-photon, three dimensional entanglement for quantum 
communications. Phys. Rev. Lett. 89, 240401(2002).

Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305 (2007).

 PROGRESS ARTICLE

nature physics | VOL 3 | MAY 2007 | www.nature.com/naturephysics 307

In other words, the wave vectors of the signal and idler photons 
belong to a narrow bundle around the corresponding central wave 
vectors, making it unnecessary to consider the behaviour of the whole 
system in total. In this scenario, the selection rule18,34 mp = m1 + m2 
(where mp is the optical vortex winding number of the pump beam, 
and m1 and m2 are the winding numbers of the modes into which 
the quantum states of the signal and idler photons are projected, 
respectively) only holds under restricted conditions for the photon 
emission angle and the strength of the Poynting vector walk-o! 35. 
Nevertheless, by using a wide-enough pump beam, the non-collinear 
and Poynting vector walk-o!  can be rendered negligible27,36, which 
makes the previous selection rule approximately valid. In contrast, 
settings that rely on highly focused pump beams clearly reveal the 
e! ects caused by non-collinear SPDC geometries37. Non-collinear 
SPDC introduces ellipticity into the spatial mode function of the 
downconverted photons38,39, which allows for the detection of photons 
with mp ≠ m1 + m2. # is e! ect can be dramatically enhanced in highly 
non-collinear con$ gurations, especially in SPDC con$ gurations 
where the entangled photons counterpropagate40.

Besides choosing the crystal and the pumping geometry, there 
are other ways to control the spiral bandwidth18, or, equivalently, 
the amount of entanglement of the OAM correlated photons. One 
strategy relies on the proper manipulation of the spatial pro$ le of 
the classical beam that pumps the nonlinear crystal41. Complex 
spatial pro$ les with, for example, a superposition of di! erent OAM 
modes, modify the corresponding quantum state of the generated 
photons. An alternative strategy is based on the proper preparation 
of the downconverting crystal, namely, on spatial quantum-state 
manipulation by transverse quasi-phase-matching engineering42. 
# e manipulation of the weights of di! erent OAM states can also be 
realized once the downconverted photons have been generated, by 
using suitable $ ltering processes43.

# e complete characterization and control of the amount 
of entanglement of a pure state is provided by the Schmidt 
decomposition technique44, which reveals how the photons are really 
paired, as well as how many modes are involved45. Under the correct 
symmetry conditions, the Schmidt modes can correspond directly to 
individual OAM modes, though these are not generally Laguerre–
Gauss modes. # e direct manipulation of the Schmidt modes, the 
true information eigenstates, as well as the detection of the amount 

of spatial entanglement46, is a signi$ cant experimental challenge that 
is yet to be solved.

APPLICATIONS

Recent years have seen several ground-breaking demonstrations 
of the ability to generate quantum states with an arbitrary number 
of dimensions (in particular, more than two) through the use of 
the OAM of photons. One example, illustrated in Fig. 3, is the 
demonstration of the violation of a two-photon, three-dimensional 
Bell inequality47. # e degree of violation of a Bell inequality 
is a signature of the quantum correlations of distant physical 
systems. No classical isolated systems can violate a Bell inequality. 
Consequently, they lie at the heart of many quantum applications 
and are widely used to distinguish quantum correlations 
from those correlations produced by classical processes. # e 
observations reported in ref. 47 demonstrated experimentally 
that photons were actually entangled through the OAM degree of 
freedom. Additional experiments in nearly collinear geometries 
have con$ rmed this result with tomographic measurements of the 
OAM content of the two-photon states generated by SPDC30,48.

Entangling systems in higher-dimensional states is important for 
a variety of both fundamental and practical reasons. For example, 
noise can rapidly degrade the quantum correlations that exist 
between the components of a quantum system. Several theoretical 
studies suggest, however, that by increasing the dimensionality of 
the entangled states of a system, its non-classical correlations can 
be made more robust to the presence of noise and other deleterious 
environmental e! ects49,50. Moreover, higher-dimensional states could 
have other unique and potentially useful features, such as a stronger 
violation of Bell inequalities for certain states when compared with 
the correspondingly maximally entangled state51. Such predictions 
are awaiting experimental con$ rmation.

# e practical potential of higher-dimensional quantum systems 
was clearly illustrated in the observations reported in ref. 52. In this 
work, a quantum protocol, known as ‘quantum coin tossing’, was 
implemented, where two parties share codi$ ed information (the result 
of a coin toss) that can be retrieved by a posteriori manipulations, 
but cannot be deciphered before a determined unveiling time, thus 
allowing the toss to be secret until the parties have bet on the result. 

Figure 3 Bell experiments with OAM modes. a, Experimental set-up used to test the validity of a Bell inequality with paired photons generated in an SPDC and correlated in 
OAM. In this experiment, OAM quantum states belonging to a three-dimensional Hilbert space were used. b, Experimental results obtained by projecting each of the photons of 
the pair into superpositions of well-defi ned OAM states. For pairs of photons classically correlated, the Bell parameter should never exceed two. Several of the measurements 
provide a value of the Bell parameter larger than the classical limit. Reprinted with permission from ref. 47.

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0

Nu
m

be
r o

f m
ea

su
re

m
en

ts

0

4

8

12

16

20

Bell parameter
2.0 2.22 0.4 2.62 0.8

2.70 2.75 2.80 2.85 2.90 2.95

Source

Mode Detectors
Preparation of
the superposition

Measurement of orbital
angular momentum eigenstates

Mode detectors

m = +1
m = +1

m = +1

m = –1

m = +1 m = –1

m = –1

m = –1

0 1 2

0 1 2

©
 2

00
2 

AP
S

!"#$%&'()*+,-!./0122-3.)42+521%%6'()))6'(!"#$%&'()*+,-!./0122-3.)42+521%%6'()))6'( 789:9'()))7;<:=<'=789:9'()))7;<:=<'=

|ψ� = 1√
3
(|00�zz + |11�zz + |22�zz)
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ĉk

|G� =

2010年10月11日星期一



•

Efficient Detection of Genuine 
High-order Entanglement

q�

j=1

�
�

k∈Yj
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• Robustness of the Criterion (Witness)

The capability of the witness to identify an originally pure 
state,        , in the presence of white noise as a Genuine 
High-order Entanglement.

Efficient Detection of Genuine 
High-order Entanglement
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• Detecting (2x2 x 3x3 x 2x2)-dimensional Hyperentangled 
photons

into a cone of 3.0! half-opening angle. The first (second)
crystal produces pairs of horizontally (vertically) polarized
photons, and these two possible down-conversion pro-
cesses are coherent, provided the spatial modes emitted
from each crystal are indistinguishable. With the pump
focused to a waist at the crystals, this constraint can be
satisfied by using thin crystals and ‘‘large’’ beam waists
(large relative to the mismatch in the overlap of the down-
conversion cones from each crystal [23]). However, the
OAM entanglement is maximized by balancing the relative
populations of the low-valued OAM eigenstates [25],
which requires smaller beam waists to image a large area
of the down-conversion cones. Here we compromise by
employing an intermediate waist size ( " 90 !m) at the
crystal. Mode-matching lenses are then used to optimize
the coupling of the rapidly diverging down-conversion
modes into single-mode collection fibers.

The measurement process consists of three stages of
local state projection, one for each DOF. At each stage,
the target state is transformed into a state that can be
discriminated from the other states with high accuracy.
Specifically, computer-generated phase holograms [28]
transform the target spatial mode into the pure Gaussian
(or 0-OAM) mode, which is then filtered by the single-
mode fiber [6] [Fig. 1(b)]. After a polarization controller to
compensate for the fiber birefringence, wave plates trans-
form the target polarization state into horizontal, which is
filtered by a polarizer [Fig. 1(d)]. The analysis of the
energy-time state is realized by a Franson-type [19] polar-
ization interferometer without detection postselection [21].
The matched unbalanced interferometers give each photon
a fast jfi and slow jsi route to its detector. Our interfer-
ometers consisted of L" 11 mm quartz birefringent ele-
ments, which longitudinally separated the horizontal and
vertical polarization components by !nquartzL" 100 !m,
more than the single-photon coherence length ("2=!""
50 !m with !" # 10 nm from the interference filters)
but much less than the pump-photon coherence length

("10 cm). We rely on the photons’ polarization entangle-
ment jHHi$ jVVi to thus project onto a two-time state
(jHs;Hsi$ ei%#1$#2&jVf; Vfi), where #1 and #2 are con-
trolled by birefringent elements (liquid crystals and
quarter-wave plates) in the path of each photon [21].
Finally, by analyzing the polarization in the '45! basis,
we erase the distinguishing polarization labels and can
directly measure the coherence between the jssi and jffi
terms, arising from the energy-time entanglement.

To verify quantum mechanical correlations, we tested
every DOF against a Clauser-Horne-Shimony-Holt
(CHSH) Bell inequality [29]. The CHSH inequality places
constraints (S ( 2) on the value of the Bell parameter S, a
combination of four two-particle correlation probabilities
using two possible analysis settings for each photon. If
S > 2, no separable quantum system (or local hidden vari-
able theory) can explain the correlations; in this sense, a
Bell inequality acts as an ‘‘entanglement witness’’ [30]. To
measure the strongest violation for the polarization and
spatial-mode DOFs, we determined the optimal measure-
ment settings by first tomographically reconstructing the 2-
qubit subspace of interest; we employ a maximum like-
lihood technique to identify the density matrix most con-
sistent with the data [27].

Table I shows the Bell parameters measured for the
polarization, spatial-mode, and energy-time subspaces,
with various projections in the complementary DOF. We
see that for every subspace, the Bell parameter exceeded
the classical limit of S # 2 by more than 20 standard
deviations ($), verifying the hyperentanglement. For
both the polarization and spatial-mode measurements, we
traced over the energy-time DOF by not projecting in this
subspace. We measured the polarization correlations while
projecting the spatial modes into the orthogonal basis
states (jli; jgi, and jri), as well as the superpositions jhi )
%jli$ jri&=

!!!
2

p
and jvi ) %jli* jri&=

!!!
2

p
). The measured

Bell parameters agreed (within "2$) with predictions
from tomographic reconstruction and violated the inequal-
ity by more than 30$. In the spatial-mode DOF, the corre-

TABLE I. Bell parameter S showing CHSH-Bell inequality
violations in every degree of freedom. The local realistic limit
(S ( 2) is violated by the number of standard deviations shown
in brackets, determined by counting statistics.

Spatial-mode projected subspaces
DOF jggihggj jrlihrlj jlrihlrj jhhihhhj jvvihvvj
"$

poln 2:76+76$, 2:78+46$, 2:75+44$, 2:81+40$, 2:75+33$,
"$

t*e 2:78+77$, 2:80+40$, 2:80+40$, 2:72+30$, 2:74+29$,

Polarization projected subspaces
DOF No polarizers jHHihHHj jVVihVVj

"$
spa 2:78+78$, 2:80+36$, 2:79+37$,

%jggi$ jrli 2:33+55$, 2:30+25$, 2:38+30$,
%jggi$ jlri 2:28+47$, 2:26+20$, 2:31+26$,

poln

poln

smfholo

C

qwp hwp pol

BBO

mode-matching lenses

qwpdec LC

(a)

(d)(c)(b)

e-t

MeasurementSource

Pump Laser

spa e-t poln

e-t

spa

spa

FIG. 1. Experimental setup for the creation and analysis of
hyperentangled photons. (a) The photons, produced using adja-
cent nonlinear crystals (BBO), pass through a state filtration
process for each DOF before coincidence detection. The mea-
surement insets show the filtration processes as a transformation
of the target state (dashed box) and a filtering step to discard the
other components of the state (dotted box). (b) Spatial filtration
(spa): hologram (holo) and single-mode fiber (smf). (c) Energy-
time transformation (e-t): thick quartz decoherer (dec) and liquid
crystal (LC). (d) Polarization filtration (poln): quarter-wave
plate (qwp), half-wave plate (hwp), and polarizer (pol).

PRL 95, 260501 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2005

260501-2

A  
photon

B
photon

d = 2
D = 3
d = 2

polarization (     ), spatial mode (     ), and energy time (     )

J. T  Barreiro, N. K. Langford, N. A. Peters,& P. G. Kwiat, Generation 
of Hyperentangled Photon Pairs, Phys. Rev. Lett. 95, 260501 (2005).

44

Quantum Entanglement & Quantum Information Processing Entanglement Detection Summary

Efficient Detection of Genuine 
High-order Entanglement

Remarks

4

jector |G〉〈G| into a sum of locally measurable operators is
necessary in this method. For decomposition of |G〉〈G|,
2(dN − 1) settings [29] are heavily needed for further de-
tection tasks. One can alternatively make a quantum
state tomography for the multi-qudit states and then in-
voke the projector-based criterion. Nevertheless, huge
d2N − 1 local measurement settings [29] are necessary for
the tomographic analysis. For the criterion by Huber et
al. [26] to verify genuine multipartite entanglement, one
needs to prepare identical two copies of states for each
round of measurement and requires 2N(N − 1) measure-
ment settings for the most efficient detection in the il-
lustrated criteria. Compared with these approaches, our
scheme is rather efficient: two local measurement settings
are sufficient for verifying genuine Bell, GHZ, cluster and
any two-colarable graph states (Fig. 1). Furthermore,
the proposed criterion can be used to estimate the qual-
ity of the prepared state without performing full fidelity
measurements [31].
Detecting genuine multilevel hyperentanglement.—We

continue to illustrate the scheme with verification of
existing multilevel N -DOF hyperentangled states [6]:

|H〉 =
⊗N

k=1
1
dk

∑dk−1
v=0

∑dk−1
v′=0 ωvv′

|v〉Ak
⊗ |v′〉Bk

, where
Ak (Bk) denotes the kth DOF of the subsystem A (B)
with dk levels. The entangled state in each DOF is a
two-qudit graph state. To identify genuine hyperentan-
glement, it is crucial to recognize the difference between
the state |H〉 and a state with biseparable structure in
the hyperentangled sense [25]: |hb〉 = |h1〉Akb1

⊗ |h2〉Bkb2
,

where |h1〉Akb1
=

∑dk−1
i=0 cib1|i〉Ak

⊗ |ui〉b1 and |h2〉Bkb2
=

∑dk−1
i=0 cib2 |i〉Bk

⊗|ui〉b2 . {Ak, b1} and {Bk, b2} constitute
the set of all DOFs, where the sets b1 and b2 are disjoint.
The following criterion is introduced to distinguish gen-
uine hyperentanglement from correlations mimicked by

biseparable states:

〈

⊗N
k=1

â
(k)
1 +â

(k)
2 +tdk Î

3tdk

〉

> 1 − D(d−1)
3d(D−1) ,

where â(k)1 , â(k)2 are of the form (2) for the kth DOF,
d = min{dk}, and D = max{dk}. Refer to Appendix for
the proof. This criterion can be efficiently implemented
because each DOF needs only two local measurement
settings. The measurement results also can be used to
examine genuineness of multilevel entanglement in each
DOF by (3). Furthermore, a state mixing with white
noise ρ(pnoise) is detected as genuine hyperentanglement

if pnoise <
(1− 1

d
)

3(1− 1
D
)(1−3−N )

. The criterion tolerates at least

(1− 1/d)/[3(1− 1/D)] noise for any number of DOFs. If
D = d, the noise tolerance is at least 33%.
Summary and outlook.—Let us emphasize that we have

introduced a general criterion of multilevel dependence to
demonstrate an efficient verification of high-order entan-
glement regardless of the number of particles and DOFs.
The importance and implication of our scheme are three
fold. First, the detection scenario is applicable to any
Bell-type experiments [3, 4] and quantum protocols for

remote use [8–13, 16]. Second [31], our criterion can be
readily used to speed up the experimental verification
of existing high-order entanglement in wide-range imple-
mentations [10–12, 17–21], and furthermore to provide
a quantitative estimation of the experimental fidelity of
high-order entangled state. Third, the present detection
offers a scalable method in experiments for identifying
higher-order entanglement. In addition, the idea and re-
sults presented in this work open up some questions that
deserve to be investigated: for instance, how one can de-
tect more genuine high-order entangled states, e.g., gen-
eral mixed systems, with multilevel-dependent criterion,
or how one can use the criterion for qudit graph states
to create generic Bell-type inequalities.
Appendix.—We will show that all states identified

by the proposed criterion (3) are also detected by the
projector-based criterion [34], which is equivalent to show
that wG − γGw′

G ≥ 0. γG is some positive constant,
w′

G = 1
d
(l−1)̂I− |G〉〈G| for the projector-based criterion,

and wG = [ 1
d
(l− 1)(q − ηq) + ηq ]̂I−

∑q
j=1

∏

k∈Yj

âk+Î
td+1 for

the proposed criterion. Since the operator wG as well as
w′

G are diagonal in the graph state basis, wG − γGw′
G is

also diagonal. Here a graph state basis is composed of
dN orthonormal states |Gk〉 =

∏

(i,j)∈E U(i,j) |fk〉 for k =

0, 1, ..., dN − 1. {|fi〉 =
⊗N

k=1 Fk |i〉 |i = 0, 1, ..., dN − 1}
is an orthonormal basis, where |0〉 = |0〉1 ... |0〉N , ...,
∣

∣dN − 1
〉

= |1〉1 ... |1〉N . When γG = q − ηq the diag-
onal elements are then all non-negative. Similarly, by
comparison with a projector-based criterion for genuine
hyperentanglement: 〈|H〉〈H |〉 > 1

d , all states detected by
our criterion are also identified by the projector-based cri-
terion. The bound 1

d
directly follows from the derivation:

〈|H〉〈H |〉 > max|hb〉∈b | 〈hb|H〉|2 ≥ maxdk

1
dk

= 1
d , where

b denotes the set of biseparable states in the hyperentan-
gled sense. Since wH − γHw′

H ≥ 0, where γH = D
3d(D−1) ,

wH and w′
H denote the operators corresponding to the

proposed criterion and the projector-based criterion, re-
spectively, we prove that our criterion can be used to
identify genuine hyperentanglement.
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FIG. 1. (Color online) Noise tolerance of projector-based entanglement criterion. If p < pnoise, then a mixed state ρ(pnoise) is
detected as a genuine N-partite entangled state with s ≥ l close to a N-qudit graph state. (a) and (b) depict the cases for
l = 2 and l = d, respectively.

where B denotes the set of biseparable states. The maximum overlap with a biseparable state can be found by
calculating the maximum square of Schmidt coefficient of |G〉 with respect to all possible bipartite splittings [? ].
From the previous discussion we know that the Schmidt coefficient for any bipartite splitting is 1√

d
. Then

〈|G〉〈G|〉 >
1

d
(7)

implies that the experimental state is a genuine N -partite state close to |G〉. For the criterion of genuine multilevel
entanglement, one can directly utilize the result of Ref. [? ] by:

〈|G〉〈G|〉 >
(l − 1)

d
(8)

for l ≥ 2, which shows a state is genuine multilevel in the sense of s ≥ l. Hence, combined with the criterion for
a genuine multipartite state, the above criterion can be applied to verify both genuine multilevel and multipartite
entangled state close to |G〉. See also Fig. 1 in the present supplementary information for its noise tolerance.

Fidelity estimation.—As shown in Appendix, we have proven that wG − γGw′
G ≥ 0, i.e., w′

G ≤ 1
γG

wG. From
which one can obtain additional information about the lower bound of state fidelity:

〈G| ρ |G〉 ≥
1

q − ηq
(

q
∑

j=1

〈

∏

k∈Yj

âk + Î

td + 1

〉

− ηq). (9)

Similarly, since wH − γHw′
H ≥ 0, the lower bound of fidelity between the ideal and measured nonperfectly hyper-

entangled states can also be obtained:

〈H | ρ |H〉 ≥ 3d(1−
1

D
)

〈

N
⊗

k=1

â(k)1 + â(k)2 + tdk
Î

3tdk

〉

+
3d

D
− 2d. (10)

Experimental implementations of the local measurements for entanglement verification.—Detecting
genuine high-order entangled states through our scheme needs local measurements in the normal basis {|v〉k} and the

Fourier basis {F †
k |v〉k}, which can be realized in the present experiments on multilevel entanglement and hyperentan-

glement as well as in the experimental proposals for creating many-qudit GHZ states. In what follows we will present
two concrete examples of our verification scenario by considering realistic experiments and proposals that could be
realized in the near future.
Let us first illustrate the implementation for detecting orbital angular momentum (OAM) entangled photons [?

]. In the process of parametric down-conversion, the photons are entangled with respect to the OAM and can be
transformed into a state close to the Bell state with local filtering [? ]:

|Bell〉 =
1√
3
(|0〉 ⊗ |0〉+ |1〉 ⊗ |2〉+ |2〉 ⊗ |1〉),

3
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FIG. 1. (Color online) Noise tolerance of projector-based entanglement criterion. If p < pnoise, then a mixed state ρ(pnoise) is
detected as a genuine N-partite entangled state with s ≥ l close to a N-qudit graph state. (a) and (b) depict the cases for
l = 2 and l = d, respectively.

where B denotes the set of biseparable states. The maximum overlap with a biseparable state can be found by
calculating the maximum square of Schmidt coefficient of |G〉 with respect to all possible bipartite splittings [? ].
From the previous discussion we know that the Schmidt coefficient for any bipartite splitting is 1√

d
. Then

〈|G〉〈G|〉 >
1

d
(7)

implies that the experimental state is a genuine N -partite state close to |G〉. For the criterion of genuine multilevel
entanglement, one can directly utilize the result of Ref. [? ] by:

〈|G〉〈G|〉 >
(l − 1)

d
(8)

for l ≥ 2, which shows a state is genuine multilevel in the sense of s ≥ l. Hence, combined with the criterion for
a genuine multipartite state, the above criterion can be applied to verify both genuine multilevel and multipartite
entangled state close to |G〉. See also Fig. 1 in the present supplementary information for its noise tolerance.

Fidelity estimation.—As shown in Appendix, we have proven that wG − γGw′
G ≥ 0, i.e., w′

G ≤ 1
γG

wG. From
which one can obtain additional information about the lower bound of state fidelity:

〈G| ρ |G〉 ≥
1

q − ηq
(

q
∑

j=1

〈

∏

k∈Yj

âk + Î

td + 1

〉

− ηq). (9)

Similarly, since wH − γHw′
H ≥ 0, the lower bound of fidelity between the ideal and measured nonperfectly hyper-

entangled states can also be obtained:

〈H | ρ |H〉 ≥ 3d(1−
1

D
)

〈

N
⊗

k=1

â(k)1 + â(k)2 + tdk
Î

3tdk

〉

+
3d

D
− 2d. (10)

Experimental implementations of the local measurements for entanglement verification.—Detecting
genuine high-order entangled states through our scheme needs local measurements in the normal basis {|v〉k} and the

Fourier basis {F †
k |v〉k}, which can be realized in the present experiments on multilevel entanglement and hyperentan-

glement as well as in the experimental proposals for creating many-qudit GHZ states. In what follows we will present
two concrete examples of our verification scenario by considering realistic experiments and proposals that could be
realized in the near future.
Let us first illustrate the implementation for detecting orbital angular momentum (OAM) entangled photons [?

]. In the process of parametric down-conversion, the photons are entangled with respect to the OAM and can be
transformed into a state close to the Bell state with local filtering [? ]:

|Bell〉 =
1√
3
(|0〉 ⊗ |0〉+ |1〉 ⊗ |2〉+ |2〉 ⊗ |1〉),

Qudit Graph State:

Hyperentangled State:
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FIG. 3. (Color online) Setup for preparing the state (4). BS1, BS2,
BS3 have reflection coefficient R = 1

3 , while BS4, BS5, BS6 have
R = 1

2 .

For instance, using the setup shown in Fig. 3, we can prepare
the three-qutrit state

|!〉 = 1√
3

(|111〉 + |222〉 + |333〉) (4)

by using a source emitting three photons simultaneously
at an unknown time and then postselecting the threefold
coincidences. The geometry of the setup is suitable for
three-qutrit Bell tests (i.e., is free of the problems discussed in
Sec. III).

The setup for performing one observer’s local measure-
ments is shown in Fig. 4. The three BSs in Fig. 4, written in
the basis |1〉, |2〉, |3〉, are given by

BSA
1 =





1 0 0

0 1√
2

eiα
√

2

0 1√
2

− eiα
√

2



 , (5a)

BSA
2 =





√
2√
3

0 eiβ
√

3

0 1 0
1√
3

0 −
√

2eiβ
√

3



 , (5b)

BSA
3 =





1√
2

eiγ
√

2
0

1√
2

− eiγ
√

2
0

0 0 1



 . (5c)

Therefore, BSA
1 and BSA

3 are 50-50 BSs, while BSA
2 has a

reflection coefficient R = 1
3 . The action of the three BSs in

Fig. 4 corresponds to the following unitary operator:

M := BSA
3 BSA

2 BSA
1

= 1√
3





1
√

3eiγ +eiβ

2
1
2eiα(

√
3eiγ − eiβ)

1 −
√

3eiγ +eiβ

2 − 1
2eiα(

√
3eiγ + eiβ)

1 −eiβ ei(β+α)



 . (6)

FIG. 4. (Color online) Setup for the measurement of a qutrit state.
The reflection coefficients are given in (5a)–(5c).

By choosing β = π
3 , γ = −π

6 and α = π/3, we obtain

M = 1√
3





1 1 1

1 ei 2π
3 ei 4π

3

1 ei 4π
3 ei 8π

3



 . (7)

By inserting the three phases φi , we obtain

M = 1√
3





1 e−iφ2 e−iφ3

1 ei 2π
3 e−iφ2 ei 4π

3 e−iφ3

1 ei 4π
3 e−iφ2 ei 2π

3 e−iφ3



 . (8)

This measurement projects onto the basis

|1′〉 = M†|1〉 , |2′〉 = M†|2〉 , |3′〉 = M†|3〉 , (9)

given by

|1′〉 = 1√
3

(|1〉 + eiφ2 |2〉 + eiφ3 |3〉), (10a)

|2′〉 = 1√
3

(|1〉 + ei(φ2− 2π
3 )|2〉 + ei(φ3− 4π

3 )|3〉), (10b)

|3′〉 = 1√
3

(|1〉 + ei(φ2− 4π
3 )|2〉 + ei(φ3− 2π

3 )|3〉). (10c)

B. Generalization to N quNits

Interestingly, the setup can be extended to prepare N -quN it
energy-time entangled states with N > 3. For each particle we
use a scheme given in Fig. 5 to generate a quN it. Each mode
is sent to a different party Ai . Then, by using a scheme similar
to that proposed in Refs. [15,16] we can measure the quN it.

The BSs described in Fig. 6 can be set to produce the
following unitary transformation

U = 1√
N





1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

1 ωN−1 ω2(N−1) · · · ω(N−1)2





, (11)
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FIG. 3. (Color online) Setup for preparing the state (4). BS1, BS2,
BS3 have reflection coefficient R = 1

3 , while BS4, BS5, BS6 have
R = 1

2 .

For instance, using the setup shown in Fig. 3, we can prepare
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|!〉 = 1√
3

(|111〉 + |222〉 + |333〉) (4)
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coincidences. The geometry of the setup is suitable for
three-qutrit Bell tests (i.e., is free of the problems discussed in
Sec. III).
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the basis |1〉, |2〉, |3〉, are given by

BSA
1 =





1 0 0

0 1√
2

eiα
√

2

0 1√
2

− eiα
√

2



 , (5a)

BSA
2 =





√
2√
3

0 eiβ
√

3

0 1 0
1√
3

0 −
√

2eiβ
√

3



 , (5b)

BSA
3 =





1√
2

eiγ
√

2
0

1√
2

− eiγ
√

2
0

0 0 1



 . (5c)

Therefore, BSA
1 and BSA

3 are 50-50 BSs, while BSA
2 has a

reflection coefficient R = 1
3 . The action of the three BSs in

Fig. 4 corresponds to the following unitary operator:

M := BSA
3 BSA

2 BSA
1

= 1√
3





1
√

3eiγ +eiβ

2
1
2eiα(

√
3eiγ − eiβ)

1 −
√

3eiγ +eiβ

2 − 1
2eiα(

√
3eiγ + eiβ)

1 −eiβ ei(β+α)



 . (6)

FIG. 4. (Color online) Setup for the measurement of a qutrit state.
The reflection coefficients are given in (5a)–(5c).

By choosing β = π
3 , γ = −π

6 and α = π/3, we obtain

M = 1√
3





1 1 1

1 ei 2π
3 ei 4π

3

1 ei 4π
3 ei 8π

3



 . (7)

By inserting the three phases φi , we obtain

M = 1√
3





1 e−iφ2 e−iφ3

1 ei 2π
3 e−iφ2 ei 4π

3 e−iφ3

1 ei 4π
3 e−iφ2 ei 2π

3 e−iφ3



 . (8)

This measurement projects onto the basis

|1′〉 = M†|1〉 , |2′〉 = M†|2〉 , |3′〉 = M†|3〉 , (9)

given by

|1′〉 = 1√
3

(|1〉 + eiφ2 |2〉 + eiφ3 |3〉), (10a)

|2′〉 = 1√
3

(|1〉 + ei(φ2− 2π
3 )|2〉 + ei(φ3− 4π

3 )|3〉), (10b)

|3′〉 = 1√
3

(|1〉 + ei(φ2− 4π
3 )|2〉 + ei(φ3− 2π

3 )|3〉). (10c)

B. Generalization to N quNits

Interestingly, the setup can be extended to prepare N -quN it
energy-time entangled states with N > 3. For each particle we
use a scheme given in Fig. 5 to generate a quN it. Each mode
is sent to a different party Ai . Then, by using a scheme similar
to that proposed in Refs. [15,16] we can measure the quN it.

The BSs described in Fig. 6 can be set to produce the
following unitary transformation

U = 1√
N





1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

1 ωN−1 ω2(N−1) · · · ω(N−1)2





, (11)

032105-4

2010年10月11日星期一



Q1: 2-local measurement settings are enough for detecting, e.g., states 
close to

                                                                            ?

Q2: 2-local measurement settings are enough for estimating 
experimental state fidelity without full Quantum State Tomography??

Q3: 2-local measurement settings are enough for detecting Genuine 
General High-order Entanglement and for estimating experimental 
state fidelity without taking full Quantum State Tomography???

Detecting Genuine High-order 
Entanglement

48

Quantum Entanglement & Quantum Information Processing Entanglement Detection Summary

|ψ� = 1√
3
(|+�,−��+ |0, 0�+ |−�,+��)

Yes

Yes

Yes
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• Genuine High-order Entanglement can be 
efficiently detected without complicated local 
measurements.

• The present detection schemes can be applied 
for the present and future experiments.

• Estimating Quantum State Fidelity without full 
Quantum State Tomography is possible.

Summary
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Thanks for your attention!!
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