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•  Theoretical modeling of quantum  
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•  Coherent dynamics in the FMO complex: 
coherence assisted excitation energy 
transfer mechanism 
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Photosynthesis 

•  Might be the most important 
photochemical process on earth 

•  Still, there is much unknown and 
much to be learned & modeled 
after 

•  Collecting sun-light energy with 
high efficiency is not trivial 

6CO2 + 6H2O ! C6H12O6 + 6O2 
h! 



Light Harvesting in Photosynthesis 

Charge separation 

…Secondary electron transfer reactions,  Water splitting, Proton transport 
across thylakoid membrane, Reduction of NADP+, ATP synthesis… 

Reaction
Center 

Blue-absorbing pigments 

Red-absorbing  
pigments 

Orange-absorbing  
pigments 

“Antenna” 
Light Harvesting 

The “light” reactions 

Light-harvesting complexes 



Primary Processes of Photosynthesis 

Light harvesting in the antenna & charge separation in the 
reaction center ! remarkable, near unity quantum yield 



Light-harvesting Apparatus of Purple Bacteria 

Bahatyrova et al., Nature 430, 1058 (2004) 

LH2 

LH1+RC 

Hu et al., Q. Rev. Biophys. 35, 1 (2002) 

Purple bacteria 

AFM of native photosynthetic  
membranes of a purple bacterium 



Light-harvesting Apparatus of Higher Plants 
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Photosystem I Supercomplex of Plants 

A. Ben Shem, F. Frolow & N. Nelson, Nature, 426, 630-5 (2003). 

H 

K 

G 

F 

Lhca2 

Lhca3 

Lhca4 
Lhca1 

PS I Core complex 
96 Chls 



Chlorophyll Arrangement in the PS I Core 

Pdb id: 1JB0 A complex chlorophyll network for light harvesting 

<10 Å 

15-25 Å 
10-15 Å 

distance 

PS I Core complex 
96 Chls 

“a paradigmatic scenario of transport phenomena in a 
nanoscale network” 

•  electronic couplings & excitons 
•  complex network 
•  static & dynamical disorder 
•  “wet & warm” protein environments 
•  quantum coherence 



New Insights into Photosynthetic Light Harvesting 

•  Recent experiments indicate that quantum coherence can 
play a role in light harvesting 

•  Evidence for wavelike energy transfer  
through quantum coherence in  
photosynthetic systems, G.S. Engel,  
T.R. Calhoun, E.L. Read, T. Ahn, T. Mancal,  
Y.-C. Cheng, R.E. Blankenship &  
G.R. Fleming, Nature 446, 782 (2007).  

•  Coherence Dynamics in Photosynthesis:  
Protein Protection of Excitonic Coherence, 
H. Lee, Y.-C. Cheng & G.R. Fleming, 
Science 316, 1462 (2007). 



New Insights into Photosynthetic Light Harvesting 

•  Recent experiments indicate that quantum coherence can 
play a role in light harvesting – even at ambient 
temperature 

•  Long-lived quantum coherence in  
photosynthetic complexes at  
physiological temperature,  
Gregory S. Engel and coworkers,  
arXiv:1001.5108v1 (2010).  

•  Coherently wired light-harvesting  
in photosynthetic marine algae  
at ambient temperature, 
G. D. Scholes and coworkers, 
Nature, 463, 644 (2010). 



Quantum Coherence in FMO at Physiological Temperature 

Gregory S. Engel and coworkers, arXiv:1001.5108v1 (2010) 
http://arxiv.org/abs/1001.5108 

FMO 

2DES  
Spectra Quantum beating due to electronic coherence!! 



•  Time-evolution of a superposition of two excitons 

•  Density matrix with excitonic coherence 

•  Coherence oscillation results in energy population moving 
reversibly among multiple chromophores 

•  Coherence dynamics can be probed by using 2-D photon 
echo spectroscopy: quantum beats in 2-D signals 

Coherent Evolution of Density Matrix 

population 

coherence phase oscillation 

stationary 



How does such long-lasting electronic 
coherence affect light harvesting? 

Combine experimental results & theoretical 
modeling to find out! 



Strategy for Theoretical Investigations 

•  In order to elucidate how quantum 
coherence affects excitation energy 
transfer in the FMO complex, we 
– Build an effective model for FMO excitations 

& dynamics of excitation energy transfer 
– Refine the theoretical model by comparing to 

experimental two-dimensional optical spectra 
– Simulate the dynamics of energy trapping 

both with and without quantum coherence 
– Compare the results to determine the role of 

electronic quantum coherence 



James Allen & coworkers, Photosynth. Res., 75:49 2003 

Light-harvesting Apparatus of Green Sulfur Bacteria 



James Allen & coworkers, Photosynth. Res., 75:49 2003 

Fenna-Matthews-Olson Complex from Green 
Sulfur Bacteria 

well characterized model 

PDB ID: 4bcl, 1m50 



Modeling Excitation Energy Transfer in the FMO? 

Full quantum dynamics of such a system is infeasible! 



Frenkel Exciton Model 
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J 

•  Excitation energy transfer 
induced by excitonic coupling J 

Exciton Hamiltonian and Excitonic Coupling 
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site energy coupling •  Excitations interact with each other 
through excitonic coupling J 
•  He ! transition energies and excitonic 
couplings in multichromophoric systems!! 

“site basis” 
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|Qy〉 

!1 



FMO Complex: Electronic Interactions 

J. Adolphs & T. Renger, Biophys. J. 91, 2778 (2006). * For C. Tep. FMO, unit in cm-1 
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•  There is a good starting point for the 
model of FMO Hamiltonian 
•  Couplings from quantum chemistry 
+ transition density cube calculations  
•  Site energies from fitting to optical 
spectra 



Quantum Dynamics of Excitation Energy Transfer 

When system-bath coupling is weak, we can use Redfield 
equation to describe energy transfer: 

": reduced-system density matrix 

N: number of chromophores 

dissipation determined 
by system-bath couplings 

exciton Hamiltonian 

population coherence 

… 

… 

…
 

…
 

…
 

… 



Calculate Nonlinear Spectrum 
Also consider light-matter interactions with laser pulses to 
simulate nonlinear spectrum using dynamical propagation 

dissipation exciton Hamiltonian 

light-matter interactions 

H int (t) = !V! " Ea (t)
a=1

3

#

M. F. Gelin, D. Egorova, W. Domcke,  JCP 123, 164112 (2005); 
Y.-C. Cheng, H. Lee, G. R. Fleming, JPCA 111, 9499 (2007). 

! Extract photon-echo signal at the phase-matching direction 
by selective combinations of light-matter interactions in 
calculations (non-trivial) 



QDAS Code 

•  Quantum Dynamics And Spectroscopy 
•  Simulates excitation energy transfer dynamics 

and various linear & nonlinear spectra 
(Absorption, 2D, 3PEPS…) 

•  Treats an array of bath spectra densities and 
bath memory effects 

•  Includes doubly excited states and average over 
a Gaussian distribution of disordered energies 

•  MPI capability for parallel computing 



•  Renger’s model does not provide adequate 2D electronic spectra 
•  Parallel computing is necessary for seeking a better model: 

•  each spectrum needs ~ 12 hrs using 128 CPUs on NERSC’ Franklin 
cluster due to extensive Monte-Carlo ensemble averaging procedure 
•  > 30 parameters to adjust/optimize 

Simulated 2D Spectrum for FMO 
Experiment Renger’s model 

vs. 



•  Iterate to reach good agreement between experiment & theory 
starting from Renger’s model 
•  Require inclusion of doubly excited states and average over a 
Gaussian distribution of disordered energies 
•  Provide refined model ! basis for studying coherence effects 

Simulated 2D Spectrum for FMO 
Experiment Optimal Model 

vs. 
      He 
       + 
      #($) 

Model 



Coherent vs. Incoherent Model 

•  Use the refined theoretical model to investigate 
the effects of quantum coherence on excitation 
energy transfer 

•  Two theories for energy transfer dynamics: 
– Coherent: full quantum master equation 
–  Incoherent: population dynamics only 
! conventional excitation hopping view 

•  Initial conditions: coherent superposition for the 
coherent picture, and population-only for the 
incoherent picture 
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•  Reversible population redistribution in space showing 
interference effects due to quantum coherence 

•  Efficiencies of reaching BChl 3 only marginally different. 

Dynamics in the Site Basis 
Coherent Picture Incoherent Picture 



Energy Trapping from BChl 3 
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FMO complex is a energy wire connected to RC through BChl 3 
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Reaction center 
(energy trap) 

What if an efficient energy trap is attached to BChl 3? 



Coherence Assisted Energy Trapping 

Coherent & trap 

•  Rapid trapping (50 fs) from BChl 3 enhances efficiency for the coherent 
case because of the suppression of back transfer 

•  Quantum coherence may enable excitation to find RC rapidly through 
reversible sampling in space ! Coherence assisted energy trapping 

Incoherent & trap 



Coherence Assisted Energy Trapping 

•  Long-lived electronic coherence enables the system to 
perform rapid and reversible sampling in space to 
search for the trap site 

•  Efficient trapping process dissipates the energy and 
localizes the excitation 

•  The scheme can be more efficient than incoherent 
hopping and is likely to be more robust on energetically 
disordered landscape 

•  This proposal is currently being actively studied by many 
groups: Aspuru-Guzik (Harvard), Lloyd (MIT), Whaley 
(Berkeley), Plenio (Imperial College, UK)… 



How is the long-lasting quantum 
coherence achieved? 

1.  Protein environment & correlated motions 
2.  Non-equilibrium effects in energy transfer 



Coherence Photon Echo of Bacterial Reaction Center 

•  Protein protection of electronic  
quantum coherence: 
–  H. Lee, Y.-C. Cheng & G.R. Fleming, 

Science 316, 1462 (2007). 
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The Reaction Center of Purple Bacteria 
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The Reaction Center of Purple Bacteria 



Probing H/B Coherence Dynamics: 
Two-color Electronic Coherence Photon Echo 

•  |H〉 and |B〉 selectively excited 
•  Design to probe coherence specifically 

 |g〉〈H| in t1, |B〉〈H| in t2 

Qy regime 
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Experimental Data @ 77K 

Photon-echo Intensity 



Mapping Coherence Dynamics in the RC 
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H. Lee, Y.-C. Cheng, G.R. Fleming, Science 316, 1462 (2007). 

•  Photon-echo intensity 
measured in this two-color 
experiment follows 
coherence dynamics. 

•  Along t1: |g〉〈H| dephasing 

•  Along t2: |B〉〈H| dephasing 

Photon-echo Intensity 

1 2 3 

t1 t2 

signal 
|g〉〈g| |g〉〈H| |B〉〈H| 



Dephasing of Electronic Coherence 

•  Phase associated with the time evolution of 
coherences (off-diagonal density matrix elements): 

!  Randomness in the energy gap %$ij(t) results in 
dephasing 

!  Fluctuations of the energy gap are induced by 
dynamics of the protein environment 

•  Stronger fluctuation ! faster dephasing 

!ij (t) = e
" i(wi"wj )t



Mapping Coherence Dynamics 
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H. Lee, Y.-C. Cheng, G.R. Fleming, Science 316, 1462 (2007). 

•  Rapid |g〉〈H| dephasing (t1)  

! Large EH fluctuations. 

Photon-echo Intensity 



Mapping Coherence Dynamics 
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H. Lee, Y.-C. Cheng, G.R. Fleming, Science 316, 1462 (2007). 

•  Slow |B〉〈H| dephasing (t2)  

! Smaller EH- EB energy gap 
fluctuations. 

Photon-echo Intensity 



Mapping Coherence Dynamics 

|g〉〈H| dephasing 
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H. Lee, Y.-C. Cheng, G.R. Fleming, Science 316, 1462 (2007). 

•  Rapid |g〉〈H| dephasing (t1) 
! Large EH fluctuations. 

•  Slow |B〉〈H| dephasing (t2) 
! Smaller EH-EB energy gap 
fluctuations. 

•  Energy fluctuations on B and 
H are highly correlated. 

•  Evidence for correlated 
protein environments! 



Theoretical Modeling 
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Impulsive response function formalism. 
BPhy-BChl electronic coupling ~ 220 cm-1. 
Transition energy fluctuations on Bphy/BChl: 

Cross-correlation between BPhy and BChl 
fluctuations (described by c): 

250 cm-1 vibrational mode coupled to BPhy 
(sawtooth pattern). 
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Experiment Simulation (c=0.9) 

H. Lee, Y.-C. Cheng, G.R. Fleming, Science 316, 1462 (2007). 

Experiment vs. Theory 



|B〉〈H| dephasing times: !g,77K =440fs, !g,180K=310fs 

Protein Protection of Electronic Coherence 

•  Electronic coupling alone (c=0.6) 
cannot explain the long 
dephasing time 

•  Strong cross-correlations (c~0.9) 
between protein environments 
responsible for long-lived |B〉〈H| 
coherence 

•  ! “Protein protection of 
excitonic coherence” 



Non-equilibrium Effects in Excitation Energy transfer 

•  Non-equilibrium effects could be important in ultrafast dynamics 
•  Conventional theories assume that baths are always in 

equilibrium ! over-estimate of coherence dephasing rate! 

Photon-induced dynamics 

Donor Acceptor 

Redfield/Forster picture 

Donor Acceptor 

&b'0(



Non-equilibrium Effects Lead to Longer Decoherence Time 

•  Calculations based on new theoretical formalism including non-
equilibrium bath effects show longer decoherence time 

•  New theory predicts quantum coherence lasting in the FMO complex at 
physiological temperature (Ishizaki &Fleming, PNAS 2000) 

Benchmark calculations on a spin-boson model. 
Ishizaki &Fleming, JCP 2009.  

exact (non-equilibrium effects) 

full Redfield 

secular Redfield 

Time (fs) 

Coherent EET Dynamics the FMO 

Room Temperature 



Concluding Remarks 

Pigments and proteins in the reaction 
center of a purple bacteria 

•  Energy transfer through quantum 
coherence has been revealed in 
photosynthesis 

•  Coherent dynamics may promote 
energy trapping in light harvesting 

•  Correlations in protein dynamics & 
non-equilibrium bath effects 
contribute to the preservation of 
coherence 

•  High-performance computing 
crucial for studies of quantum 
dynamics, spectra, molecular 
quantum chemistry, protein 
dynamics, complex organization 
…etc. 
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Propagating Dynamics with Bath Memory 

•  We use a time-nonlocal approach to retain 
memory effects: 

•  Important for the description of peak shape 
•  K(t,&) " memory kernel, can be calculated from 
#($) using perturbation theory 

•  Decompose K(t, &) into exponentials to facilitate 
efficient propagation of time-nonlocal dynamics 

Meier & Tannor, J. Chem. Phys. 111, 3365 (1999); Cheng, Lee & Fleming, JPCA (2007). 



Propagating Dynamics with Bath Memory 

•  Redfield theory ! does not describe full 

•  We use a time-nonlocal approach to retain memory 
effects: 

•  K(t,&) " memory kernel, can be calculated from C(t) 
using perturbation theory 

Meier & Tannor, J. Chem. Phys. 111, 3365 (1999); Cheng, Lee & Fleming, JPCA (2007). 



Theoretical Background 

Photosynthetic Excitons & Quantum Dynamics 



J 

Exciton Hamiltonian and Excitonic Coupling 

|g〉 

|Qy〉 
!2 

site energy coupling •  Excitations interact with each other 
through excitonic coupling J 
•  He ! transition energies and excitonic 
couplings in multichromophoric systems!! 

“site basis” 
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|Qy〉 
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•  Excitation energy transfer 
induced by excitonic coupling J 
•  When J is significant, the 
eigenstates of He has to be 
considered ! excitons 
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Excitonic Coupling and Photosynthetic Excitons 

•  Excitonic coupling J can result in 
delocalized excitations ! excitons 
•  Optical transitions correspond to 
excitonic transitions 

“exciton basis” 
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Dynamics in the Condensed Phase 

Energy of an individual 
chromophore i modulated by its 
protein environment: 

 %$i(t) ! fast, dynamical changes 
 !i ! slow, static changes 
 f(!i): inhomogeneous broadening 

|g> 

|e> 



Modeling Excitation Energy Transfer: System-Bath Model 

•  Environments (baths)   
! harmonic oscillators 

•  System-bath couplings  
! correlation function:  

or spectral densities: 

•  Reduced density matrix: 

! He and #($) determine the 
dynamics, "(t).  

System!He 

Bath 

$
(t)

 



Redfield Picture of Excitation Energy Transfer 

When system-bath coupling is weak, we can use Redfield 
equation to describe energy transfer: 

": reduced-system density matrix 

N: number of chromophores 

dissipation determined 
by #($) 

exciton Hamiltonian 

population coherence 

… 

… 

…
 

…
 

…
 

… 



Sawtooth Pattern from Vibrational Coherence 

1 2 3 

t1 t2 

signal 
|g〉〈g| |g〉〈H| |B〉〈H| 

Vibrational coherence induced by 
pulse 1 explains the sawtooth 
pattern: 

t1+t2 

A non-orthogonal cut (t1) leads 
to the sawtooth pattern 

t1 
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Electronic Coherence in FMO (77K) 

•  2D electronic spectra show quantum beats on the diagonal cuts 
•  Strong evidence for long-lasting excitonic coherence ( > 600 fs) in 

the Fenna-Matthews-Olson Complex  
! coherent wavelike energy transfer 

•  True electronic quantum effect may play a role in energy transfer 

G.S. Engel, T.R. Calhoun, E.L. Read, T. Ahn, T. Mancal, Y.-C. Cheng, R.E. Blankenship & 
G.R. Fleming, Nature 446, 782 (2007) 



Simple Model for Coherence Assisted Energy Trapping 

Consider energy transfer within a dimer of  two coherently 
coupled sites: 

Bloch dynamics using 450 fs A/B dephasing time, 500 fs intrinsic A!B transfer time; 
actually modeled based on parameters suitable for a photosynthetic reaction center  

A 

B 

A 

B 

Effective A!B time: 500 fs 



Simple Model for Coherence Assisted Energy Trapping 

450 fs A/B dephasing time, 500 fs A!B transfer time, 50 fs B!T time. 

A 

B 

With T 

T 

Adding rapid trapping by T results in rapid A population decay 
! only possible because of coherent oscillation 

A 

B 

50 fs 
T 

Energy trap T efficiently captures energy on B at the maxima!! 



Simple Model for Coherence Assisted Energy Trapping 

Quantum coherence promotes the efficiency of light capture 

Coherent: reversible on A/B 

T 
T 

A 

Incoherent: station to station, 
A!B transfer limiting the rate 

A 

Lee, Cheng & Fleming, UP2008 

This model explains efficient excitation energy trapping in 
the photosynthetic reaction center of purple bacteria 


