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Time-of-flight measurement

• First evidence for Bose Einstein condensates (BEC’s) 
emerged from TOF measurements.

• A technique of measuring the temperature of cold 
atomic samples is the TOF measurement.

• Cold atomic cloud is allowed for a thermal expansion 
after its release from the trap. 

• TOF measurements are performed either by acquiring 
the absorption signal of the probe laser beam through 
the falling and expanding atomic cloud, or by 
measuring the fluorescence of the atoms excited by 
the resonant probe light.



Analyses of TOF measurements
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• Initial probability distribution of finding an atom in the phase 

space
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• Newton’s equation for ballistic motion of a particle in the 

gravitational field
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• Substituting the above expression for v0 and then integrating 

over z0, one can obtain the TOF distribution at an arbitrary 

distance z = H,



Classical TOF distribution in 1D
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TOF distribution at an arbitrary distance z = H,

The temperature of the 

atomic cloud is 

determined by fitting the 

experimental result to the 

theoretically predicted 

TOF signal of the cloud.
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Classical analysis of TOF distribution
• The theoretical treatments of the TOF distribution that can be 

obtained using the Green’s function method or any 
semiclassical method, however, are equivalent to the TOF 
distribution obtained by using Newton’s equations for ballistic 
motion of particles.

• This kind of purely classical analyses are adopted in most of 
the discussions on TOF measurements where arrival time of 
atomic or sub-atomic particles is treated as an elementary 
well-defined, unique, and classical quantity.

• In the domain of small atomic masses and low temperatures 
where quantum mechanical effects should be significant, 
quantum TOF distribution can not be reproduced with 
classical or semiclassical analyses. 

• Here provide an example in the context of BEC matter-wave 
interference, where a quantum analysis for TOF is necessary.



• Phase contrast 
images of BEC’s  
of sodium atoms  
optically cooled , 
trapped, and 
then transferred 
into a double 
well potential.

• The distance 
between the two 
BEC’s  was varied 
by changing the 
power of the 
argon ion laser-
light sheet from 
7 to 43 mW.

M. R. Andrews et al., Science 275, 637 (1997).



Interference pattern of two expanding BEC’S

Observed after 40 ms 

time-of-flight for two 

different powers of 

the argon ion laser-

light sheet (raw-data 

images).

The fringe periods 

were 20 and 15 mm, 

the powers were 3 

and 5 mW.

M. R. Andrews et al., 

Science 275, 637 (1997).



Interference of BEC’s in space 
• Interference between two freely expanding Bose-

Einstein condensates (BEC) in space has been 
observed in a remarkable experiment [1].

• Coherent splitting of BEC atoms with optically induced 
Bragg diffraction have been done experimentally [2,3].

• The spatial coherence of a BEC is measured using 
interference technique by creating and recombining 
two spatially displaced, coherently diffracted copies of 
an original BEC [3].

1. M. R. Andrews et al., Science 275, 637 (1997).

2. M. Kozuma et al., Phys. Rev. Lett. 82, 871 (1999).

3. E. W. Hagley et al., Phys. Rev. Lett. 83, 3112 (1999); J. E. Simsarian 

et al. Phys. Rev. Lett. 85, 2040 (2000).



Time as an operator

• Pauli’s argument: if there existed a self-adjoint time operator 
T canonically conjugate to the Hamiltonian

so that he spectrum of E would necessarily extend 
continuously over the range [- ∞, ∞].

• In principle, this precludes the existence of a self-adjoint time 
operator for systems where the spectrum of the Hamiltonian 
is bounded, semibounded or discrete, i.e. for most of the 
systems of physical interest.
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Postulates in Bohm's causal 
interpretation of quantum mechanics

• A quantum entity, such as an electron propagating, in a 
potential V(x, t) is an actual point-like particle and an 
accompanying wave y(x, t) which probes the potential and 
guides the particle's motion accordingly so that it has a well-
defined position x(t) and velocity v(t) at each instant of time t.

• ψ(x, t) satisfies the time-dependent Schrödinger equation.

• The particle’s equation of motion is 

• The quantity ψ(x,t)dx is the probability of the particle being 
between x and x +dx at time t even in the absence of a 
position measurement.
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Bohm's causal approach

• Uncertainty enters only through the probability distribution 
|y(x(0) ,0)|2 for the unknown initial position x(0)=x(t=0) of the 
particle.

• Nonintersection property of Bohm trajectories x(x(0),t) with 
different starting points x(0) [but the same initial wave 
function y(x ,0)]: If x(0)′ ≠ x(0) then x(x(0)′,t) ≠ x(x(0),t) for any t.

• The probability distribution for a particle property f:

• So
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Arrival time distribution

• Consider the complete set of starting points x(0) for each of 
which the associated trajectory x(x(0), t) reaches x=X at least 
once at some time(s) T(x(0)) subsequent to t=0.

• Because, the trajectories do not cross or touch each other, this 
set must consist of a single continuous interval, say [xa

(0) , xb
(0) ].

• The arrival time distribution is

• Again because of the nonintersection property, there is one and 
only one value of x(0) in the interval [xa

(0) , xb
(0) ] for which the 

trajectory x(x(0),t) reaches X at a particular value of T.
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Arrival time distribution in 1D

• In addition, of course, even if that trajectory reaches X more 
than once only one of its arrival times is equal to the specified 
value of T.

• So 
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• Continuity equation

• Quantum TOF distribution for the atoms reaching a detector 
at a finite surface plane S is given by

Arrival time distribution in 3D
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TOF distribution or 
arrival time distribution

• Most of the experiments (particularly when matter-
waves are associated with centre-of-mass motion) 
demonstrate matter-wave interference by showing the 
intensity variation at an extended region of detection 
space at a fixed time.

• We discuss here the BEC matter-wave interference in 
the time-of-flight (TOF) distribution or arrival time 
distribution.

• We predict and quantify the matter- wave interference 
in the center-of-mass motion by calculating the time 
distribution of matter-wave arrival probability at some 
fixed spatial point.



Vertical Setup 1
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Time evolution of condensate 
wavefunction

• use the Gross-Pitaevskii equation for the evolution of 
condensate wavefunction
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Quantum TOF distribution
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Parameters
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Quantum TOF distribution 1(t)
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Square modulus of the 
wavefunction

• One can also be tempted to calculate a time distribution from

• But  | (H,t)|2 dt does not provides us a dimensionless 
probability. 

• On the other hand, 1(t) has the proper dimension (time−1) for 
the time distribution since 1(t)dt gives us the probability for 
the BEC atoms to have the TOF between t and t + dt.

• The characteristic behavior and magnitude of the two 
distribution functions | (H,t)|2 and 1(t) are not the same.
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Factors affecting interference in 
TOF distribution

• Interference in 1(t) arises mainly because of the temporal 
overlap P12(H, t) and the oscillatory factor 1.

• To increase the temporal overlap P12(H, t) , one has to find the 
condition under which the spreading of the wave packet 
increases: small 0, lighter mass atoms (small m), distant 
detector location (large H) will be helpful in this regard to 
enhance this effect.

• The oscillatory factor 1 can be increased either by reducing
the value of 0, or by increasing the parameters d and H.

• Higher value of  0 (or m) → small  → small P12(H, t) (should 
increase H)

• Higher value of 0 → small 1 (0 
4 in denominator should 

increase H and d)
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Magnitude is roughly 105 times smaller



Conclusions (I)
• We propose a scheme to experimentally observe 

matter-wave interference in the time domain, 
specifically in the TOF (arrival-time) distribution using 
atomic BEC.

• This experimentally testable scheme has the 
potential to empirically resolve ambiguities inherent 
in the theoretical formulations of the quantum 
arrival time distribution.

• We use the modulus of the probability current 
density approach to calculate the quantum TOF 
distributions for atomic BEC Schrödinger cat 
represented by superposition of macroscopically 
separated wave packets in space.



Conclusions (II)
• There is no classical analogue of this TOF distribution 
1(t) and this is purely a quantum distribution where 
we quantify the matter-wave interference in the 
quantum TOF signal.

• This approach also provides a proper classical limit as 
the interference and hence the coherence in the 
quantum TOF signal disappears in the large-mass limit.

• It will be interesting to see if our prediction of 
interference in time domain (TOF distribution) can be 
verified in actual experiments.

• Refs: Md. M. Ali and H.-S. Goan, J. Phys. A: Math. Theor. 42, 385303 (2009); 
Md. M. Ali and H.-S. Goan*, invited book chapter in “Bose-Einstein 
Condensates: Theory, Characteristics, and Current Research”, Ed. by P. E. 
Matthews (Nova Science, New York, 2010)






