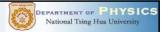
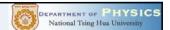

3.16, 2010 AMO Seminar


The Fine Structure Constant

Li-Bang Wang


Origin of fine structure constant

- Introduced by Sommerfeld in 1916, as relativistic correction of Bohr model.
- $En = -\alpha^2 mc^2 \left(\frac{1}{2n^2}\right) = \frac{-13.6eV}{n^2}$ •non-relativistic
- relativistic correction $-\alpha^4 mc^2 \frac{1}{4n^2} \left[\frac{2n}{(l+1/2)} \frac{3}{2} \right]$

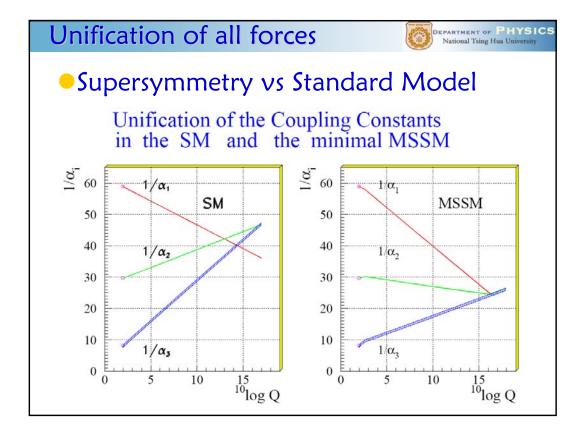
$$\alpha = \frac{e^2}{\hbar c} \approx \frac{1}{137}$$
 Speed of electron / speed of light

Fine structure splitting

• spin-orbit interaction (L·S, fine structure) $-\alpha^4 mc^2 \frac{1}{4n^2} \left[\frac{2n}{(j+1/2)} - \frac{3}{2} \right]$

The same magnitude as relativistic correction

$$\alpha = e^2 / \hbar c \approx 1 / 137$$

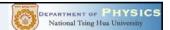

The strength of <u>electromagnetic</u> interaction

→ Irrelevant to strong, weak and gravitational forces

Standard Model description

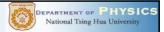
- Usually use coupling constant g to denote the strength of an interaction
- Electromagneic: $g_e = (4\pi\alpha)^{1/2}$
- Strong: g
- Weak: g_w and g_z
- Interestingly, $g_w = g_e/\sin\theta_w$ and $g_z = g_e/\sin\theta_w \cos\theta_w$ where $\theta_w = Weinberg$ Angle
- Electro-weak unification

EM force

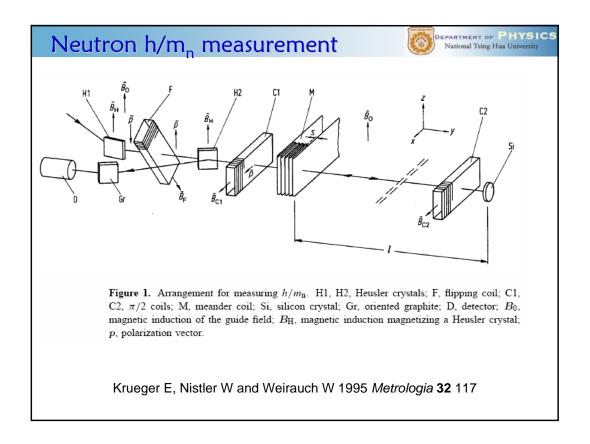

- QED the most well-tested theory
- Fine structure constant α the most precisely determined constant among four forces

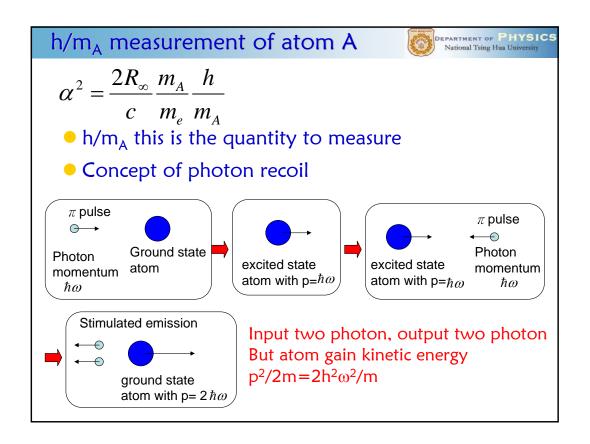
$$\alpha = e^2 / \hbar c \approx 1/137$$
 Need to know e^2 / h

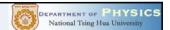
 α^{-1} = 137.035 999 070 (98)


Gabrielse, Hanneke, Kinoshita, Nio, and Odom, Phys Rev Lett 97, 30802 (2006)

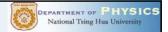
How to measure α


- Neutron h/m_n measurement
- h/m_A measurement of atom A
- Magnetic moment of electron
- Helium fine structure
- Muonium and hydrogen hyperfine structure
- Quantum Hall effect
- Ac Josephson effect


Neutron h/m_n measurement

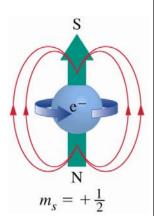

$$\alpha^2 = \frac{2R_{\infty}}{c} \frac{m_n}{m_e} \frac{h}{m_n}$$

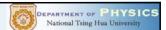
- R_∞, c, m_n, m_e very precisely known.
- h/m_n this is the quantity to measure
- De Broglie wavelength $\lambda = h/m_n v$, so measure λ and v will do
- V: rotating polarization chopper, λ: Bragg diffraction


Photon recoil

- So input photon and output photon have different energy $\Delta\omega = 2h^2/m$
- h/m measured, so is α
- In real experiment, a technique called atom interferometer is employed

example: Weiss D S, Young B C and Chu S 1993 Phys. Rev. Lett. 70 2706


g factor of electron


what is g factor?

$$\frac{\left|\overline{\mu}\right|}{\mu^{B}} = g \cdot \frac{\left|\overline{s}\right|}{\hbar}$$

- ❖ Classical non-relativistic g=1
- ❖ QM, Dirac Theory predict g=2
- ❖ In reality, g= 2.002319304

g factor of electron

- g can be expanded as a function of fundamental constant α
- measure $g \rightarrow$ measure α if all the required information known

$$\frac{g}{2} = 1 + C_2 \left(\frac{\alpha}{\pi}\right) + C_4 \left(\frac{\alpha}{\pi}\right)^2 + C_6 \left(\frac{\alpha}{\pi}\right)^3 + \dots$$

$$+ a_{\mu\tau} + a_{hadronic} + a_{weak}$$

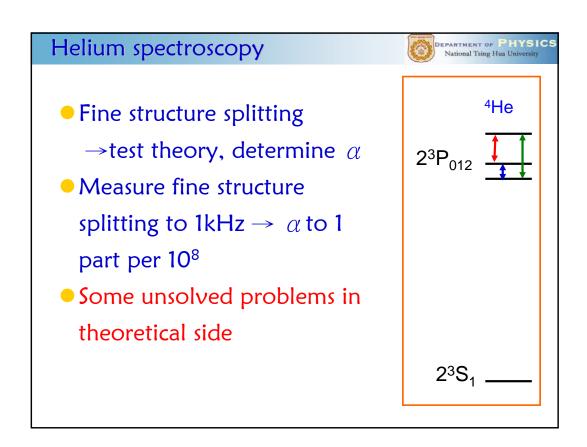
How to measure g

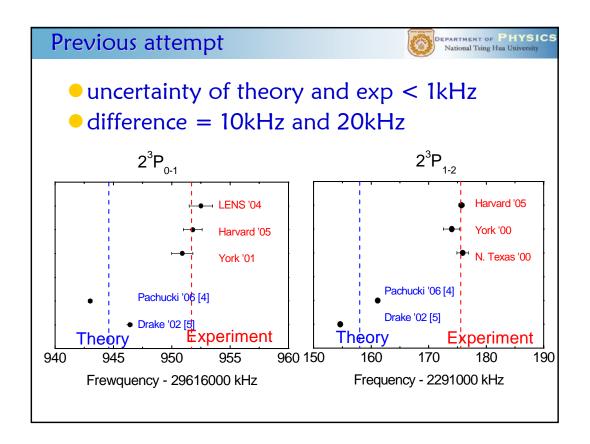
Spin precession (Larmor) frequency

$$\hbar\omega_{L} = m_{s}g \cdot \mu_{B} \cdot B \qquad \mu_{B} = \frac{e\hbar}{2m}$$

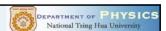
Calibration of the magnetic field by cyclotron frequency:

$$\hbar\omega_C = \frac{q}{M}B$$


$$g = 2\frac{\omega_L}{\omega_C} \frac{q}{e} \frac{m}{M} = 2\frac{\omega_L}{\omega_C}$$

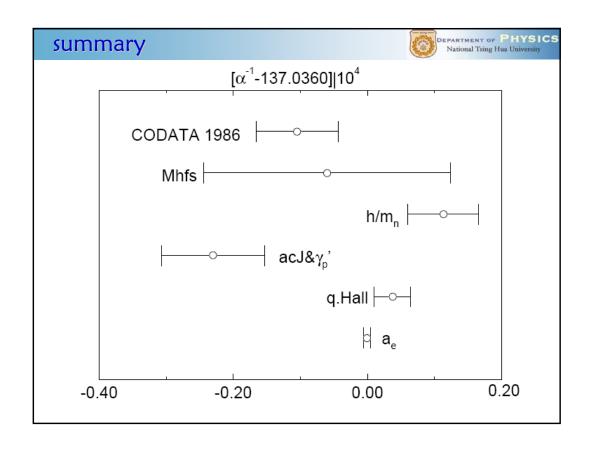

Measurement on a single electron in a Penning trap

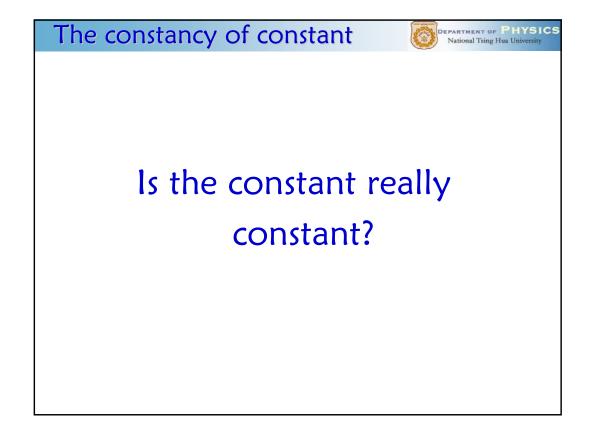
$$\alpha^{-1}$$
 = 137.035 999 070 (98)


Gabrielse, Hanneke, Kinoshita, Nio, and Odom, Phys Rev Lett 97, 30802 (2006)

Helium fine structure	O	EPARTMENT OF PHYSIC National Tsing Hua University
helium: simple atom or can calculate		electron nucleus
Contribution	Magnitude	
Nonrelativistic energy	Z ²	4
Relativistic correction	$Z^4\alpha^2$	9×10 ⁻⁴
Anomalous magnetic moment	$Z^4 \alpha^3$	7×10 ⁻⁴
Mass polarization (SMS)	$Z^2\mu/M$	5×10-4
Second-order mass polarization	$Z^2(\mu/M)^2$	8×10 ⁻⁸
Finite mass correction (NMS)	$Z^4 \alpha^2 \mu/M$	1×10 ⁻⁷
QED correction (Lamb shift)	$Z^4 \alpha^3 ln \alpha$	6×10 ⁻³
Finite Nuclear Size	$Z^4 (R_N/a_o)^2$	2×10 ⁻⁹

Hydrogen and muonium


- Hydrogen, simpler than helium
- Theory 100% correct, but...
- Proton is spin ½ particle, (helium spin 0)
- Hyper fine structure more sensitive to probe magnetic moment
- Muonium? anti-muon+electron or muon + positron, difficult



Josephson effect

- DC Josephson effect: current through an insulating junction due to Tunneling (no E)
- AC Josephson effect: DC voltage V across the junction may also give rise to a AC current with frequency ω
- ω =2eV/h, one can measure ω and V very precisely, and determine e/h to 10^{-16}
- Unfortunately α proportional to e^2/h

