

Observation of Feshbach resonances in ultracold ⁸⁷Rb and ¹³³Cs mixtures at high magnetic field

Motivation

• Bialkali molecules in the ground state have a large permanent electric dipole moment ex. RbCs d=1.25 Debye

Dipole-dipole interaction

Contact interaction

⁵²Cr BEC_PRL, 101, 080401 (2008)

 Quantum computation with trapped polar molecules

Ultracold chemistry and precision measurement

- Molecules clocks
- Electric dipole moment (EDM) measurement

Nature 473, 493 (2011), Phys. Rev. A 84, 042504 (2011)

5thDec, 2011 NTHUPHYS

PRL, 88, 067901 (2002)

Helium buffer-gas

• ⁷Li, Rb

MMQA_MicroKelvin Molecules in a Quantum Array

Professor EA Hinds (Physics ICL) Dr MR Tarbutt (Physics ICL) Professor JM Hutson (Chemistry Durham) Dr SL Cornish (Physics Durham) Dr D Carty (Physics & Chemistry Durham) Dr E Wrede (Chemistry Durham)

Helium buffer-gas cooling YbF, T:3K d=10¹⁷ cm⁻³ LiH, CaF, SO, OH Stark decelerator (Electric) LiH brought to rest removed 50% of E_{kin} of CaF Sympathetic cooling ⁷Li and ⁸⁷Rb Li in magnetic trap (300µK), o

Li in magnetic trap (300µK), overlap with LiH from Stark decelerator (50mK) ->5mK after 0.6s try cool Li using rf evaporation

RbCs, CsYb Mixture Zeeman decelerator (Magnetic) PhotoStop Theory

- Bose-Einstein condensations (BECs)
 - ⁸⁷Rb BEC in a combined magnetic and optical trap
 - ¹³³Cs BEC in a crossed dipole trap
 - A quantum degenerate Bose mixture of ⁸⁷Rb and ¹³³Cs
- Feshbach molecules
 - The formation background and method
 - ⁸⁷Rb¹³³Cs Feshbach resonance measurement
- Stimulate Raman adiabatic passage (STIRAP)
 - a two-photon scheme transfers the Feshbach molecules into the rovibronic ground state
- Summary

Alkali metals	Alkaline earth metals	Noble Gases	Lanthanide	Others
Li	Mg	Не	Dy	Cr
Na	Са	Ne	Er	Ag
К	Sr	Ar	Tm	Cd
Rb	Ra	Kr	Yb	Hg
Cs	Ва	Хе		AI
Fr				

Feshbach molecules:

⁶Li (Innsbruck, Rice, Lab kasIter-Brassel, MIT 03-05), ⁷Li (Rice 02, 09), ²³Na (MIT 98-99), ³⁹K(Florence 07),

 40 K(JILA 03-04), 85 Rb(JILA 03), 87 Rb(MPI 02-04), 133 Cs (Stanford, Innsbruck 04, 09), 52 Cr (Stuttgart 05)

⁶Li²³Na (MIT 04)

⁶Li⁴⁰K (Innsbruch 08)

⁶Li⁸⁷Rb (Tubingen, British Columbia(Canada) 08)

⁷Li⁸⁷Rb (Tubingen 09)

³⁹K⁸⁷Rb (Florence 08)

⁴⁰K⁸⁷Rb (Florence 08)

⁴¹K⁸⁷Rb (Florence 08)

⁸⁵Rb⁸⁷Rb (JILA 06)

⁸⁷Rb¹³³Cs (Innsbruck, Durham 09 11)

¹(Steele, J. Vac. Sci. Technol. B 28, C6F1 (2010))

Alkali metals	Alkaline earth metals	Noble Gases	Lanthanide	Others
Li 🔸	Mg	Не	Dy	Cr
Na 🍵	Са	Ne	Er	Ag
K •	Sr 🖕	Ar	Tm	Cd
Rb 🔸	Ra	Kr	Yb 🔸	Hg
Cs •	Ва	Xe		AI
Fr				

Feshbach molecules:

⁶Li (Innsbruck, Rice, Lab kasIter-Brassel, MIT 03-05), ⁷Li (Rice 02, 09), ²³Na (MIT 98-99), ³⁹K(Florence 07),

 40 K(JILA 03-04), 85 Rb(JILA 03), 87 Rb(MPI 02-04), 133 Cs (Stanford, Innsbruck 04, 09), 52 Cr (Stuttgart 05)

⁶Li²³Na (MIT 04)

⁶Li⁴⁰K (Innsbruch 08)

⁶Li⁸⁷Rb (Tubingen, British Columbia(Canada) 08)

⁷Li⁸⁷Rb (Tubingen 09)

³⁹K⁸⁷Rb (Florence 08)

⁴⁰K⁸⁷Rb (Florence 08)

⁴¹K⁸⁷Rb (Florence 08)

⁸⁵Rb⁸⁷Rb (JILA 06)

⁸⁷Rb¹³³Cs (Innsbruck, Durham 09 11)

¹(Steele, J. Vac. Sci. Technol. B 28, C6F1 (2010))

Alkali metals	Alkaline earth metals	Noble Gases	Lanthanide	Others
Li 🔸	Mg	Не	Dy	Cr
Na 🍵	Са	Ne	Er	Ag
K •	Sr 🖕	Ar	Tm	Cd
Rb 🔸	Ra	Kr	Yb 🔸	Hg
Cs •	Ва	Xe		AI
Fr				

Feshbach molecules:

⁶Li (Innsbruck, Rice, Lab kasIter-Brassel, MIT 03-05), ⁷Li (Rice 02, 09), ²³Na (MIT 98-99), ³⁹K(Florence 07),

 40 K(JILA 03-04), 85 Rb(JILA 03), 87 Rb(MPI 02-04), 133 Cs (Stanford, Innsbruck 04, 09), 52 Cr (Stuttgart 05)

⁶Li²³Na (MIT 04)

⁶Li⁴⁰K (Innsbruch 08)

⁶Li⁸⁷Rb (Tubingen, British Columbia(Canada) 08)

⁷Li⁸⁷Rb (Tubingen 09)

³⁹K⁸⁷Rb (Florence 08)

⁴⁰K⁸⁷Rb (Florence 08)

⁴¹K⁸⁷Rb (Florence 08)

⁸⁵Rb⁸⁷Rb (JILA 06)

⁸⁷Rb¹³³Cs (Innsbruck, Durham 09 11)

¹(Steele, J. Vac. Sci. Technol. B 28, C6F1 (2010))

Alkali metals	Alkaline earth metals	Noble Gases	Lanthanide	Others
Li 🔸	Mg	Не	Dy	Cr
Na 🍵	Са	Ne	Er	Ag
K •	Sr 🖕	Ar	Tm	Cd
Rb 🔸	Ra	Kr	Yb 🔸	Hg
Cs •	Ва	Xe		AI
Fr				

Feshbach molecules:

⁶Li (Innsbruck, Rice, Lab kasIter-Brassel, MIT 03-05), ⁷Li (Rice 02, 09), ²³Na (MIT 98-99), ³⁹K(Florence 07),

⁴⁰K(JILA 03-04), ⁸⁵Rb(JILA 03), ⁸⁷Rb(MPI 02-04), ¹³³Cs (Stanford, Innsbruck 04, 09), ⁵²Cr (Stuttgart 05)

ex.

```
<sup>6</sup>Li<sup>23</sup>Na (MIT 04)
```

⁶Li⁴⁰K (Innsbruch 08)

⁶Li⁸⁷Rb (Tubingen, British Columbia(Canada) 08)

```
<sup>7</sup>Li<sup>87</sup>Rb (Tubingen 09)
```

³⁹K⁸⁷Rb (Florence 08)

⁴⁰K⁸⁷Rb (Florence 08)

⁴¹K⁸⁷Rb (Florence 08)

⁸⁵Rb⁸⁷Rb (JILA 06)

⁸⁷Rb¹³³Cs (Innsbruck, Durham 09 11)

RbCs is one of the stability of quantum gases of alkali-metal dimers

$XY+XY \rightarrow X_2+Y_2$
$XY + XY \rightarrow X + XY_2 \text{ or } X_2Y + Y$
PRA, 81, 060703(R) (2010)

	Na	К	Rb	Cs
i Ja C Cb	-328(2)	-533.9(3) 74.3(3)	-618(200) 45.5(5) -8.7(9)	-415.38(2) 236.75(20) 37.81(13) 29.1(1.5)

5thDec, 2011 NTHUPHYS

¹(Steele, J. Vac. Sci. Technol. B 28, C6F1 (2010))

Cooling Process

Review

- Cold-atomic beams source is created by Pyramid MOT.
- ->9x10⁸ ⁸⁷Rb & 4x10⁸ ¹³³Cs can be obtained by science MOT.
- The optical potential is produced by two laser beams with waists of 70 µm and wavelength 1550nm from a 30 Watt **IPG ELR-30-LP-SF**

Review

Vacuum System

- Cold-atomic beams source is created by Pyramid MOT.
- ->9x10⁸ ⁸⁷Rb & 4x10⁸ ¹³³Cs can be obtained by science MOT.
- The optical potential is produced by two laser beams with waists of 70 µm and wavelength 1550nm from a 30 Watt **IPG ELR-30-LP-SF**

Review

- Cold-atomic beams source is created by Pyramid MOT.
- ->9x10⁸ ⁸⁷Rb & 4x10⁸ ¹³³Cs can be obtained by science MOT.
- The optical potential is produced by two laser beams with waists of 70 µm and wavelength 1550nm from a 30 Watt IPG ELR-30-LP-SF

- Atoms are transferred into |1,+1> from |1,-1> by adiabatic rapid passage.
- A 26 x 26 mm square coil of 3 turns are driven to create an RF Filed at 1.5 MHz. A bias field of 22.4 G is then switched on to cross the RF Zeeman resonance at 2.1 G.

 $P_{\rm ad} = 1 - \exp(-\pi\omega_1^2/2|\alpha|)$ $\omega_1^2 \gg |\alpha| = (d/dt)|\omega_0 - \omega_{\rm f}|$

J. Phys. B: At. Mol. Phys. 17 (1984) 4169-4178

- Atoms are transferred into |1,+1> from |1,-1> by adiabatic rapid passage.
- A 26 x 26 mm square coil of 3 turns are driven to create an RF Filed at 1.5 MHz. A bias field of 22.4 G is then switched on to cross the RF Zeeman resonance at 2.1 G.

- Atoms are transferred into |1,+1> from |1,-1> by adiabatic rapid passage.
- A 26 x 26 mm square coil of 3 turns are driven to create an RF Filed at 1.5 MHz. A bias field of 22.4 G is then switched on to cross the RF Zeeman resonance at 2.1 G.

$$P_{\rm ad} = 1 - \exp(-\pi\omega_1^2/2|\alpha|)$$
$$\omega_1^2 \gg |\alpha| = (d/dt)|\omega_0 - \omega_{\rm f}|$$

J. Phys. B: At. Mol. Phys. 17 (1984) 4169-4178

- Control the depth of the levitated crossed dipole trap by 1 manipulating the magnetic field gradient. C. Chin, Phys. Rev. A, 78, 011604(R), 2008
- Sympathetic cooling of different spin states in the levitated cross of dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm.
- Application of the experiment to sympathetic cooling of ¹³³Cs. The dipole trap potential corresponds to 100 mW in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G.

- The phase-space density trajectory to BEC of ^{87}Rb (|1,+1>) in the cross dipole trap. N_{BEC} = 1 x 10⁶
- Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient.
 C. Chin, Phys. Rev. A, 78, 011604(R), 2008
- Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm.
- Application of the experiment to sympathetic cooling of ¹³³Cs. The dipole trap potential corresponds to 100 mW in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G.

5thDec, 2011 NTHUPHYS

Eur. Phys. J. D ((DOI: 10.1140/epjd/e2011-10720-5))

- The phase-space density trajectory to BEC of ⁸⁷Rb (|1,+1>) in the cross dipole trap. N_{BEC} = 1 x 10⁶
- Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient.
 C. Chin, Phys. Rev. A, 78, 011604(R), 2008
- Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm.
- Application of the experiment to sympathetic cooling of ¹³³Cs. The dipole trap potential corresponds to 100 mW in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G.

Eur. Phys. J. D ((DOI: 10.1140/epjd/e2011-10720-5))

- The phase-space density trajectory to BEC of ⁸⁷Rb (|1,+1>) in the cross dipole trap. N_{BEC} = 1 x 10⁶
- Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient.
 C. Chin, Phys. Rev. A, 78, 011604(R), 2008
- Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm.
- Application of the experiment to sympathetic cooling of ¹³³Cs. The dipole trap potential corresponds to 100 mW in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G.

 $\left|\right\rangle$

Durham

University

¹³³Cs BEC in the cross-dipole trap

¹³³Cs BEC in the cross-dipole trap

To avoid the interspecies loss and optimise the transfer of ¹³³Cs, lower RF frequency or a resonant light to remove all ⁸⁷ Rb. The resulting loading is highly efficient with ~50% of ¹³³Cs transferred into dipole trap. This is double the atoms number loaded compared to ⁸⁷Rb absence case.

To avoid the interspecies loss and optimise the transfer of ¹³³Cs, lower RF frequency or a resonant light to remove all ⁸⁷ Rb. The resulting loading is highly efficient with ~50% of ¹³³Cs transferred into dipole trap. This is double the atoms number loaded compared to ⁸⁷Rb absence case.

 N_{BEC} of ¹³³Cs = 8 x 10⁴

To avoid the interspecies loss and optimise the transfer of ¹³³Cs, lower RF frequency or a resonant light to remove all ⁸⁷ Rb. The resulting loading is highly efficient with ~50% of ¹³³Cs transferred into dipole trap. This is double the atoms number loaded compared to ⁸⁷Rb absence case.

 N_{BEC} of ¹³³Cs = 8 x 10⁴

Cs BEC window

Optimising the magnetic field:

Toward Dual BEC

2) A strong interspecies loss after loading into the levitated dipole trap. $-T_{Cs}= 0.8(1) \text{ s}, T_{Rb}= 4(1) \& 70(10) \text{ s}.$ $-T_{Rb}= 0.9(2) \text{ s}, T_{Cs}= 2(1) \& 10(3) \text{ s}.$

lower 3 body loss by reduce the peak density

- change to a larger beam waist
- decompress trap

 $\left|\right\rangle$

urham

University

Eur. Phys. J. D (DOI: 10.1140/epjd/e2011-20015-6) Phys. Rev. A **84** 011603(R) (2011)

Toward Dual BEC

1) The calculated polarisabilities in atomic unit are ~ 572 a_0^3 for ¹³³Cs and ~ 425 a₀³ for ⁸⁷Rb at 1550 nm. Phys. Rev. A, 73, 022505, 2006.

2) A strong interspecies loss after loading into the levitated dipole trap. $-T_{Cs} = 0.8(1) \text{ s}, T_{Rb} = 4(1) \& 70(10) \text{ s}.$ -T_{Rb}= 0.9(2) s, T_{Cs}= 2(1) & 10(3) s.

lower 3 body loss by reduce the peak density

- change to a larger beam waist
- decompress trap

 \wedge

urham

University

Immiscible quantum degenerate mixture: the relative strength of the atomic interactions

 $\Delta = \frac{g_{RbCs}}{g_{Rb}g_{Cs}} > 1, g_{ij} = 2\pi\hbar^2 a_{ij}(\frac{m_i + m_j}{m_i m_j})$ Phys.Rev. A, 65, 063614, 2002

In our case, B = 22.4 G, a_{Rb} = 100 a_0 and a_{Cs} = 280a₀, the observation of immiscibility require a_{RbCs} > 165a₀. a_{RbCs} = 650a₀ (J. Hustson, private communication 2011)

Eur. Phys. J. D (DOI: 10.1140/epjd/e2011-20015-6)

Phys. Rev. A 84 011603(R) (2011)

Stochastic projected Gross-Pitaevskii equation

$$\begin{split} \frac{\partial \psi_i}{\partial t} &= \mathcal{P}\{\frac{-i}{\hbar}\hat{H}^i_{GP}\psi_i + \frac{\gamma_i}{k_BT}\left(\mu_i - \hat{H}^i_{GP}\right)\psi_i + \frac{d\hat{W}_i}{dt}\}\\ \hat{H}^i_{GP} &= -\frac{\hbar^2}{2m_i}\nabla^2 + V_i(\mathbf{r}) + g_{ii}|\psi_i|^2 + g_{12}|\psi_{3-i}|^2\\ & \text{I. K. Liu, paper in preparation} \end{split}$$

stochastic projected Gross-Pitaevskii equation

NTUE L. K. Liu and Prof. S. C. Gou

urham University

stochastic projected Gross-Pitaevskii equation

NTUE L. K. Liu and Prof. S. C. Gou

Outline

- Bose-Einstein condensations (BECs)
 - ⁸⁷Rb BEC in a combined magnetic and optical trap
 - ¹³³Cs BEC in a crossed dipole trap
 - A quantum degenerate Bose mixture of ⁸⁷Rb and ¹³³Cs

• Feshbach molecules

- The formation background and method
- ⁸⁷Rb¹³³Cs Feshbach resonance measurement
- Stimulate Raman adiabatic passage (STIRAP)
 - a two-photon scheme transfers the Feshbach molecules into the rovibronic ground state
- Summary

Feshbach resonances:

C. Chin, Rev. Mod. Phys. 82, 1225-1286 (2010) F. Ferlaino *et al.*, arXiv: 0809.3920 (2009)

Durham University

Optimising the magnetic field:

Preliminary Data

Cs evaporation at high fields:

Preliminary Data

Cs evaporation at high fields:

Working at High Magnetic Fields

Preliminary Data

Working at High Magnetic Fields

Preliminary Data

Toward Dual BEC

1) The calculated polarisabilities in atomic unit are ~ 572 a₀³ for ¹³³Cs and ~ 425 a₀³ for ⁸⁷Rb at 1550 nm. Phys. Rev. A, 73, 022505, 2006.

2) A strong interspecies loss after loading into the levitated dipole trap. $-T_{Cs}= 0.8(1) \text{ s}, T_{Rb}= 4(1) \& 70(10) \text{ s}.$ $-T_{Rb}= 0.9(2) \text{ s}, T_{Cs}= 2(1) \& 10(3) \text{ s}.$

lower 3 body loss by reduce the peak density

- change to a larger beam waist
- decompress trap

Immiscible quantum degenerate mixture: the relative strength of the atomic interactions

 $\Delta = \frac{g_{RbCs}}{g_{Rb}g_{Cs}} > 1, g_{ij} = 2\pi\hbar^2 a_{ij}(\frac{m_i + m_j}{m_i m_j})$ Phys.Rev. A, 65, 063614, 2002

In our case, B = 22.4 G, a_{Rb} = 100 a_0 and a_{Cs} = 280 a_0 , the observation of immiscibility require a_{RbCs} > 165 a_0 . a_{RbCs} = 650 a_0 (J. Hutson, private communication 2011)

Preliminary Data

⁸⁷RbCs Feshbach resonances

Preliminary Data

⁸⁷RbCs Feshbach resonances

Preliminary Data

⁸⁷RbCs Feshbach resonances

Peak densities of 87 Rb and 133 Cs are 1.6(1) x 10 12 cm⁻³ and 3.1(4) x 10 11 cm⁻³.

The mixture contains 3.0(3) x 10^{587} Rb and 2.6(4) x 10^{4133} Cs at 0.32(1) μ K

- the temperature is well below the p-wave threshold (k_{B x} 56 µK based upon C₆, Phys. Revs A 59, 390, 1999)
- The presented Feshbach spectrum near 180 G is measured by evolving the mixture at a specific homogeneous magnetic field for 5 sec and each data point corresponds to an average of 3-5 measurements.

Preliminary Data

⁸⁷RbCs Feshbach resonances

J. Hutson, private communication (2011)

⁸⁷RbCs Feshbach resonances

⁸⁷RbCs Feshbach resonances

Durham University

Outline

- Bose-Einstein condensations (BECs)
 - ⁸⁷Rb BEC in a combined magnetic and optical trap
 - ¹³³Cs BEC in a crossed dipole trap
 - A quantum degenerate Bose mixture of ⁸⁷Rb and ¹³³Cs
- Feshbach molecules
 - The formation background and method
 - ⁸⁷Rb¹³³Cs Feshbach resonance measurement
- Stimulate Raman adiabatic passage (STIRAP)
 - a two-photon scheme transfers the Feshbach molecules into the rovibronic ground state
- Summary

Stimulate Raman adiabatic passage (STIRAP)

Summary

 \wedge

Bose-Einstein condensations (BECs)
⁸⁷Rb BEC in a combined magnetic and optical trap
¹³³Cs BEC in a crossed dipole trap

A quantum degenerate Bose mixture of ⁸⁷Rb and ¹³³Cs

• Feshbach molecules

The formation background and method ⁸⁷Rb¹³³Cs Feshbach resonance measurement

• Stimulate Raman adiabatic passage (STIRAP)

a two-photon scheme transfers the Feshbach molecules into the rovibronic ground state

