Laser Spectroscopy of HeH⁺

施宙聰 2011 AMO TALK 2011/9/26

Outline

- Introduction
- Previous experimental results
- Saturation spectroscopy
- Conclusions and future works

Diatomic Molecules

 Total energy=electronic energy + vibrational energy + rotational energy

$$E_{tot} = E_{elec} + E_{vib} + E_{rot}$$

 $E_{elec} \sim few \, eV$ $E_{vib} \sim E_{elec} / 100$ $E_{rot} \sim E_{vib} / 100$

Rovibronic transition Vis, UV Rotation-vibrational IR Rotational µwave, THz Simple Diatomic Molecules

- One-electron: H_2^+ , HD^+ , D_2^+
- Two-electron: H₂, HD, D₂, HeH⁺
 HD⁺, HeH⁺: electric dipole moment for rotation-vibration transitions

Why HeH⁺?

- One of the simplest two-electron diatomic molecules: benchmark of theoretical calculation
- It is formed by hydrogen and helium, the two most abundant elements in the universe. It is the first molecule in the universe.
- HeH⁺ had been suggested presenting in the astronomical objects such as nebula, super nova, white dwarfs and quasi-stellar object (QSO)envelop.

Potential curves of HeH⁺

H.H. Michels, J. Chem. Phys., 44, 3834 (1966).

Theoretical calculations

- Born-Oppenheimer (BO) approximation
- Non-adiabatic calculation
- Relativistic corrections
- QED corrections

Generation and destruction of HeH⁺

- Generation
 - $He^* + H_2 \rightarrow HeH^+ + H^+ e^ H_2^+ (v \ge 3) + He \rightarrow HeH^+ + H$
- Destruction

 $HeH^+ + H_2 \rightarrow He + H_3^+$

Spectroscopic methods

- Doppler-tuned ion beam spectroscopy
- Laser absorption spectroscopy in discharge

Spectroscopy Using Ion Beam

ION SOURCE

ELECTROSTAT BEAM OPTICS

INTERACTION REGION

LASER

POWER

METER

GAS TARGET

FARADAY CUP

MAGNETIC

Willis Lamb (1913 -2008) 1955 Nobel prize Mossbauer effect Lamb shift Laser physics Lamb dip

William H. Wing University of Arizona Doppler tuning: tuning range depends on laser frequency, ion mass and accelerating voltage

High resolution: velocity compression Linewidth ~ 10 MHz

Collision detection: low signal-to-noise ratio

Spectroscopy Using Discharge

Gerhard Herzberg (1904-1999) 1971 Nobel prize in chemistry

Takashi Oka First observation of H₃⁺ IR spectrum

Observation of H₃⁺ IR spectrum by Oka (1980)

- Tunable DFG source
- LN2 cooled hydrogen discharge
- Absorption spectrum with 32 m length

Observation of HeH⁺ fundamental band spectrum by Bernath and Amano (1982)

4% absorption for R(1) transition in fundamental band

Sensitive to ions not to neutrals

Richard Saykally (UC Berkeley) 1983

- Positive column discharge cell
 - High ion density, rich chemistry
 - Cations move toward the cathode
 - Ions absorption profile is Doppler-shifted

- Positive column discharge cell
 - High ion density, rich chemistry
 - Cations move toward the cathode
 - Ions absorption profile is Doppler-shifted

Positive column discharge cell

- High ion density, rich chemistry
- Cations move toward the cathode
- Ions absorption profile is Doppler-shifted
- Drive with AC voltage
 - Ion Doppler profile alternates red/blue shift
 - Laser at fixed wavelength
 - Demodulate detector signal at modulation frequency

Laser Spectroscopy of ⁴HeH⁺

Authors	Method	Measured Transitions	Accuracy (MHz)
[1979] D.E. Tolliver, G. A. Kyrala and W.H. Wing	lon beam	Fundamental Band : $P(12)-P(13)$ v = 2-1 : $P(9)-P(11)$	60
[1982] P. Bernath and T. Amano	Absorption	Fundamental Band : R(0)-R(4) and P(1)-P(4)	30~60
[1989] M.W. Crofton, R.S. Altman, N.N. Haese and T. Oka	VM	v=1-2 R(1)-R(5), R(8), P(1) and its isotopes	60
[1997] F. Matsushima, T. Oka and K. Takagi	VM	Low J pure rotation R(0) and R(1)	0.2
[1997] Z. Liu and P.B. Davies	VM	Quasi-bound to quasi-bond and bond to quasi-bond	90

HeH⁺ Pure Rotation Transitions

• Tunable FIR source:

two CO_2 lasers + microwave + MIM diode frequency up to 6 THz μ W power LHe cooled bolometer

Oka and Takaji 1997

The lowest $J = 1 \rightarrow 0$ transition of ⁴HeH⁺ observed at 2010.1839(2) GHz will be an important future probe for detecting this species in space.

Saturation Spectroscopy of Molecular Ions (H₃⁺ and HeH⁺)

How to achieve?

> Light Source – CW Optical Parametric Oscillator

---- Enough power for saturation.

> Extended Negative Glow Discharge Tube

---- Low pressure, high concentration of ion.

> Optical Frequency Comb

---- Frequency ruler for precision measurement.

PPLN (periodically poled LiNbO₃)

coherent length: I,

Quasi-phase matching High nonlinear efficiency over 0.4 to 5 μ m

Taken from HC Photonics

- Unlike other MIR light source, OPO provides larger power which is benefit for the saturation spectroscopy of molecular ion.
- Idler Wavelength: 2.7 3.9 μm
- Average Power: > **300 mW**
- Frequency Tuning: > 40 GHz (Mode-Hop-Free)
- Free-Running Stability: < 500 MHz @ 8 hours
- Pump: 1062 nm alpha-DFB laser boosted to 6 W by a YDFA

Glow Discharge

Features of negative glow region:

- Largest glow intensity
- Highest concentration of positive ions
- Nearly field free
- The region is relatively short

Extended Negative Glow Discharge

Negative glow Region

Benefits of extended negative glow :

- Lower gas pressure (~100 mtorr)
- Narrower linewidth for precision measurement
- Flow mixture of $He:H_2 = 98:2$ (120 mtorr)
- Discharge Current : 16 mA
- Ethanol cooled at -70 °C
- Discahrge length = 150 cm

Pump Power: ~110 mW Beam Size: 1.75 mm (Diameter, 1/e²) Probe beam ~ 10 mW The intensity is ~ 40 kW/m²

Doppler Broadened Spectrum

3rd Derivative Spectrum

Frequency Modulation Method (by modulating the pump frequency) Modulation Frequency : 31 kHz Modulation Depth : 7.6 MHz Laser Intensity : ~ 40 kW/m² (or 40 mW/mm²)

Linewidth analysis

Fitting Function : HM Fang et. al., Opt. Comm., 257, 1, 76-83 (2006)

ITRI Fiber OFC

- Repetition Rate : 250 MHz
- Supercontiuum : 1030 ~ 2200 nm
- RF Reference : GPS-locked Rubidium clock
- Accuracy : < 10⁻¹¹ @ 1000 sec (~few kHz in the MIR region)

Frequency measurement

Optical Frequency Comb

Frequency measurement results

Frequency Measurement: 90788 392.057 \pm 0.076 MHz

Conclusions and Future Works

- First observation of saturation spectrum of HeH⁺
- Absolute frequency measurement better than 100 kHz (~1 ppb accuracy)

In future

- Saturation spectroscopy of H₃⁺, HeD⁺
- Velocity modulation spectrum of HeH⁺ and HeD⁺ using PPLN DFG (breakdown of BO approximation)

Acknowledgements

行政院國家科學委員會 National Science Council

Industrial Technology Research Institute

People. Discovery. Innovation.

 We thank to the <u>National Science Council (NSC)</u>, <u>Ministry of</u> <u>Education</u>, <u>Natural Science and Engineering Research</u> <u>Council of Canada (NSERC)</u> and <u>Industrial Technology</u> <u>Research Institute</u>.

Thanks For your Attention!

Frequency Comb

 $\Delta v/v = 1X 10^{-15}$ $\angle R$ $\Delta v/v = 1X 10^{-18}$