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Crescent Waves

What are Crescent Waves?

Crescent Waves
A specific localized soliton state of Crescent or Bar

Figure 1 A field of cres archan sand dunes in the
desert between Chimbot nth f Peru.

Nature 426, p.p. 619 (2003)

an sand dune.
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Crescent Waves

What are Crescent Waves?

Crescent Waves
A specific localized soliton state of Crescent or Barchan sand dune.

_ Formation of Sand Dune!
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Nature 426, p.p. 61

Phys. Rev. Lett. 107, 188001 (2011).
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Find Crescent Waves?

Rotating surface solitons

@ Surface solitons pinged
to circular surface
boundary

@ Exist in highly nonlocal
media through
superposition of vortices

@ Introducing
inhomogeneous losses

@ Semiconductor micro
cavity with composite
optical cavities

AR

Opt. Lett. 32, 2948 (2007). H/V A \N\
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Find Crescent Waves?

escent vortex solitons in strongly
nonlocal nonlinear media
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@ Exist in highly nonlocal
media through
superposition of vortices

@ Introducing

inhomogeneous losses & 2=200 7=400
@ Semiconductor micro i 02

Cay|ty with _C_omposne %

optical cavities y

s
Phys. Rev. A 78, 023824 (2008). v
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Find Crescent Waves?

Varieties of Stable Vortical Solitons in
Ginzburg-Landau Media with Radially

Inhomogeneous Losses
. O
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@ Introducing e =22 V=0.014 * ez
inhomogeneous losses
@ Semiconductor micro El
cavity with composite "%
optical cavities S
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Phys. Rev. Lett. 105, 213901 (2007).
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Find Crescent Waves?

Crescent Waves in Optical Cavities

]

@ Semiconductor micro
cavity with composite
optical cavities

Phys. Rev. Lett. 107, 183902 (2011).
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Structure of VCSEL

@ integrated microcavity
fabrication

p-metal

@ controllable confinement

©

small mode volumes
@ ultrahigh quality factors

@ large emitting area

@ study nonlinear pattern
formation and soliton behavior
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@ large emitting area

@ study nonlinear pattern
formation and soliton behavior
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VCSEL for transverse mode tailoring

VCSEL for transverse mode tailoring

@ Dynamical Localized Mode Lasing
@ Nonlinear Bandgap Mode

@ Lasing direction control
@ Optical Crescent Waves
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Phys. Rev. Lett. 101, 084101 (2008).
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VCSEL for transverse mode tailoring

VCSEL for transverse mode tailoring

) @ Lasing direction control
@ Nonlinear Bandgap Mode @ Optical Crescent Waves

Unidirectional Lasing Cavity mode and dynamic
localized mode
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Appl. Phys. Lett. 94, 221112 (2009).
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VCSEL for transverse mode tailoring

VCSEL for transverse mode tailoring
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@ Nonlinear Bandgap Mode @ Optical Crescent Waves

linear localized modes in bandgap microcavities
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Opt. Lett. 35, 3207 (2010).
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VCSEL for transverse mode tailoring

VCSEL for transverse mode tailoring

o o
4 @ Optical Crescent Waves

Crescent Waves in Optical Cavities

azimuthal mode index

amplitude growth rate

AN

Phys. Rev. Lett. 107, 183092 (2011).
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Experiments and Observations

Experimental observation of Optical Crescent Waves

n*- GaAs Substrate

Sdeview topview
@ ion-implanted VCSEL (lateral) @ lambda cavity (vertical)
with epitaxial layers by MOCVD @ surface structured by FIB

on a n*t-GaAs substrate . , :
_ _ @ composite cavity design (a
@ GRINSCH active region circular Hl-cavity + annular
(triple-GaAs/AlGaAs QW) HI-cavity
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Experiments and Observations

Experimental observation of Optical Crescent Waves
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Experiments and Observations

Experimental observation of Optical Crescent Waves
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Experiments and Observations

Experimental observation of Optical Crescent Waves
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Modeling and Numerics

Typical Field-Carrier Model for Laser in Semiconductor

@ SVEA

@ spatio-temporal HE = —(147+i0)E —i2CO(N —1)E +iV  2E +E,
dynamics of:
intracavity field E
carrier density N

N = — [N +ONZ — 1+ [EA(N = 1) — dva]

C is the absorption(coupling) strength scaled to the resonator. transmission
n is the linear absorption coefficient
6 is the cavity detuning.

© = (i + «) represents the absorptive and refractive nonlinear response of materis|

carrier recombination, respectively.

d is the diffusion constant of the carrier

)
)
)
o
@ . isits linewidth engencement factor.
)
)
o

I and E, are external injection current over threshold current and holding field.
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Typical Field-Carrier Model for Laser in Semiconductor

@ SVEA
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carrier density N
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C is the absorption(coupling) strength scaled to the resonator. transmission.
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6 is the cavity detuning.
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ais its linewidth engencement factor.

carrier recombination, respectively.

d is the diffusion constant of the carrier

I and E, are external injection current over threshold current and holding field.
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Modeling and Numerics

Typical Field-Carrier Model for Laser in Semiconductor

@ SVEA

@ spatio-temporal HE = —(14+n+i0)E—i2C O(N—1)E+iV_ *E+E
dynamics of: o , ,
intracavity field E ON = — [N + AN =1+ |E[*(N-1)-dV. N]

carrier density N

n is the linear absorption coefficient.
6 is the cavity detuning.

© = (i + «) represents the absorptive and refractive nonlinear response of materis|

~ and j are the normalized decay rate of the carrier density that describe the nonradiative
carrier recombination, respectively.

d is the diffusion constant of the carrier

)
)
)
o
@ . isits linewidth engencement factor.
)
)
o

I and E, are external injection current over threshold current and holding field.
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Typical Field-Carrier Model for Laser in Semiconductor

@ SVEA

@ spatio-temporal HE = —(14 +i0)E —i20 O(N —1)E +iV  2E +E,
dynamics of:
intracavity field E
carrier density N

N = — [N +ONZ — 1+ [EA(N = 1) — dva]

6 is the cavity detuning.

© = (i + «) represents the absorptive and refractive nonlinear response of materis|

ais its linewidth engencement factor.

carrier recombination, respectively.

d is the diffusion constant of the carrier

I and E, are external injection current over threshold current and holding field.




Crescent Waves in Optical Cavties
@®0000

Modeling and Numerics

Typical Field-Carrier Model for Laser in Semiconductor

@ SVEA

@ spatio-temporal HE = —(14 +i)E—-i20 ©(N—-1)E+iV_ *E+E
dynamics of: o , ,
intracavity field E ON = — [N + AN =1+ |E[*(N-1)-dV. N]

carrier density N

«is its linewidth engencement factor.

carrier recombination, respectively.

d is the diffusion constant of the carrier

o

o

o

@ o= (i + «) represents the absorptive and refractive nonlinear response of materisl
o

o

o

o

I and E, are external injection current over threshold current and holding field.
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Modeling and Numerics

Typical Field-Carrier Model for Laser in Semiconductor

@ SVEA

@ spatio-temporal HE = —(14 +iE—-i20 9(N—1)E+iV_ ’E+E
dynamics of: , , ,
intracavity field E ON = —y [N + BN =1+ |E[*(N-1)-dV. N]

carrier density N

carrier recombination, respectively.

d is the diffusion constant of the carrier

I and E, are external injection current over threshold current and holding field.
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Modeling and Numerics

Typical Field-Carrier Model for Laser in Semiconductor

@ SVEA
@ spatio-temporal OE = —(14/+i)E—i20 (N -1)E+iV *E+E,

dynamics of: , , ,
intracavity field E aN = — [N+ N2 =1 +|EP(N 1) - dV.°N]

carrier density N

@ d s the diffusion constant of the carrier

@ and E, are external injection current over threshold current and holding field.
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Modeling and Numerics

Typical Field-Carrier Model for Laser in Semiconductor

@ SVEA

@ spatio-temporal OE = —(14+i)E—i20 (N=1)E+iV . *E+E
dynamics of: ) ) )
intracavity field E ON = — [N + N" =T+ [E[*(N-1) - V. N]

carrier density N

| and E; are external injection current over threshold current and holding field.
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Modeling and Numerics

To Reduced Wave Equation: E, =0,d < 1,5=0

We can then expand the carrier density to the first order in Fourier space,

t
N_m/ E(t—t) (1 = 1)dt’
oo ——

Source
When the system reaches equivbrium, |E|? is time-invariant and

-1 -1 2
N—-1= - do
1+[EP ~Q+[EPZ
A
.PM %L
It is obvious that this system is nonlocal,non-instantaneous and dissipative in | b >

nature.
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Modeling and Numerics

To Reduced Wave Equation (cont.)

Reduced Wave Equation

. 6 2C(1-1)
0 = i0E+2E— |—(14n)+ 2| E +0E
" (1+n) 1+ EP e
2¢(1 - 1) i1
(L) + S E - L — = dikE
(L+) 1+|E|2} oA+ B 1%

@ substitute N — 1
@ new corrdinate system with 7 = at and ¢ = y/ar.
@ Define 8 = 6 — 6o with 6y + a(1 +n) = 0.
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Modeling and Numerics

To Reduced Wave Equation (cont.)

Reduced Wave Equation

» Dissipation vanishes » SPM dominates J

@ substitute N — 1

@ new corrdinate system with 7 = at and ¢ = y/ar.
@ Define § = 6 — 6o with 6o + (1 +n) = 0.

@ Approx. with a > 1
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Modeling and Numerics

Modeling Crescent Waves in Optical Cavties

@ J),E=0 @ & —(r,0) @ surface induced potential J
0 2C(1—-1) 2
0=—E—-|-(14+n)+———F |E+VIiE+ E

B-0.25

@ p=5+0+n
@ nonlinearity: v = 2C(1-1)
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Modeling and Numerics

Modeling Crescent Waves in Optical Cavties

@ J),E=0 @ & —(r,0) @ surface induced potential J
0 2C(1—-1) 2
0=—E—-|-(14+n)+———F |E+VIiE+ E

B-0.25

@ p=5+0+n
@ nonlinearity: v = 2C(1-1)

Injection * = multiple, elongated
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Modeling and Numerics

Modeling Crescent Waves in Optical Cavties (cont.)

@ nonlasing background potential

0 2C(1-1) 2
0=—E—-|-(14+n)+———|E+VIE+ E+ E
a ( 77) 1+|E|2 1

y(um)

@ An =max {|V.|}
® Anx2C(l—1)
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Modeling and Numerics

Modeling Crescent Waves in Optical Cavties (cont.)

@ nonlasing background potential J

0 2C(1-1) 2
0=—E—-|-(14+n)+———|E+VIE+ E+ E
a ( 77) 1+|E|2 1

y(um)

<

o1

@ An=max{|V
o A 2C(I{| 1L)|} @ elongated crescent
n o -
@ multiple humped crescents
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Result and Discussion

NUM VS EXP - Near Threshold Injection

@ experimental
demonstration of a
mode transition

@ (c) numerical result
for linear LGo4-like
cavity mode.

Experiments=-

Simulation =
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Result and Discussion

NUM VS EXP - Near Threshold Injection

@ experimental
demonstration of a
mode transition

@ (c) numerical result
for linear LGo4-like
cavity mode.

Experiments=-

AGREES

Simulation = |
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Result and Discussion

NUM VS EXP - High-Current Injection

@ | =35mA @ Very strong nonlinearity @ Azimuthal Instability J
— 72
I=T1=11 =
o -
& ) : g
& L= 14 =
i 1 Eb
o 2
=
j=
I 1I0 15 2\%)0 E
X
o azimuthal mode mdex
20 1
(d) () ® (8) qotey
— CLLE 'c' 'o-
g o o Mo tlo
= fap® ‘c. -~ .n‘ t.. ;. &
o B=3 P=7 Tl e Sy
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Result and Discussion

Discussion

Effect of Composite Cavity

@ LGos-like mode is supported by a large cavity
@ a small cavity in the center suppressed LGo4-like mode at the beginning.
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Result and Discussion

Discussion

Effect of Composite Cavity

@ LGos-like mode is supported by a large cavity
@ a small cavity in the center suppressed LGo4-like mode at the beginning.

Intrinsic linear cavity LGgs-like modes as a background potential \/,

@ near the threshold lasing: stationary single-, double-,
and quadruple-humped crescent solitons

@ NOT any counterparts in the linear limit
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Result and Discussion

Discussion

Effect of Composite Cavity

@ LGos-like mode is supported by a large cavity

@ a small cavity in the center suppressed LGo4-like mode at the beginning.

Intrinsic linear cavity LGgs-like modes as a background potential \/,

@ near the threshold lasing: stationary single-, double-,
and quadruple-humped crescent solitons

@ NOT any counterparts in the linear limit

@ injection currents increase, this supported LGg,-like mode turns to
lasing too. (Azimuthally unstable)

@ Our NUM are in good agreement with EXP

e SAOAINT
M



Summary

Summary

@ Fabricated VCSEL and reported the observation of
crescent surface waves near the threshold lasing condition.

@ Introducing the concept: intrinsic nonlasing cavity mode as
a background potential

@ Stationary crescent mode transition to soliton rings is
demonstrated in NUM and EXP.

@ EXP and SIM: an alternative but effective approach to
access optical surface modes in a variety of microcavities.

Thank you

Questions are welcome
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