Quantum Nonlinear Optical Pulse Propagation

Yinchieh Lai (賴暎杰) Department of Photonics & Institute of Electro-Optical Engineering National Chiao-Tung University Hsinchu, Taiwan, R.O.C.

- [Outline]
- 1. How quantum solitons are formed?
- 2. How quantum soliton squeezing is produced?
- 3. How quantum soliton entanglement is produced?
- 4. Different types of quantum solitons.

How classical solitons are formed?

Nonlinear Schroedinger equation (NLSE):

$$i\frac{\partial}{\partial z}U(z,t) = -\frac{1}{2}\frac{\partial^2}{\partial t^2}U(z,t) - |U(z,t)|^2 U(z,t)$$

Fundamental solitons:

$$U(z,t) = \frac{n_0}{2} \exp[i\frac{n_0^2}{8}z + i\theta_0] \sec h[\frac{n_0}{2}t]$$

A. Hasegawa andF. Tappert, Appl.Phys. Lett. Vol. 23,Issue 3, pp. 142-144, (1973).

Soliton interaction

Quantum description of optical pulses

$$\hat{a}(\tau) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{a}(\Delta \omega) \, e^{-i\,\Delta \omega \,\tau} \, d\Delta \omega$$

$$|\Psi(z)\rangle = \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_n(z, \tau_1, \cdots, \tau_n) \hat{a}^{\dagger}(\tau_1) \cdots \hat{a}^{\dagger}(\tau_n) d\tau_1 \cdots d\tau_n \left| 0 \right\rangle$$

Quantum Nonlinear Schrodinger Equation

$$\frac{\partial}{\partial z}\,\hat{a}(z,\,\tau) = i\,\frac{1}{2}\,\frac{\partial^2}{\partial \tau^2}\,\hat{a}(z,\,\tau) + i\,\hat{a}^{\dagger}(z,\,\tau)\,\hat{a}(z,\,\tau)\,\hat{a}(z,\,\tau)$$

$$\frac{\partial}{\partial z} f_n(z, \tau_1, \cdots, \tau_n) = i \left(\frac{1}{2} \sum_{j=1}^n \frac{\partial^2}{\partial \tau_j^2} + \sum_{1 \le j < k \le n} \delta(\tau_j - \tau_k) \right) f_n(z, \tau_1, \cdots, \tau_n)$$

Bethe's ansatz method

Microscopic quantum state solution

For
$$\tau_1 < \tau_2 < ... < \tau_n$$

No nonlinearity: $f_n(z, \tau_1, \dots, \tau_n) \propto e^{i k_1 \tau_1 + i k_2 \tau_2 + \dots + i k_n \tau_n}$

With nonlinearity:

$$f_n(z, \tau_1, \dots, \tau_n) = A_{\{1,2,3,\dots n\}} e^{ik_1\tau_1 + ik_2\tau_2 + \dots + ik_n\tau_n} + A_{\{2,1,3,\dots n\}} e^{ik_2\tau_1 + ik_1\tau_2 + \dots + ik_n\tau_n} + \text{other permutations}$$

$$A_{\{2,1,3,\ldots n\}} = \frac{k_2 - k_1 - i}{k_2 - k_1 + i} A_{\{1,2,3,\ldots n\}}$$

Bound eigenstates:

If
$$k_j = p - \frac{i}{2} (n - 2 j + 1)$$

then only the first term is non-zero.

How quantum solitons are formed?

Bound eigenstates

$$|n, p, z\rangle = N_c \operatorname{Exp}[-i K(n, p) z] \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \operatorname{Exp}\left[i p \sum_{k=1}^{n} \tau_k - \frac{1}{2} \sum_{1 \le i < j \le n} \left|\tau_j - \tau_i\right|\right] d\tau_1 \cdots d\tau_n \left|0\right\rangle$$
$$K(n, p) = \frac{1}{2} n p^2 - \frac{1}{24} n (n^2 - 1)$$
$$Soliton pulses$$
$$|\Psi(z)\rangle = \sum_n \int g_n(p) \left|n, p, z\right\rangle dp$$
$$\theta(n, p) = \{K(n+1, p) - K(n, p)\} z \approx \frac{z}{2} p^2 - \frac{z}{8} n^2 \qquad \frac{\partial}{\partial p} \{K(n+1, p) - K(n, p)\} = p$$

Quantum soliton pulses are changing: phase spreading and position spreading effects

Y. Lai and H.A. Haus, PRA 40, p.854, 1989.

Quantum soliton perturbation theory

NLSE

$$i\frac{\partial}{\partial z}U(z,t) = -\frac{1}{2}\frac{\partial^2}{\partial t^2}U(z,t) - |U(z,t)|^2 U(z,t)$$

Soliton pulses

Phase spreading

 $\Delta \hat{n}(z) = \Delta \hat{n}(0)$

$$\Delta\hat{\theta}(z) = \Delta\hat{\theta}(0) + \frac{n_0}{4} z\Delta\hat{n}(0)$$

Assuming $p_0 = 0$

Position spreading $\Delta \hat{p}(z) = \Delta \hat{p}(0)$ $\Delta \hat{T}(z) = \Delta \hat{T}(0) + z \Delta \hat{p}(0)$

H.A. Haus and Y. Lai, J. Opt. Soc. Am. B 7, 386(1990)

Phase spreading and quadrature squeezing

How to detect?

 $\hat{u}(z,t) = \Delta \hat{n}(z)u_n(t) + \Delta \hat{\theta}(z)u_{\theta}(t) + \Delta \hat{p}(z)u_n(t) + \Delta \hat{T}(z)u_T(t) + continuum$ **Projection** $\Delta \hat{n}(z) = \left\langle f_n(t) \, | \, \hat{u}(z,t) \right\rangle$ $\Delta \hat{\theta}(z) = \left\langle f_{\theta}(t) \, | \, \hat{u}(z,t) \right\rangle$ $\Delta \hat{p}(z) = \left\langle f_p(t) \,|\, \hat{u}(z,t) \right\rangle$ $\Delta \hat{T}(z) = \left\langle f_T(t) \, | \, \hat{u}(z,t) \right\rangle$

Optically, such projection can be implemented by homodyne detection.

Projection interpretation of homodyne detection

$$\hat{M}(z) = \langle f_{\text{LO}}(t) \middle| \hat{u}(z, t) \rangle = \int \frac{1}{2} [f_{\text{LO}}^{*}(t) \hat{u}(z, t) + h.c.] dt$$

$$\begin{array}{c} \text{Local} \\ \text{Oscillator} \\ \text{Signal} \\ \hline \\ \hat{u}(t) = \hat{a} u_{m}(t) + \text{other modes} \\ \hat{a} = \hat{q} + i \hat{p} \end{array}$$

$$\hat{q} = \langle u_m(t) \mid \hat{u}(t) \rangle = \frac{1}{2} \int \left[u_m^*(t) \,\hat{u}(t) + u_m(t) \,\hat{u}^\dagger(t) \right] dt$$

$$\hat{p} = \langle i \, u_m(t) \mid \hat{u}(t) \rangle = \frac{\iota}{2} \int \left[-u_m^*(t) \, \hat{u}(t) + u_m(t) \, \hat{u}^\dagger(t) \right] dt$$

Squeezed vacuum state generation and detection

First Experiment: M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66, 153(1991).

Polarization squeezing

1. J. F. Corney, P. Drummond, J. Heersink, V. Josse, G. Leuchs, and U.L. Andersen, Phys. Rev. Lett. 97, 023606 (2006). 2. R.-F. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, and G. Leuchs, Opt. Lett. 33, 116 (2008).

Generation of EPR entangled beams with two independent squeezed states

Teleportation of Continuous Quantum Variables

Samuel L. Braunstein

SEECS, University of Wales, Bangor LL57 1UT, United Kingdom

H. J. Kimble

Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125

Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber

Ch. Silberhorn,¹ P.K. Lam,^{1,2} O. Weiß,¹ F. König,¹ N. Korolkova,¹ and G. Leuchs¹

¹Zentrum für Moderne Optik, Universität Erlangen–Nürnberg, Staudtstraße 7/B2, D-91058 Erlangen, Germany ²Department of Physics, Faculty of Science, The Australian National University, ACT 0200, Canberra, Australia

Polarization entanglement states

The quantum correlations along the squeezed and the anti–squeezed Stokes parameters were observed to be -4.1 ± 0.3 dB and -2.6 ± 0.3 dB below the shot noise level respectively

R.-F. Dong, J. Heersink, J. Yoshikawa, O. Glöckl, U. L. Andersen, and G. Leuchs, New J. Phys. 9 410 (2007).

- 1. Non-soliton cases?
- 2. With loss?
- **3. With higher order dispersion?**
- 4. With self-Raman?
- **5. Different local oscillators?**

General numerical methods for quantum nonlinear optical pulse propagation

Quantum effects of optical pulses

Single light mode

Phasor diagram of single mode

Optical pulse (multi-mode)

Time-sliced phasor diagram

Backpropagation method

$$\begin{aligned} \frac{\partial}{\partial z} \hat{U} &= F(\hat{U}, \hat{U}^{\dagger}) \\ \frac{\partial}{\partial z} \hat{u} &= P \bullet \hat{u} \\ \frac{\partial}{\partial z} u^{A} &= P^{A} \bullet u^{A} \\ \frac{\partial}{\partial z} \langle u^{A} \mid u \rangle &= 0 \\ \hat{M}(z) &= \langle u^{A}(z, t) \mid u(z, t) \rangle &= \langle u^{A}(0, t) \mid u(0, t) \rangle \\ \operatorname{Var}[\hat{M}(z)] &= \frac{1}{4} \int |u^{A}(0, t)|^{2} dt \end{aligned}$$

Linearization approximation

Relate the output operators to the input operators.

Quantum correlation also can be calculated.
 Additional noise terms also can be included.

Y. Lai and S.-S. Yu, PRA 51, p.817, 1995.

Quantum noise calculation

$$\begin{aligned} \frac{\partial}{\partial z} \ \hat{U} &= F(\hat{U}, \ \hat{U}^{\dagger}) \\ \frac{\partial}{\partial z} \ \hat{u} &= \mathbf{P} \bullet \ \hat{u} \\ \frac{\partial}{\partial z} \ u^{A} &= P^{A} \bullet u^{A} \\ \frac{\partial}{\partial z} \ \langle u^{A} \mid u \rangle &= 0 \\ \hat{M}(z) &= \langle u^{A}(z, t) \mid u(z, t) \rangle &= \langle u^{A}(0, t) \mid u(0, t) \rangle \\ \mathrm{Var}[\hat{M}(z)] &= \frac{1}{4} \int | u^{A}(0, t) |^{2} dt \end{aligned}$$

Linearization approximation

Relate the output operators to the input operators.

Quantum correlation also can be calculated.
 Additional noise terms also can be included.

Y. Lai and S.-S. Yu, PRA 51, p.817, 1995.

Optimized projection function

$$\begin{split} u^{A}(z, t) &= f_{L}(t) \\ u^{A}(0, t) &= A_{0 \leftarrow z} \bullet f_{L}(t) \\ \hat{u}(z, t) &= L_{z \leftarrow 0} \bullet \hat{u}(0, t) \\ R &= \frac{\operatorname{Var}[\hat{M}(L)]}{\operatorname{Var}[\hat{M}(0)]} = \frac{\operatorname{Var}[\langle f_{L}(t) \mid \hat{u}(z, t) \rangle]}{\operatorname{Var}[\langle f_{L}(t) \rangle \mid \hat{u}(0, t) \rangle]} = \frac{\langle A_{0} \leftarrow z \bullet f_{L}(t) \mid A_{0} \leftarrow z \bullet f_{L}(t) \rangle}{\langle f_{L}(t) \rangle \mid f_{L}(t) \rangle} \\ \delta R &= 0 \longrightarrow L_{z \leftarrow 0} A_{0 \leftarrow z} \bullet f_{L}(t) = \lambda f_{L}(t) \\ R_{\text{opt}} &= \lambda \end{split}$$

Y. Lai and R.K. Lee, PRL 103, p.013902, 2009.

How squeezing is produced?

$\hat{u}(z, t)$ is related to $\hat{u}(0, t)$ and $\hat{u}^{\dagger}(0, t)$ by *a* linear transform

The original quantum state are multi - mode independent coherent states.

The new quantum state are multi – mode entangled gaussian states.

 $\hat{M} = \langle f_L(t) \mid u(z, t) \rangle = \langle F_L(t) \mid u(0, t) \rangle$ $\operatorname{Var}[\hat{M}(z)] = \frac{1}{4} \int |F_L(t)|^2 dt$

Multi-partite solitons

How squeezing leads to entanglement

$$f_1(t) \propto f_{\text{opt}}(t)$$
 for $t > 0$ $f_2(t) \propto f_{\text{opt}}(t)$ for $t < 0$

 $\hat{q}_1 = \langle f_1 \mid \hat{u} \rangle, \ \hat{p}_1 = \langle i \mid f_1 \mid \hat{u} \rangle, \ \hat{q}_2 = \langle f_2 \mid \hat{u} \rangle, \ \hat{p}_2 = \langle i \mid f_2 \mid \hat{u} \rangle.$

 $f_1(t) + f_2(t)$: the optimum squeezing/anti-squeezing mode. $f_1(t) - f_2(t)$: orthogonal to the optimum mode.

Inseparability criterion of two-partite quantum states

Definition of separable quantum states:

$$\rho = \sum_{i} P_{i} \rho_{i,1} \otimes \rho_{i,2}$$

Sufficient criterion for inseparability:

If \hat{q}_1 is corrlated with \hat{q}_2 and \hat{p}_1 is corrlated with \hat{p}_2 , and Var $[\hat{q}_1|\hat{q}_2]$ *Var $[\hat{p}_1|\hat{p}_2]$ < Heisenberg uncertainty product

Quantum correlation \neq **Quantum entanglement (inseparability)**

For example,

 $\rho = \int P(\alpha) \left| \alpha \right\rangle_1 \left| \alpha \right\rangle_2 \langle \alpha |_1 \langle \alpha |_2 d \alpha \right| \quad \text{Correlated but not entangled.}$

Entangled frequency multiplexed quantum solitons (I)

Entangled frequency multiplexed quantum solitons (II)

PDM bound solitons

$$i\frac{\partial U}{\partial z} + \frac{1}{2}\frac{\partial^2 U}{\partial t^2} + A|U|^2 U + B|V|^2 U = 0$$
$$i\frac{\partial V}{\partial z} + \frac{1}{2}\frac{\partial^2 V}{\partial t^2} + A|V|^2 V + B|U|^2 V = 0$$

U,V: Fields in circular polarizations

M. Haelterman et al., Optics Letters 18, 1406 (1993).

Quantum correlation of PDM soliton pairs

R.-K. Lee, Y. Lai, and B. A. Malomed, Phys. Rev. A 71, 013816 (2005)

Fiber Bragg Grating Solitons

Solitons in 1D nonlinear photonic crystals

stationary

above

B.J. Eggleton et al., Phys. Rev. Lett. 76, 1627 (1996)

Amplitude squeezing of fiber Bragg grating solitons

BEC matter-wave gap solitons

Quantum noises of matter-wave gap solitons

R.-K. Lee, E. A. Ostrovskaya, Y. S. Kivshar, and Y. Lai, Phys. Rev. A 72, 033607 (2005).

Quantum properties of SIT solitons

Squeezing through self induced transparency in a microstructured hollow core fibre

Ch. Marquardt, U.L. Andersen and G. Leuchs

Figure 2: Experimental setup of Rb filling chambers and homodyne detection of light pulses propagating through a Rb vapour filled hollow core fibre.

Quantum equations of SIT solitons

$$\int_{z}^{z+\Delta z} \hat{P}(z,t) dz = \sum_{z \le z_j \le z+\Delta z} \hat{p}_j(t)$$
$$\int_{z}^{z+\Delta z} \hat{N}(z,t) dz = \sum_{z \le z_j \le z+\Delta z} \hat{n}_j(t)$$

$$\begin{aligned} \frac{\partial \hat{U}(z,t)}{\partial t} &= -c \; \frac{\partial \hat{U}(z,t)}{\partial z} + K \, \hat{P}(z,t) \\ \frac{\partial \hat{P}(z,t)}{\partial t} &= K \, \hat{N}(z,t) \; \hat{U}(z,t) \\ \frac{\partial \hat{N}(z,t)}{\partial t} &= -2 \; K \left\{ \hat{P}^{\dagger}(z,t) \; \hat{U}(z,t) + \hat{U}^{\dagger}(z,t) \; \hat{P}(z,t) \right\} \end{aligned}$$

For the Bethe's ansatz approach, see S. John and V. I. Rupasov, Europhys. Lett. 46, p.326, 1999.

Linearized equations of SIT solitons

$$\frac{\partial}{\partial t} \hat{u} = -\frac{\partial}{\partial z} \hat{u} + \frac{r}{2} \hat{p},$$

$$\frac{\partial}{\partial t} \hat{p} = \frac{1}{2} (U_0 \hat{n} + N_0 \hat{u})$$

$$\frac{\partial}{\partial t} \hat{n} = -(P_0^* \hat{u} + U_0 \hat{p}^{\dagger} + U_0^* \hat{p} + P_0 \hat{u}^{\dagger}),$$

$$t=tb$$

$$t=tb$$

$$t=tb$$

$$t=tb$$

$$t=tb$$

$$\hat{M}(t_e) = \int \left[f_L^*(z) \,\hat{u}(z, t_e) + f_L(z) \,\hat{u}^{\dagger}(z, t_e) \right] dz$$

 $\hat{M}(t_e) = \int dz \left[u^{A*}(z, t_b) \,\hat{u}(z, t_b) + u^A(z, t_b) \,\hat{u}^{\dagger}(z, t_b) + p^{A*}(z, t_b) \,\hat{p}(z, t_b) + p^A(z, t_b) \,\hat{p}^{\dagger}(z, t_b) + n^A(z, t_b) \,\hat{n}(z, t_b) \right]$

Squeezing of SIT solitons

At resonance, the squeezing is actually through the coupling of the photon number and the pulse position operators.

Y. Lai and H.A. Haus, Phys. Rev. A 42, 2925(1990).

Quantum squeezing and correlation of self-induced transparency solitons

Ray-Kuang Lee^{1,*} and Yinchieh Lai^{2,3,†}

¹Institute of Photonics Technologies, National Tsing-Hua University, Hsinchu, Taiwan 300, Republic of China ²Department of Photonics, National Chiao-Tung University, Hsinchu, Taiwan 300, Republic of China

³Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 115, Republic of China

(Received 6 February 2009; published 25 September 2009)

Conclusions

- Theories of quantum nonlinear optical propagation are reviewed.
- Quantum soliton, squeezing, correlation, and entanglement are explained.
- How squeezing leads to entanglement is clarified.
- Entangled quantum solitons can be generated through nonlinear interaction.
- Time-, polarization-, or frequency-multiplexed schemes are analyzed.
- Different optical soliton platforms are investigated.