A study of anisotropic inelastic collisions and slow/stopped light with nuclear spin

Mei-Ju Lu
2011Jun03
From the left:
Dr. Jonathan Weinstein (PI), Tian Li (G), Ryan Baker (UG), Mei-Ju Lu (G), Aja Ellis (UG), Vijay Singh (G) and Kyle Hardman (G)
Outline

• Motivation

• Apparatus
 Buffer-gas cooling

• Measurements
 Collisional-induced relaxation
 Atom-light coherence
 Light storage and retrieval

• Conclusions
Collisions

• **Elastic collisions:**
 Colliding particles remain in the same internal energy states during the collisional events.

• **Inelastic collisions:**
 Colliding particles change their internal states, with their chemical constitutions remaining the same.

• **Chemical reaction:**
 Resulting products after collisions are different from the colliding particles.
Inelastic collisions

- Colliding particles change their internal states, with their chemical constitutions remaining the same.

Zeeman relaxation (m-changing)
Fine-structure changing collisions (J-changing)
Hyperfine-structure changing collisions (F-changing)

"Bad" collisions!~
Inelastic collisions cause a loss in the magnetic trap.
It is difficult to prepare atoms or molecules in a specific state.
Cryogenic system
Apparatus

Refrigerator

Vacuum Chamber

Cell

Target

Nd: YAG Laser

Diode laser

2nd optical table

1st optical table
Buffer-gas-cooled atoms

Cold cell with ^4He
$T \sim 4 \text{ K}$

Laser ablation

He buffer-gas cooling via elastic collisions

cooling time: less than 0.5 ms

Observe atoms by absorption spectroscopy
Diffusion lifetimes

1. Optical Density (OD) = atomic density × absorption cross section × path length

2. Transmission = $e^{-\text{OD}}$; Transmission = 1 - Absorption

3. The lowest diffusion mode: $n(t) = n_0 \exp\left[-\frac{t}{\tau_D}\right]$
Cryogenically-cooled atomic vapor cell

Buffer-gas cooling is general to atoms or molecules (eg: We have observed Ti, Ga, In, Yb, Li, TiO & CaH at 5 K)

Note:
Not as cold as laser cooling (μK)
BGC is limited by helium vapor pressure (0.3K - 300K)
For our purpose, BGC is sufficient.

High optical density (eg: 173Yb, OD ~ 80)
Large atomic numbers (eg: 173Yb, $N \sim 10^{13}$ atoms)
Large atomic density (eg: 173Yb, $n \sim 10^{10}$ cm$^{-3}$)
In general:

<table>
<thead>
<tr>
<th></th>
<th>S-state atoms</th>
<th>Non-S-state atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eg:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb[^1S_0]</td>
<td></td>
<td>C[^3P_0]</td>
</tr>
<tr>
<td>Rb[^2S_{1/2}]</td>
<td></td>
<td>Si[^2P_0]</td>
</tr>
<tr>
<td>Cr[^7S_3]</td>
<td></td>
<td>O[^3P_2]</td>
</tr>
<tr>
<td>Orbital angular momentum</td>
<td>Zero</td>
<td>Non-zero</td>
</tr>
<tr>
<td>Electronic shell structure</td>
<td>Spherical</td>
<td>Aspherical</td>
</tr>
<tr>
<td>Interaction potential</td>
<td>Isotropic</td>
<td>Anisotropic</td>
</tr>
</tbody>
</table>

The electronic interaction anisotropy usually causes large inelastic collisions.

Derevianko et al., PRL 90(6), 063002 (2003);
<table>
<thead>
<tr>
<th>Events</th>
<th>S-state atoms</th>
<th>Non-S-state atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yb(^{1S_0})-He Rb(^{2S_{1/2}})-He</td>
<td>C(^{3P_0})-He Si(^{2P_0})-He Al(^{2P_{1/2}})-Ar O(^{3P_2})-H C(^{3P_0})-H</td>
</tr>
<tr>
<td>Rate coefficient ([\text{cm}^3\text{s}^{-1}])</td>
<td>(<10^{-17})</td>
<td>(>10^{-12})</td>
</tr>
</tbody>
</table>

\[
k = \frac{1}{\tau n}
\]

\(k\) : rate coefficient
\(1/\tau\) : inelastic collision rate
\(n\) : density
Exceptions

- Measured Ti-He Zeeman relaxation rate coefficient: $k_m \sim 10^{-14}$ cm3s$^{-1}$.

- Submerged-shell structure: Titanium $[3d^2 \ 4s^2 \ ^3F_J]$, 48Ti (I=0)
 a suppression of the anisotropic interaction potential

- Similar suppression for the fine-structure changing collisions?
- Fine-structure changing collisions is an important cooling mechanism in cold molecular clouds (~10 K).
Exceptions

- Measured Ti-He Zeeman relaxation rate coefficient: \(k_m \approx 10^{-14} \text{ cm}^3\text{s}^{-1} \).

- Submerged-shell structure: Titanium [\(3d^2 4s^2 \, ^3F_j \)], \(^{48}\text{Ti} \) (I=0)

 a suppression of the anisotropic interaction potential

- Similar suppression for the fine-structure changing collisions?

- Fine-structure changing collisions is an important cooling mechanism in cold molecular clouds (\(\sim 10 \text{ K} \)).

\[
\begin{align*}
 C^+ (^2P_{3/2}) & \quad \text{~157\,\mu m}\quad C^+ (^2P_{1/2}) + H_2 & \rightarrow C^+ (^2P_{3/2}) + H_2 \\
 C^+ (^2P_{3/2}) & \rightarrow C^+ (^2P_{1/2}) + \text{photon}
\end{align*}
\]

Predicted rate coefficient \(k \sim 10^{-10} \text{ cm}^3\text{s}^{-1} \)

48Ti-He fine-structure changing collisions

Optical pumping to perturb J population

48Ti level structure

- 3d²4s⁴p \(^3F \)
 - J=4: 25388.334 cm\(^{-1}\)
 - J=3: 25227.217 cm\(^{-1}\)
 - J=2: 25107.417 cm\(^{-1}\)

3d²4s² \(^3F \)

- J=4: 386.874 cm\(^{-1}\)
- J=3: 170.132 cm\(^{-1}\)
- J=2: 0 cm\(^{-1}\)

NIST Atomic Spectra Database

\[\text{48Ti} (a^3F_3) + \text{He} \rightarrow \text{Ti} (a^3F_2) + \text{He} \]

Optical density

Time after ablation [s]
48\text{Ti-He fine-structure changing collisions}

Monitoring the J population

Ti level structure

\[3d^24s^2 \ a^3F \rightarrow 3d^24s4p \ y^3F \]

J=4 \ 25388.334 \text{cm}^{-1}
J=3 \ 25227.217 \text{cm}^{-1}
J=2 \ 25107.417 \text{cm}^{-1}

\[3d^24s^2 \ a^3F \rightarrow 3d^24s4p \ y^3F \]

J=4 \ 386.874 \text{cm}^{-1}
J=3 \ 170.132 \text{cm}^{-1}
J=2 \ 0 \text{cm}^{-1}

NIST Atomic Spectra Database

\[
\text{Ti} (a^3F_3) + \text{He} \rightarrow \text{Ti} (a^3F_2) + \text{He}
\]

Time after ablation [sec]

Graph showing the population of J=2 and J=3 over time.
48Ti-He fine-structure changing collisions

\[\frac{1}{\tau_{3\rightarrow2}} = n_{\text{He}} k_{3\rightarrow2} \]

- \(n_{\text{He}} \): Helium density
- \(k_{3\rightarrow2} \): Rate coefficient

Graph showing the relationship between inverse lifetime \(1/\tau \) and helium density, with data points indicating initial decay and optical pumping.
48Ti-He fine-structure changing collisions

- **Submerged-shell structure**: Titanium [3d\(^2\) 4s\(^2\) 3F\(_J\)]

<table>
<thead>
<tr>
<th>48Ti-He</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T [K]</td>
<td>k(_J) [cm(^3)s(^{-1})]</td>
</tr>
<tr>
<td>5.2</td>
<td>(4.4 ± 0.7) × 10(^{-15})</td>
</tr>
<tr>
<td>9.9</td>
<td>(5.3 ± 0.8) × 10(^{-15})</td>
</tr>
<tr>
<td>15.6</td>
<td>(7.7 ± 1.2) × 10(^{-15})</td>
</tr>
<tr>
<td>19.9</td>
<td>(9.8 ± 1.5) × 10(^{-15})</td>
</tr>
</tbody>
</table>

Lu et al, PRA 77, 060701(R) (2008)

1. A similar suppression in fine-structure changing collisions as that in Zeeman relaxation.

2. The result of Ti-He fine-structure measurements has been applied to a theoretical calculation.

Zygelman et al, PRA 78, 012795 (2008)
Open-shell atoms

- $^2P_{1/2}$-state atoms: Gallium [$4s^24p^2^2P_{1/2}$] and Indium [$5s^25p^2^2P_{1/2}$]

Probe ground state population

Optical pumping to perturb population

$^{69}\text{Ga} (I=3/2)$

$4s^25s^2^2S_{1/2}$

Pump (~mW)

Probe (~μW) 403nm

$^2P_3/2$

$^2P_1/2$

$4s^24p$

$^2P^o_3/2$

$^2P^o_1/2$

Optical density

Time after ablation [s]
Ga-He F-changing collisions

69Ga ($I=3/2$)

$^2S_{1/2} \rightarrow F=2$

$^2P^o_{3/2} \rightarrow 3$

$^2P^o_{1/2} \rightarrow 2$

pump

probe

Normalized ratio

Time after ablation [s]

$|F=1>$ data

$|F=2>$ data
Ga-He F and J-changing rates

\[
\frac{1}{\tau} = n_{\text{He}} k + \frac{1}{D n_{\text{He}}}
\]

n_{He}: Helium density
k: Rate coefficient
D: Diffusion coefficient
Ga-He Zeeman relaxation

\[\sigma^+, \sigma^- \]

Probe (~μW)

\(B \)

coils (~ few G)

\(\lambda/4 \)

PBS

\(V, H \)

PD2

\[|F' = 1\rangle \quad \begin{array}{ccc} -1 & 0 & +1 \end{array} \quad |m_{F'}\rangle \]

\[|F = 2\rangle \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad |m_F\rangle \]

\[F_m \]

\[F_m \]

\[F_m \]

OD

0.1

Time after ablation [s]
Ga-He Zeeman relaxation

\[B \]

\[\sigma^+, \sigma^- \]

Probe (\(\sim \mu W\))

Pump (\(\sim mW\))

\[\lambda/4 \]

PBS

\[V, H \]

\[V \]

\[\sigma^+, \sigma^- \]

coils (\(\sim \) few G)

\[|F' = 1\rangle \]

\[|F = 2\rangle \]

\[|m_F\rangle \]

\[|m_F'\rangle \]

OD

Time after ablation [s]
Ga-He Zeeman relaxation

σ^+, σ^-

Probe ($\sim \mu W$)

$|F' = 1\rangle = \frac{-1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$

$|F = 2\rangle = \frac{-2}{\sqrt{5}} |0\rangle + \frac{1}{\sqrt{5}} |1\rangle + \frac{1}{\sqrt{5}} |2\rangle$

 coils (\sim few G)

B

$\lambda/4$

PBS

V, H

$H \rightarrow$ PD2

$V \rightarrow$ PD1

OD

Time after ablation [s]
<table>
<thead>
<tr>
<th>Events</th>
<th>69Ga$[^2P_{1/2}]$-He</th>
<th>115In$[^2P_{1/2}]$-He</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate coefficient</td>
<td>Experiment</td>
<td>Theory</td>
</tr>
<tr>
<td>k_J</td>
<td>(1.0+-0.3)</td>
<td>1.3</td>
</tr>
<tr>
<td>k_F</td>
<td>(5.3+-1.3)</td>
<td>6.6</td>
</tr>
<tr>
<td>k_m</td>
<td>< 300</td>
<td>2.3</td>
</tr>
</tbody>
</table>

(in the unit of 10^{-17} cm3s$^{-1}$)

Tscherbul et al., PRA 80, 040701(R) (2009)

- Prior work:
 a. C$[^3P_0]$, Si$[^2P_0]$-He; Al$[^2P_{1/2}]$-Ar; O$[^3P_2]$, C$[^3P_0]$-H: $k > 10^{-12}$ cm3s$^{-1}$
 b. Ti$[^3F_2]$-He: $k_J \sim 10^{-15}$ cm3s$^{-1}$

- The electron-density distribution of atoms in $^2P_{1/2}$ electronic states is spherically symmetric and that of $^2P_{3/2}$ atoms is not.

- Ground-state fine-structure splitting
 Ga: 826 cm$^{-1}$
 In: 2213 cm$^{-1}$
Summary

• The combined technique of laser ablation, buffer-gas cooling and optical pumping is applicable to measure inelastic collisions.

• We have measured a suppression in Ti-He fine-structure changing collisions due to titanium's submerged shell structure.

• The measured inelastic collisions rates of Ga-He and In-He are about five orders smaller than other open-shelled atoms and about one order smaller than Ti-He.

• $^2\text{P}_{1/2}$-state atoms may be good for evaporative cooling in a magnetic trap.
Light storage and retrieval

- Quantum communication:
 Carrier: photons (fastest, polarization)
 Storage: atoms (spin states, long coherence time)

- A direct transmission of quantum states for a long distance is impossible!
 In an optical fiber: Transmission = $10^{-0.2L/10}$
 \(L=5 \text{ km}, T=0.8; \ L=100 \text{ km}, T=10^{-2}; \ L=500 \text{ km}, T=10^{-10} \)

- Quantum repeater
 Successful operations are probabilistic.
 Need quantum memory

- Classical light storage and retrieval
 Slow/stopped light

Briegel et al., PRL 81(26), 5932 (1998); DLCZ Nature 414, 413 (2001)
Slow light

For a light pulse traveling in a dispersive medium:

\[v_{\text{phase}} = \frac{c}{n}; \quad v_{\text{group}} = \frac{c}{n(\omega) + \omega \frac{dn(\omega)}{d\omega}} \]

i) \(\frac{dn(\omega)}{d\omega} \) → large, \(v_{\text{group}} \) → slow

ii) no absorption of the light pulse
Slow light

For a light pulse traveling in a dispersive medium:

\[v_{\text{phase}} = \frac{c}{n}; \quad v_{\text{group}} = \frac{c}{n(\omega) + \omega \frac{dn(\omega)}{d\omega}} \]

i) \(\frac{dn(\omega)}{d\omega} \rightarrow \text{large}, \quad v_{\text{group}} \rightarrow \text{slow} \)

ii) no absorption of the light pulse

- For a linear absorptive medium, the derivative is small.
- Light pulse can be slow down by using electromagnetically-induced transparency (EIT).

Harris et al., PRA 46(1), R29 (1992)
Absorption Δ_p, detuning

$|1\rangle$ $|2\rangle$ $|3\rangle$
Absorption

Absorption

\(\Delta_p \), detuning

\(\omega_p \)

\(\omega_c \)
Absorption

\[\Delta_p, \text{detuning} \]

Absorption

\[\Delta_p, \text{detuning} \]

EIT
Electromagnetically-induced transparency (EIT)

Controlled with \(\Delta_p \) and probe state |3⟩, |2⟩, |1⟩ transitions are shown.

\[
(n-1) \quad \Delta_p, \text{detuning}
\]

\[
\text{absorption} \quad \Delta_p, \text{detuning}
\]
Electromagnetically-induced transparency (EIT)

The nonlinear effect depends on the control beam power.
Electromagnetically-induced transparency (EIT)

Get the condition to Slow Light!~
Dark state \[|a^0\rangle = \cos \theta |1\rangle - \sin \theta |2\rangle \]

Bright state
\[|a^+\rangle = \sin \theta \sin \phi |1\rangle + \cos \theta \sin \phi |2\rangle + \cos \phi |3\rangle \]

\[|a^-\rangle = \sin \theta \cos \phi |1\rangle + \cos \theta \cos \phi |2\rangle - \sin \phi |3\rangle \]

- Angles are associated to the intensities of both fields
- **No excited state population: no absorption**
Two-photon resonance: \((\delta=\Delta_p-\Delta_c=0)\) \(\hbar(\omega_p-\omega_c) = E_2 - E_1\)

EIT happens as long as the frequency difference between two optical fields matches with the energy difference of two lower energy levels.
EIT-based atomic ensemble

1. **Strong atom-photon coupling**
 Need: **large atomic density**

2. **Good isolation from environment**
 Need: **long coherence times**

 often disturbed by
 inelastic collisions, stray magnetic field, and thermal diffusion/atomic motion

Other system: electronic spin of alkali gas or solids
UNR: use pure **nuclear spin system** to accomplish those needs
Atom choices

- **Ground state** 1S_0 atoms ($J=0$, $L=0$ and $S=0$)
 no coupling between electronic and nuclear spins.
 nuclear spin has much better collisional behaviors than electronic spin.

- **Isotopes with nuclear spin** ($I \neq 0$)
 less effects from stray magnetic fields.

- **Atomic Ytterbium** (optical transition ~ 400 nm)
 ^{168}Yb, ^{170}Yb, ^{172}Yb, ^{174}Yb, ^{176}Yb
 ^{171}Yb ($I=1/2$), and ^{173}Yb ($I=5/2$)
 structure for EIT
 good natural abundance

\[\frac{\mu_N}{\mu_e} \sim \frac{1}{1837} \]
Setup

- **AOM**: acousto-optic modulator, controlling beam power
- **EOM**: electro-optic modulator, rotating beam polarization
- **W4**: quarter-wave plate, turning linear-pol. to circular-pol.
- **L**: lens combination, expanding the beam

Detection device =W4+ Wollaston Prism + PD1 and PD2
Yb EIT

\[6s6p \, {}^1P_1 \, F' = 5/2 \quad m_F = -5/2, -3/2, -1/2, +1/2, +3/2, +5/2 \]

\[6s^2 \, {}^1S_0 \, F = 5/2 \quad m_F = -5/2, -3/2, -1/2, +1/2, +3/2, +5/2 \]
Appling a magnetic field to induce two-photon detuning δ

$6s6p \ ^1P_1 \ F' = 5/2$

$6s^2 \ ^1S_0 \ F = 5/2$
probe
Two-photon resonance ($\delta=0$)

EIT
For a Doppler-broaden thermal gas,

\[\Gamma_{\text{EIT}} = 2\gamma_g + \frac{\Omega_c^2}{W_D + \gamma} \]

Rabi frequency
\[\Omega_c \propto \sqrt{I_c} \]

\[(\Delta=0) \]

\[\Gamma_{\text{EIT}} = 10 \text{ Hz} \]
\[\Gamma_{\text{EIT}} = 200 \text{ Hz} \]
Why isn't the transparency better?

- Off-resonance absorption of light by the other isotopes

Solution: switching to an isotopically-enriched ^{173}Yb target
Slow light

\[\tau_{\text{delay}} = \frac{L}{V_g} - \frac{L}{c}; \]

\(\tau_{\text{pulse}} = 60 \ \mu s \)

\(\tau_{\text{delay}} = 12 \ \mu s \)
Slow light

\[
\tau_{\text{delay}} = \frac{L}{v_g} - \frac{L}{c};
\]

\[
\tau_{\text{pulse}} = 60 \text{ \mu s}
\]

\[
\tau_{\text{delay}} = 12 \text{ \mu s}
\]

\[
v_g \sim 100 \text{ m/s}
\]

\[
v_g \sim 3 \times 10^{-7} c
\]
Delay-bandwidth product (DBW)

\[\tau_{\text{delay}} = \text{OD}_0 \frac{(W_D + \gamma)\Omega_c^2}{(2\gamma g (W_D + \gamma) + \Omega_c^2)^2}; \quad \Gamma_{\text{EIT}} = 2\gamma g + \frac{\Omega_c^2}{W_D + \gamma} \]

Goldfarb et. al. *EPL* **82** 54002 (2008)

i) For long \(\tau_{\text{delay}} \), need large \(\text{OD}_0 \); small \(\Omega_c, \gamma g \)

(want \(v_g \to 0, \Omega_c \to 0 \))

ii) For no absorption, require \(\frac{1}{\tau_{\text{pulse}}} < \Gamma_{\text{EIT}} \), \(\therefore \) large \(\Omega_c \)
Delay-bandwidth product (DBW)

\[\tau_{\text{delay}} = OD_0 \frac{(W_D + \gamma)\Omega_c^2}{(2\gamma_g(W_D + \gamma) + \Omega_c^2)^2} ; \quad \Gamma_{\text{EIT}} = 2\gamma_g + \frac{\Omega_c^2}{W_D + \gamma} \]

Goldfarb et. al. *EPL* **82** 54002 (2008)

i) For long \(\tau_{\text{delay}} \), need large \(OD_0 \); small \(\Omega_c, \gamma_g \)

\(\text{(want } v_g \rightarrow 0, \Omega_c \rightarrow 0) \)

ii) For no absorption, require \(\frac{1}{\tau_{\text{pulse}}} < \Gamma_{\text{EIT}} \), \(\therefore \) large \(\Omega_c \)

\[1 \ll \text{DBW} = \tau_{\text{delay}} \cdot \frac{1}{\tau_{\text{pulse}}} < OD_0 \]
• Radiation trapping
Re-emitted photons w/ random polarization mess up atom-light coherence.
Stopped light

Need FWHM

$\tau < 10 \text{ ms}$

$\tau = \text{storage}$

Stopped light

leak

Int. [normalized]

0.5

0.4

0.3

0.2

0.1

0.0

-100

0

100

Time [\text{\mu s}]
Stopped light

\[\tau_{\text{storage}} = 10 \text{ ms} \]

Diagram shows a sequence of devices labeled AOM, EOM, W4, L, PBS, and PD2. A graph illustrates intensity over time, with a peak labeled as 'leak' and another labeled as 'retrieval.'
Stopped light

Efficiency = \frac{\text{the energy of the retrieved pulse}}{\text{the energy of the input pulse}}

Decoherence due to diffusion:
an exponential fit gives a storage lifetime of 0.11s.
Stopped light

A storage lifetime is up to 0.3 s.
Quantum communication

It takes about 17 ms for a light pulse to travel across the north America.

~ 5000 km
Yb data v.s. state of the art

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Methodology</th>
<th>Paper Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2009 Hau Na BEC</td>
<td>PRL 103 233602</td>
</tr>
<tr>
<td>B</td>
<td>2007 Walsworth Warm Rb vapor</td>
<td>PRL 98 243602</td>
</tr>
<tr>
<td>C</td>
<td>2009 Kuzmich Rb 1D lattice</td>
<td>Nat. Phys. 5 100</td>
</tr>
<tr>
<td>D</td>
<td>2010 Kuzmich Rb "magic" lattice</td>
<td>PRA 81, 041805(R)</td>
</tr>
<tr>
<td>E</td>
<td>2009 Bloch Rb Mott Insulator</td>
<td>PRL 103 033003</td>
</tr>
</tbody>
</table>

![Graph](image)

- **Yb data v.s. state of the art**
- **Efficiency** vs. **Storage time [s]**
- UNR; nHe ~ 1.5e17 cm\(^{-3}\), bias field
Conclusions

• We use cryogenically-cooled 1S_0 atomic ensembles to have high optical densities and long spin coherence times.

• By applying EIT techniques in a nuclear spin system, we have observed an atom-light coherence time better than 100 ms.

• We have a storage lifetime up to hundreds of milliseconds and show a competitive performance than other system.
\[2P_{1/2} : s = 1/2, l = 1, j = 1/2 \]

\[|j = 1/2, m_j = 1/2\rangle = \sqrt{\frac{2}{3}} Y^1_1 |\frac{1}{2}, -\frac{1}{2}\rangle - \sqrt{\frac{1}{3}} Y^0_1 |\frac{1}{2}, -\frac{1}{2}\rangle \]

\[|\psi|^2 \propto \frac{2}{3} |Y^1_1|^2 + \frac{1}{3} |Y^0_1|^2 = 1 \]

\[2P_{3/2} : s = 1/2, l = 1, j = 3/2 \]

\[|j = 3/2, m_j = 3/2\rangle = Y^1_1 |\frac{1}{2}, \frac{1}{2}\rangle \]

\[|j = 3/2, m_j = 1/2\rangle = \sqrt{\frac{1}{3}} Y^1_1 |\frac{1}{2}, -\frac{1}{2}\rangle + \sqrt{\frac{2}{3}} Y^0_1 |\frac{1}{2}, \frac{1}{2}\rangle \]

\[|\psi_{3/2,3/2}|^2 \propto |Y^1_1|^2 = \frac{3}{8\pi} \sin^2 \theta \]

\[|\psi_{3/2,1/2}|^2 \propto \frac{1}{3} |Y^1_1|^2 + \frac{2}{3} |Y^0_1|^2 = \frac{1}{8\pi} (1 + \cos^2 \theta) \]
Kramers-Kronig Relation

Classical Electrodynamics (1998)
J. D. Jackson

\(\chi \) : susceptibility
\(\text{Im}[\chi] \) : absorption
\(1 + \frac{1}{2} \text{Re}[\chi] \) : index of refraction
Citations to Previously Published Work

• Fine-structure changing collisions in atomic titanium
 Mei-Ju Lu, Kyle S. Hardman, Jonathan D. Weinstein, and Bernard Zygelman

• Inelastic titanium-titanium collisions
 Mei-Ju Lu, Vijay Singh, and Jonathan D. Weinstein

• Cold TiO-He collisions
 Mei-Ju Lu and Jonathan D. Weinstein
 New Journal of Physics 11, 055015 (2009)

• Suppression of Zeeman relaxation in cold collisions of $^2\text{P}_{1/2}$ atoms
 T. V. Tscherbul, A. A. Buchachenko, A. Dalgarno, M.-J. Lu, and J. D. Weinstein
 Physical Review A 80, 040701(R) (2009)

• Electromagnetically induced transparency with nuclear spin
 Mei-Ju Lu and Jonathan D. Weinstein

• Stopped light with a cryogenic ensemble of ^{173}Yb atoms
 Mei-Ju Lu, Franklin Jose, and Jonathan D. Weinstein
 Physical Review A 82, 061802(R) (2010)
Diffusion lifetimes

i) At low n_{He}, τ_D is linearly increasing with n_{He}.

ii) At high n_{He}, diffusion is not the only atom loss mechanism.
Spatial compression: c / v_g

For a 60 μs long pulse (18000 m long in space),

if $\tau_{\text{delay}} = 12 \mu$s, $v_g = \frac{10 \text{ cm}}{12 \mu\text{s}} = 8.3 \times 10^5 \text{ cm/s}$.

Spatial compression $= \frac{c}{v_g} = 3.6 \times 10^4 = \frac{18000 \text{ m}}{0.5 \text{ m}}$

The length of the atomic cloud is 10 cm
Decoherence

- **Inelastic collisions**
 coated cell, buffer gas, $J = 0$ atoms, Mott insulator

- **Inhomogeneous magnetic fields**
 magnetic shielding,
 nuclear spins,
 using magnetically insensitive states (clock transitions)

- **Thermal diffusion/ atomic motion**
 Cryogenic He buffer gas, optical lattice/ Mott insulator,
 Bose-Einstein Condensation,
 solids/crystal
Yb spectrum

Transmission = e^{-OD}

Optical Density (OD) = atom density × absorption cross section × path length

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Nuclear Spin</th>
<th>Abundance</th>
<th>Gyromagnetic ratio γ [Hz / Gauss]</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{173}Yb</td>
<td>5/2</td>
<td>16.12%</td>
<td>- 206.5</td>
</tr>
</tbody>
</table>

398.8 nm

25068 cm^{-1}

$A = 1.92 \times 10^8 \text{ s}^{-1}$

$\Gamma_{\text{natural}} = 30 \text{ MHz}$

$6s^2 \ ^1S_0$

$6s6p \ ^1P_1$

84 MHz

737 MHz

T ~ 5K

Blue diode laser
Yb Pressure broadening

![Graph showing the relationship between FWHM and Helium density. The graph includes data points for GauFWHM and LorFWHM, and a fitted line with equation \(y = a + b \times x \). The parameters for the fit are \(a = 0.03 \) and \(b = 1.77 \times 10^{-19} \).]
Prior Work

\[\frac{1}{\tau} = k \cdot n \]

\[k = \sigma \cdot \bar{v}_r \]

<table>
<thead>
<tr>
<th>Events</th>
<th>Rate coefficient [cm³s⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>173Yb\left[1S\textsubscript{0}\right]-He</td>
<td>$< 9 \times 10^{-18}$</td>
</tr>
<tr>
<td>Rb\left[2S\textsubscript{1/2}\right]-He</td>
<td>$\sim 10^{-19}$</td>
</tr>
<tr>
<td>Al\left[2P\textsubscript{1/2}\right]-Ar</td>
<td>$10^{-12} \sim 10^{-10}$</td>
</tr>
<tr>
<td>C\left[3P\textsubscript{0}\right], Si\left[2P\textsubscript{0}\right]-He</td>
<td></td>
</tr>
<tr>
<td>O\left[3P\textsubscript{2}\right], C\left[3P\textsubscript{0}\right]-H</td>
<td></td>
</tr>
<tr>
<td>Ca*-Ca* [4s4p 3P\textsubscript{2}]</td>
<td>3×10^{-10}</td>
</tr>
<tr>
<td>Yb*-Yb* [6s6p 3P\textsubscript{2}]</td>
<td>$1.0(3) \times 10^{-11}$</td>
</tr>
<tr>
<td>Sr*-Sr* [5s5p 3P\textsubscript{0}]</td>
<td>$(5 \pm 3) \times 10^{-12}$</td>
</tr>
</tbody>
</table>

\(\frac{1}{\tau} \): rate
\(k \): rate coefficient
\(n \): atomic density
\(\sigma \): cross-section
\(\bar{v}_r \): relative velocity

Walker et al, PRA 56, 2090 (1997)
Hemmerich et al, PRL 96, 073003 (2006)
Yamaguchi et al, PRL 101, 233002 (2008)
Traverso et al, PRA 79, 060702 (2009)