

Beamlike photo-pair generation by femtosecond pulse laser

Chih-Wei Luo (羅志偉)

Department of Electrophysics National Chiao Tung University, Taiwan

March 21, 2011 in NTHU

Acknowledgements

Taiwan National Science Council

- 1. Introduction quantum information
- 2. Introduction femtosecond (fs) laser pulses
- 3. Down conversion principle
- 4. Beamlike photon-pair generation

Introduction – Quantum information

Speed
 Density
 Communication

cf. : http://www.qubit.org/library/intros/comp/comp.html

Introduction – Quantum information

Beam Us Up!

国立主通大学

National Chiao Tung University

Teleportation doesn't work for humans yet — but it works over long distances!

Star Trek

Ref.: X. M. Jin, et al, Nature Photonics 4, 376 (2010).

1. Introduction — quantum information

- 2. Introduction femtosecond (fs) laser pulses
- 3. Down conversion principle
- 4. Beamlike photon-pair generation

National Chiao Tung University Introduction – fs laser pulses

国立主通大学

Timescales

Which one is true?

Ultrafast camera!!

USA National Ignition Facility

- 1. Introduction quantum information
- 2. Introduction femtosecond (fs) laser pulses
- 3. Down conversion principle
- 4. Beamlike photon-pair generation

Second-order susceptibility – the first nonlinear optical effect

ω

ω

 2ω

χ(2)

$$\mathbf{P} = \varepsilon_0 \left(\chi^{(1)} \mathbf{E} + \chi^{(2)} \mathbf{E} \mathbf{E} + \chi^{(3)} \mathbf{E} \mathbf{E} \mathbf{E} + \cdots \right)$$

国立主通大学

National Chiao Tung University

□ The polarization of a material can be written as

$$P_{i}(2\omega) = \varepsilon_{0} \sum_{j,k} \chi_{ijk}^{(2)} E_{j}(\omega) E_{k}(\omega)$$

$$P_{i}(2\omega) = \varepsilon_{0} \sum_{j,k} \chi_{ijk}^{(2)} E_{j}(\omega) E_{k}(\omega)$$

$$P_{i}(\omega) = \begin{pmatrix} d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \\ d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \\ d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & d_{36} \end{pmatrix} \begin{pmatrix} E_{x}^{2} \\ E_{y}^{2} \\ E_{z}^{2} \\ 2E_{z}E_{y} \\ 2E_{z}E_{x} \\ 2E_{x}E_{y} \end{pmatrix}$$

> In a centrosymmetric (inverse sym.) crystal → d_{ijk} = 0 → no SHG
 > In non-centrosymmetric (no inverse-sym.) crystal → dijk ≠ 0 → SHG

Second-order susceptibility

The energy conservation $\hbar(2\omega) = \hbar\omega + \hbar\omega$

The momentum conservation

国立主通大学

National Chiao Tung University

$$\mathbf{k}_2 = \mathbf{k}_1 + \mathbf{k}_1 = 2\mathbf{k}_1 \implies \Delta \mathbf{k} = \mathbf{k}_2 - 2\mathbf{k}_1 = \mathbf{0}$$

After propagation over a distance / in the medium,

 $\Delta k l = (k_2 - 2k_1) l = 0$ The two contributions add constructively $\Delta k l = (k_2 - 2k_1) l \neq 0$ The two interfere destructively

If it satisfies above conditions, the intensity of SHG can be calculated by

$$\sum I(2\omega) = \frac{2^7 \pi^3 \omega^2 \chi_{eff}^2 l^2}{n^3 c^3} I^2(\omega) \left(\frac{\sin(\Delta kl/2)}{\Delta kl/2}\right)$$

Dephasing must be overcome for SHG!!

1.563913

1.498153

1.480244

1.472486

1.468267

1.465601

1.463708

.462234

1.460993

1.459884

1.45884

1.457838

1.45683

1.455829

1.454797

1.453735

国立家通大学

National Chiao Tung University

Second-order susceptibility Index-of-refraction dispersion data on KH₂PO₄ Index Wavelength, µm n. (ordinary ray) n, (extraordinary ray) Phase matching condition 0.2000 1.622630 0.3000 1.545570 $\Delta k = k^{(2\omega)} - 2k^{(\omega)} = \frac{2\omega}{2} \left(n^{2\omega} - 2n^{\omega} \right) = 0$ 0.4000 1.524481 0.5000 1.514928 1.509274 0.7000 1.505235 0.8000 1.501924 0.9000 1.498930 Get maximum signal of SHG 1.9000 1.496044 1.1000 1.493147 1.2000 1.490169 1.3000 1.487064 1.483803 Coherent length $l_c = \frac{2\pi}{\Delta k} = \frac{2\pi}{k^{(2\omega)} - 2k^{(\omega)}} = \frac{\lambda}{c(n^{2\omega} - 2n^{\omega})}$ 1.5000 1.6000 1.7000 1.8000 1.9000 1.480363 1.476729 1.472890 1.468834 1.452636 1.464555 1.451495 1.460044 1.450308 If $\lambda = 1 \ \mu \text{ m}$ and $n^{2\omega} - n^{\omega} \sim 0.01 \rightarrow l_c \sim 100 \ \mu \text{ m}$ $(n^{2\omega} - n^{\omega}) \rightarrow 0, \ I_{c} \rightarrow \infty, \ I(2\omega) \rightarrow \infty$

In normally dispersive materials the index of refraction increases with ω . This makes it **impossible** to satisfy phase matching when both the ω and 2ω beams are of the same type.

For birefringent crystal, $n_e^{\omega} \neq n_o^{\omega}$ \square Can satisfy the phase matching condition Calcite Crystal Birefringence

Second-order susceptibility

Birefringent crystal

Positive birefringence $(n_e > n_o)$: Quartz

Negative birefringence $(n_e < n_o)$: Calcite

Calculate the phase-matching angle θ between the propagation direction and the optical axis

$$\left(\frac{1}{n_e^{2\omega}(\theta)}\right)^2 = \frac{\sin^2 \theta}{\left(n_e^{2\omega}\right)^2} + \frac{\cos^2 \theta}{\left(n_o^{2\omega}\right)^2} = \left(\frac{1}{n_o^{\omega}(\theta)}\right)^2$$
$$\sum \theta = \sin^{-1} \left[\sqrt{\frac{\left(n_o^{\omega}\right)^{-2} - \left(n_o^{2\omega}\right)^{-2}}{\left(n_e^{2\omega}\right)^{-2} - \left(n_o^{2\omega}\right)^{-2}}}\right]$$

For negative birefringent crystal, the polarization should be

Type I:
$$\mathbf{E}_{\omega} / / \mathbf{E}_{\omega} \Longrightarrow n_{o}^{\omega} + n_{o}^{\omega} = 2n_{e}^{2\omega}(\theta)$$

Type II: $\mathbf{E}_{\omega} \perp \mathbf{E}_{\omega} \Longrightarrow n_{e}^{\omega}(\theta) + n_{o}^{\omega} = 2n_{e}^{2\omega}(\theta)$

Bandwidth of SHG

$$d\lambda_{2\omega} = \frac{\pm 1.39\lambda_{\omega}}{2\pi l} \left(\frac{\partial n_o^{\omega}}{\partial \lambda_{\omega}} - \frac{1}{2}\frac{\partial n_e^{2\omega}}{\partial \lambda_{2\omega}}\right)$$

Limit by crystal thickness $[30 \mu \text{ m KDP}(\text{KH}_2\text{PO}_4) @ 6\text{fs}]$

Second-order susceptibility

国立主通大学

National Chiao Tung University

Ex. BBO (β -Barium Borate, BaB₂O₄)

Crystal structure	trigonal, 3m			
Optical symmetry	Negative Uniaxial (n _o >n _e)		
Space group	R3c			
Density	3.85 g/cm ³			
Mohs hardness	5			
Optical homogeneity	∂n = 10 ⁻⁶ cm ⁻¹			
Transparency region at "0" transmittance level	189 – 3500 nm			
Linear absorption coefficient at 1064 nm	< 0.1% cm ⁻¹			
Refractive indices	n。	n _e		
at 1064 nm	1.6551	1.5426		
at 532 nm	1.6750	1.5555		
at 355 nm	1.7055	1.5775		
at 266 nm	1.7571	1.6139		
at 213 nm	1.8465	1.6742		
Sellmeier equations (λ, μm)	n _o ² = 2.7405 + 0.01	84 / (λ ² -0.0179) - 0.0155 λ ²		
	n _e ² = 2.3730 + 0.01	28 / (λ ² -0.0156) - 0.0044 λ ²		
Phase matching range Type 1 SHG	410 – 3300 nm			
Phase matching range Type 2 SHG	530 – 3300 nm			
Walk-off angle	55.9 mrad (Type 1	SHG 1064 nm)		
Angular acceptance	1.2 mrad × cm (Ty	1.2 mrad × cm (Type 1 SHG 1064 nm)		
Thermal acceptance	70 K × cm (Type 1	SHG 1064 nm)		
Nonlinearity coefficients	d ₂₂ = ±(2.22±0.09)	pm/V		
	d ₃₁ = ±(0.16±0.08)	pm/∨		
Effective nonlinearity expressions	$d_{ooe} = d_{31} \sin\theta - d_{22}$	cosθ sin3φ		
	$d_{eoe} = d_{oee} = d_{22} \cos \theta$	²θ cos3φ		
Damage threshold for TEM ₀₀ 1064 nm	> 0.5 GW/cm ² at 10	0 ns		
	~ 50 GW/cm² at 1	os		

_	Code	Size, mm	θ	φ	Coating	Application
	BBO-601	6x6x0.1	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm
	BBO-602	6x6x0.2	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm
	BBO-603	6x6x0.5	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm

The energy & momentum conservation in frequency mixing

国立主通大学

National Chiao Tung University

Spontaneous Parametric Down-Conversion (SPDC)

- 1. Introduction quantum information
- 2. Introduction femtosecond (fs) laser pulses
- 3. Down conversion principle
- 4. Beamlike photon-pair generation

国主主通大学 National Chiao Tung University

Beamlike photon-pair generation

国立主通大学

National Chiao Tung University

国立主通大学

National Chiao Tung University

968 OPTICS LETTERS / Vol. 33, No. 9 / May 1, 2008

780m

国立主通大学

National Chiao Tung University

Beamlike high-brightness source of polarization-entangled photon pairs

Xiao-Ling Niu,¹ Yun-Feng Huang,^{1,3} Guo-Yong Xiang,¹ Guang-Can Guo,¹ and Z. Y. Ou^{2,*} ¹Key Laboratory of Quantum Information, Chinese Academy of Sciences (CAS), University of Science and Technology of China, Hefei, 230026, China ²Department of Physics, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indian Indiana 46202, USA

³E-mail: hyf@ustc.edu.cn *Corresponding author: zou@osa.org

Tiltable

Fiber

Coupler

Single-mod

Single-mode

Di

Measurement ^a							
P1, P2 Settings	Coincidence Counts (1 s)	P1, P2 Settings	Coincidence Counts (1 s)				
HH	79	DD	788				
HV	31,851	RD	16,487				
VH	30,885	RL	29,134				
VV	34	DR	18,585				
HD	15,965	DV	18,949				
HL	14,749	RV	17,201				
DH	13,833	VD	14,945				
DU	10.000	377	14719				

Describes of Occurrent over State Term

Generation rate ~ 32,000 s⁻¹ $i|V\rangle/\sqrt{2}$.

T-11-1

国立主通大学

National Chiao Tung University

国立家通大学

National Chiao Tung University

Hong-Ou-Mandel (HOM) dip interference measurement for light path adjustment

國立家通大學

National Chiao Tung University

Ref.: R. W. Boyd, PRA 77, 021801(R) (2008).

Two-photon interference of beamlike photon pairs

国立主通大学

National Chiao Tung University

Polarization entanglement of beamlike photon pairs

國立主通大學

National Chiao Tung University

Summary

国立主通大学

National Chiao Tung University

In this study, we proved the new idea can generate the beamlike photon for the twophoton interference and polarization entanglement.

□ The concurrence of the pair was calculated to be 0.90 ± 0.05, which defines the degree of entanglement of the generated photon pairs.

This confirms that the generated beamlike photon pair is highly entangled in its polarization.

H. P. Lo, A. Yabushita, C. W. Luo, P. C. Chen, T. Kobayashi, PRA 83, 022313 (2011)

Acknowledgements

Cooperators: Hsin-Pin Lo, Prof. A. Yabushita,

Prof. T. Kobayashi, Prof. P. C. Chen,

