Valence-bond ground states of isotropic quantum antiferromagnets for universal quantum computation

Tzu-Chieh Wei

University of British Columbia

Refs. (1) Wei, Affleck & Raussendorf, PRL 106, 070501 (2011) and arXiv:1009.2840

(2) Wei & Raussendorf, in preparation

(3) Li, Browne, Kwek Raussendorf & Wei, arXiv:1102.5153

NTHU, April 11th, 2011

Quantum spin systems

□ Bethe solution (1931) on Heisenberg chain

$$H = J \sum_{i} \vec{S}_i \cdot \vec{S}_{i+1}$$

 Lieb, Schultz & Mattis (1961): XY & Ising-Heisenberg chains & spectral gap

 Haldane (1983): Spectral gap in AF Heisenberg chain is finite for integer spin-S

Quantum spin systems

Active research in condensed matter, statistical physics
 & high-energy physics

□ Rich features:

- Fluctuations and frustration may prevent Néel order
- > AFM closely related to high-Tc superconductivity
- Spin liquid
- Can be simulated by untracold atoms
- ▶

Our focus on antiferromagnets

Valence-bond ground states

> Simplest valence-bond of two spin-1/2 \rightarrow singlet state

Quantum computation

Feynman ('81): "Simulating Physics with (Quantum) Computers"

➔ Idea of quantum computer further developed by Deutsch ('85), Lloyd ('96), …

1st conference on Physics and Computation, 1981

Quantum computation

Shor ('94): quantum mechanics enables fast factoring

18070820886874048059516561644059055662781025167694013491701270214 50056662540244048387341127590812303371781887966563182013214880557 =(39685999459597454290161126162883786067576449112810064832555157243)

x (45534498646735972188403686897274408864356301263205069600999044599)

➔ Ever since: rapid growing field of quantum information & computation

Quantum computational models

1. Circuit model:

2. Adiabatic QC:

[Farhi, Goldstone, Gutmann & Sipster '00]

3. Measurement-based:

[Raussendorf & Briegel '01] [c.f. Gottesman & Chuang, '99 Childs, Leung & Nielsen '04]

Quantum computation by measurement

[Raussendorf & Briegel '01]

[c.f. Gottesman & Chuang, '99 Childs, Leung & Nielsen '04]

- \Box Use cluster state $|\mathcal{C}\rangle$ as computational resource
- □ Information is written on to $|C\rangle$, processed and read out <u>all</u> by single spin measurements
- Key points: measurement patterns for 1- and 2-qubit gates (universal gates)

1 2 3 4 5 6 7 control X Y Y Y Y X 8 target X X Y X X 9 10 11 12 13 14 15 CNOT-gate

Two-qubit universal gates

□ Four by four unitary matrices (acting on the two qubits)

$$\checkmark \text{ Control-NOT gate:} \begin{array}{c} 0 & 0 & \to & 0 & 0 \\ 0 & 1 & \to & 0 & 1 \\ 1 & 0 & \to & 1 & 1 \\ 1 & 1 & \to & 1 & 0 \end{array} \text{ CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & X \end{pmatrix}$$
$$\leftarrow \begin{array}{c} Control-Phase gate: \\ 0 & 0 & \to & 0 & 0 \\ 0 & 1 & \to & 0 & 1 \\ 1 & 0 & \to & 1 & 0 \\ 1 & 1 & \to & -1 & 1 \end{array} \text{ CP} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & Z \end{pmatrix}$$

Generate entanglement

$$\begin{aligned} |+\rangle|+\rangle &= \frac{(|0\rangle+|1\rangle)}{\sqrt{2}} \frac{(|0\rangle+|1\rangle)}{\sqrt{2}} \xrightarrow{\mathsf{CP}} \frac{1}{2} (|00\rangle+|01\rangle+|10\rangle-|11\rangle) \\ &= \frac{1}{\sqrt{2}} (|0\rangle|+\rangle+|1\rangle|-\rangle) \neq |\phi_1\rangle|\phi_2\rangle \end{aligned}$$

Entanglement: state preparation

Entangled state has strong correlation

$$CP \\ |+\rangle_1 |+\rangle_2 \longrightarrow |\psi\rangle_{12} = |+\rangle_1 |0\rangle_2 + |-\rangle_1 |1\rangle_2$$

Measurement on 1st qubit in basis

 $|\pm\rangle \equiv (|0\rangle \pm |1\rangle)/\sqrt{2}$

 \checkmark If outcome = +: the second qubit becomes

 $_1\langle +|\cdot|\psi\rangle_{12}\sim|0\rangle_2$

 \checkmark If outcome = -: the second qubit becomes

$$_1\langle -|\cdot|\psi\rangle_{12}\sim|1\rangle_2=X|0\rangle_2$$

Unitary operation by measurement?

$$|\psi_{\rm in}\rangle_1 \longrightarrow U |\psi_{\rm in}\rangle_2$$

measurement

✤ Measurement on 1st qubit in basis

$$|\pm\xi\rangle \equiv (|0\rangle \pm e^{i\xi}|1\rangle)/\sqrt{2}$$

✓ If outcome=+ ξ : an effective rotation applied:

$$_{1}\langle +\xi|\psi\rangle_{12} \sim a|+\rangle_{2} + b\,e^{-i\xi}|-\rangle_{2} = \frac{1}{2} \left(\begin{array}{cc} 1 & e^{-i\xi} \\ 1 & -e^{-i\xi} \end{array} \right) (a|0\rangle_{2} + b|1\rangle_{2})$$

CNOT by measurement

$$|\psi_{\rm in}\rangle_{12} \Longrightarrow U |\psi_{\rm in}\rangle_{12}$$

Measurement on 2nd and 3rd gubits in basis

 $|\pm\rangle \equiv (|0\rangle \pm |1\rangle)/\sqrt{2}$

If outcome=++: an effective CNOT applied:

 $_{23}\langle + + |\psi\rangle_{1234} \sim \text{CNOT}_{14}(a|0\rangle_1 + b|1\rangle_1)(c|0\rangle_4 + d|1\rangle_4)$

Note the action of CP gates can be pushed up front

Cluster state is a resource for quantum computation

 All the "linking" (by CP) can be done in the beginning; this gives rise to a 2D cluster state:

- The whole entangled state is created first and subsequent operations are single-qubit measurements
 - pattern of measurement gives computation (i.e. simulates a circuit)

Cluster state: special case of graph states

$$|\mathcal{C}\rangle = \prod_{\text{edge }\langle i,j\rangle} CP_{ij}(|+\rangle|+\rangle\cdots|+\rangle)$$

□ Use the equality

$$CP_{uv} X_u = X_u \otimes Z_v CP_{uv}$$

$$\rightarrow \left(\prod_{\text{edge}\langle i,j\rangle} CP_{ij}\right) X_u = \left(X_u \prod_{v \in Nb(u)} Z_v\right) \prod_{\text{edge}\langle i,j\rangle} CP_{ij}$$

□ Apply to cluster state*

$$\left(X_u \prod_{v \in \mathrm{Nb}(u)} Z_v\right) |\mathcal{C}\rangle = |\mathcal{C}\rangle$$

 \Box This definition on graph \rightarrow graph state

*Note: $X|+\rangle = |+\rangle$

Cluster and graph states as ground states

□ Graph state: defined on a graph

 $H_G = -\sum_{\text{site } v} K_v$

[Hein, Eisert & Briegel 04']

 \rightarrow Graph state is the unique ground state of $H_{\rm G}$

 $|\mathcal{C}
angle = |\mathcal{C}
angle$

 $K_v|G\rangle = |G\rangle, \ \forall \operatorname{site} v$

 \Box Cluster state |C > = graph state on square lattice

[Raussendorf & Briegel, 01']

[Nielsen '04]

Where to look for other resource states? Not

Note: X, Y & Z are Pauli matrices

Search for universal resource states?

□ The first known resource state is the 2D cluster state

[Raussendorf & Briegel 01']

- Other known examples:
 - Any other 2D graph states* on regular lattice: triangular, honeycomb, kagome, etc. [Van den Nest et al. '06]
 - MPS & PEPS framework

[Verstraete & Cirac '04] [Gross & Eisert '07, '10]

- □ Can universal resource states be ground states?
 - → Create resources by cooling!
 - Desire simple and short-ranged (nearest nbr) 2-body Hamiltonians

Outline

- I. Introduction: quantum spins & quantum computation
- II. Valence-bond states (AKLT construction)

> Ground states of isotropic antiferromagnet

- III. Valence-bond ground states for quantum computation
 - > Preprocessing: generalized measurement
 - Give rise to graph states and cluster states (graph properties and percolation argument)
- IV. Summary and outlook

A new direction: valence-bond ground states of isotropic antiferromagnet

α = AKLT (Affleck-Kennedy-Lieb-Tasaki) states [AKLT'87,88]

- □ States of spin 1,3/2, or higher (defined on any lattice)
 - ➔ Unique* ground states of two-body isotropic Hamiltonians

 $H = \sum_{\langle i,j \rangle} f(\vec{S}_i \cdot \vec{S}_j)$ *f(x)* is a polynomial

Important progress on 1D AKLT states:

[Gross & Eisert, PRL '07] [Brennen & Miyake, PRL '09]

[*Miyake*, *PRL* '10] [*Bartlett et al. PRL* '10]

→ Can be used to implement rotations on single-qubits

*with appropriate boundary conditions

1D: Single-qubit rotations not sufficient

- Key question: can any of AKLT states provide a resource for universal quantum computation?
 - > Need 2D structure
 - We show that the spin-3/2 2D AKLT state on honeycomb lattice is such a resource state

[<u>Wei</u>, Affleck & Raussendorf, arXiv1009.2840 and PRL106, 070501 (2011)]

[Alternative proof: Miayke, arXiv 1009.3491]

 Results beyond honeycomb & 3D (including thermal noise & fault tolerance)

[Wei & Raussendorf, in preparation]

[*Li, Browne, Kwek, Raussendorf,* <u>Wei</u>, arXiv:1102.5153]

1D AKLT state

[*AKLT* '87, '88]

□ Spin-1 chain: two virtual qubits per site

□ Ground state of two-body interacting Hamiltonian (with a gap)

$$H = \sum_{i} \left[\vec{S}_{i} \cdot \vec{S}_{i+1} + \frac{1}{3} (\vec{S}_{i} \cdot \vec{S}_{i+1})^{2} + \frac{2}{3} \right] = 2 \sum_{i} \hat{P}_{i,i+1}^{(S=2)} \quad \longleftarrow \quad \text{projector} \text{onto } S=2$$

 Can realize rotation on one logical qubit by measurement (not sufficient for universal QC)
 [Gross & Eisert, PRL '07] [Brennen & Miyake, PRL '09]

2D universal resource: Spin-3/2 AKLT state on honeycomb

singlet $|01\rangle - |10\rangle$

Each site contains three virtual qubits

Two virtual qubits on an edge form a singlet

Spin 3/2 and three virtual qubits

□ Addition of angular momenta of 3 spin-1/2's

Projector onto symmetric subspace

 $P_{S,v} = |000\rangle\langle 000| + |111\rangle\langle 111| + |W\rangle\langle W| + |\overline{W}\rangle\langle \overline{W}| \leftrightarrow I_{3/2}$

Spin-3/2 AKLT state on honeycomb

Each site contains three virtual qubits

Two virtual qubits on an edge form a singlet

Spin-3/2 AKLT state on honeycomb

Each site contains three virtual qubits

Two virtual qubits on an edge form a singlet

• Projection ($P_{S,v}$) onto symmetric subspace of 3 qubits at each site & relabeling with spin-3/2 (four-level) states

$$P_{S,v} = |000\rangle\langle 000| + |111\rangle\langle 111| + |W\rangle\langle W| + |\overline{W}\rangle\langle \overline{W}|$$

singlet $|01\rangle - |10\rangle$

$$|000\rangle \leftrightarrow \left|\frac{3}{2}, \frac{3}{2}\right\rangle \quad |111\rangle \leftrightarrow \left|\frac{3}{2}, -\frac{3}{2}\right\rangle$$
$$|W\rangle \equiv \frac{1}{\sqrt{3}}(|001\rangle + |010\rangle + |100\rangle) \leftrightarrow \left|\frac{3}{2}, \frac{1}{2}\right\rangle$$
$$|\overline{W}\rangle \equiv \frac{1}{\sqrt{3}}(|110\rangle + |101\rangle + |011\rangle) \leftrightarrow \left|\frac{3}{2}, -\frac{1}{2}\right\rangle$$

Spin-3/2 AKLT state on honeycomb

□ (With appropriate BC) unique ground state of

[AKLT '87, '88]

$$H = \sum_{\text{edge}\,\langle i,j\rangle} \hat{P}_{i,j}^{(S=3)} = \sum_{\text{edge}\,\langle i,j\rangle} \left[\vec{S}_i \cdot \vec{S}_j + \frac{116}{243} (\vec{S}_i \cdot \vec{S}_j)^2 + \frac{16}{243} (\vec{S}_i \cdot \vec{S}_j)^3 + \frac{55}{108} \right]$$

Quantum disordered state (w/o Néel order):
 via mapping to a 2D classical model at finite T

[Arovas, Auerbach & Haldane '88, Parameswaran, Sondhi & Arovas '09]

$$H_{\rm cl} = -\sum_{\rm edge\,\langle i,j\rangle} \ln\left(\frac{1-\hat{n}_i\cdot\hat{n}_j}{2}\right) \qquad \hat{n}_i:{\rm clase}$$

 \hat{h}_i : classical unit vector

Exponential decay of correlation (gap not proved yet)
 [AKLT'87,'88]

Outline

- I. Introduction: quantum spins & quantum computation
- II. Valence-bond states (AKLT construction)

> Ground states of isotropic antiferromagnet

- III. Valence-bond ground states for quantum computation
 - > Preprocessing: generalized measurement
 - Give rise to graph states and cluster states (graph properties and percolation argument)
- IV. Summary and outlook

Our strategy for universality

Show the 2D AKLT state can be locally converted to a 2D cluster state (known resource state)

□ Spin 3/2 (4 levels) \rightarrow Spin ½ (2 levels)?

→ Need "projection" into smaller subspace

We use generalized measurement (or POVM)

Random outcome gives 2D graph state (graph modified from honeycomb)

□ Use percolation argument :

→ typical random graph state converted to cluster state

Measurement

[See e.g. Nielsen & Chuang]

➢ Reading "measuring device" value → infer outcome

• Conservation of probability $\sum F_a^{\dagger}F_a = I$ $p_a = \langle \psi | F_a^{\dagger}F_a | \psi \rangle$

□ *F* 's need not be orthogonal

→ generalized measurement (POVM)

 \Box Outcome $a \rightarrow$ state becomes $|\psi\rangle \longrightarrow F_a |\psi\rangle$

The POVM (spin-3/2 version)

$$F_{v,z} = \sqrt{\frac{2}{3}} \left(\left| \frac{3}{2} \right\rangle \left\langle \frac{3}{2} \right|_{z} + \left| -\frac{3}{2} \right\rangle \left\langle -\frac{3}{2} \right|_{z} \right) = \frac{1}{\sqrt{6}} \left(S_{z}^{2} - \frac{1}{4} \right) \qquad \begin{bmatrix} \underline{Wei}, & \text{Affleck \& Raussendorf'10;} \\ Raussendorf'10; \\ F_{v,x} = \sqrt{\frac{2}{3}} \left(\left| \frac{3}{2} \right\rangle \left\langle \frac{3}{2} \right|_{x} + \left| -\frac{3}{2} \right\rangle \left\langle -\frac{3}{2} \right|_{x} \right) = \frac{1}{\sqrt{6}} \left(S_{x}^{2} - \frac{1}{4} \right) \qquad \text{Miyake '10]} \\ F_{v,y} = \sqrt{\frac{2}{3}} \left(\left| \frac{3}{2} \right\rangle \left\langle \frac{3}{2} \right|_{y} + \left| -\frac{3}{2} \right\rangle \left\langle -\frac{3}{2} \right|_{y} \right) = \frac{1}{\sqrt{6}} \left(S_{y}^{2} - \frac{1}{4} \right) \qquad \text{Miyake '10]}$$

v: site index

 \rightarrow Three elements satisfy: $F_{v,x}^{\dagger}F_{v,x} + F_{v,y}^{\dagger}F_{v,y} + F_{v,z}^{\dagger}F_{v,z} = I_v$

 \square POVM outcome (x, y, or z) is random (a_v ={x,y,z} $\in A$ for all sites v)

 $\begin{array}{c} \Rightarrow \text{ effective 2-level system} \\ \left|\frac{3}{2}\right\rangle_{a_{v}} \leftrightarrow \left|000\right\rangle, \left|-\frac{3}{2}\right\rangle_{a_{v}} \leftrightarrow \left|111\right\rangle \\ \Rightarrow a_{v}: \text{ new quantization axis} \\ \overline{Z} \equiv \left|\frac{3}{2}\right\rangle \left\langle\frac{3}{2}\right|_{a_{v}} - \left|-\frac{3}{2}\right\rangle \left\langle-\frac{3}{2}\right|_{a_{v}} \quad \overline{X} \equiv \left|\frac{3}{2}\right\rangle \left\langle-\frac{3}{2}\right|_{a_{v}} + \left|-\frac{3}{2}\right\rangle \left\langle+\frac{3}{2}\right|_{a_{v}} \\ \Rightarrow \text{ state becomes } \left|\Phi\right\rangle \longrightarrow F_{v,a_{v}}\left|\Phi\right\rangle \\ \end{array}$

Post-POVM state

□ Outcome $a_v = \{x, y, z\} \in A$ for all sites v

$$|\Psi(\mathcal{A})\rangle = \bigotimes_{v} F_{v,a_{v}} |\Phi_{\text{AKLT}}\rangle$$
$$\sim \bigotimes_{v} \left(S_{v,a_{v}}^{2} - \frac{1}{4}\right) |\Phi_{\text{AKLT}}\rangle$$

[<u>Wei</u>, Affleck & Raussendorf, arxiv'10 & PRL'11]

➔ What is this state?

The random state is an encoded graph state

□ Outcome $a_v = \{x, y, z\} \in A$ for all sites v

[<u>Wei</u>, Affleck & Raussendorf, arxiv'10 & PRL'11]

$$|\Psi(\mathcal{A})\rangle = \bigotimes_{v} F_{v,a_{v}} |\Phi_{\mathrm{AKLT}}\rangle \sim \bigotimes_{v} \left(S_{v,a_{v}}^{2} - \frac{1}{4}\right) |\Phi_{\mathrm{AKLT}}\rangle$$

- Encoding: effective two-level (qubit) is delocalized to a few sites
 - Property of AKLT ("antiferromagnetic" tendency) gives us insight on encoding
- □ What is the graph? Isn't it honeycomb?

→ Due to delocalization of a "logical" qubit, the graph is modified

Encoding of a qubit: AFM ordering

• AKLT: Neighboring sites cannot have the same $S_a = \pm 3/2$ [AKLT'87,'88]

→ Neighboring sites with same POVM outcome a = x, y or z: only two AFM orderings (call these site form a *domain*):

$$|\overline{0}\rangle \equiv \left|\frac{3}{2}, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}, \dots\right\rangle_{a} \quad \text{or} \quad |\overline{1}\rangle \equiv \left|-\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}, \frac{3}{2}, \dots\right\rangle_{a}$$

➔ Form the basis of a qubit

Effective Pauli Z and X operators become (extended)

 $\overline{Z} = |\overline{0}\rangle\langle\overline{0}| - |\overline{1}\rangle\langle\overline{1}| \qquad \overline{X} = |\overline{0}\rangle\langle\overline{1}| + |\overline{1}\rangle\langle\overline{0}|$

A domain can be reduced to a single site by measurement

→ Regard a domain as a single qubit

Qubit Encoding: Stabilizer formalism*

$$|\Psi(\mathcal{A})\rangle = \bigotimes_{v \in V(\mathcal{L})} F_{v,a_v} |\Phi_{\text{AKLT}}\rangle = \bigotimes_{v \in V(\mathcal{L})} F_{v,a_v} \bigotimes_{e \in E(\mathcal{L})} |\phi\rangle_e$$
[*Gottesman '97]
singlet $|01\rangle - |10\rangle$

3. Stabilizers of 1&2 give rise to one-qubit encoding:

 $\alpha |(000)_u (111)_v \rangle + \beta |(111)_u (000)_v \rangle \rightarrow \text{AFM order among groups}$

Rule 1: merging sites of same outcome

 $\Box \text{ Post-POVM state } |\Psi(\mathcal{A})\rangle = \bigotimes_{v \in V(\mathcal{L})} F_{v,a_v} |\Phi_{AKLT}\rangle$

with POVM outcome $a_v = x$, y or z

□ Neighboring sites w. same POVM \rightarrow merged to a domain \rightarrow qubit

Each domain represents a qubit

□ Graph structure of domains is modified from honeycomb

□ Two domains can have more than one shared edges

□ We show that the post-POVM state satisfies

$$\overline{K}_C |\psi(\mathcal{A})\rangle = |\psi(\mathcal{A})\rangle \quad \forall C \in \text{ domains } \qquad \overline{K}_C = \overline{X}_C \bigotimes_{U \in Nb(V)} (\overline{Z}_U)^{m_{CU}}$$

Recall graph states

Graph state: defined on a graph

[Hein, Eisert & Briegel 04']

$$H_G = -\sum_{\text{site } v} K_v$$

with $K_v \equiv X_v \bigotimes_{u \in \operatorname{Nb}(v)} Z_u$ neighbors

→ Graph state is the unique ground state of H_{G} $K_{v}|G\rangle = |G\rangle, \forall \text{site } v$

Post-POVM state is a graph state

$$\overline{K}_C |\psi(\mathcal{A})\rangle = |\psi(\mathcal{A})\rangle \quad \forall C \in \text{ domains}$$

$$\overline{K}_C = \overline{X}_C \bigotimes_{U \in \operatorname{Nb}(V)} \left(\overline{Z}_U\right)^{m_{CU}}$$

Notice the even & odd: $(\overline{Z}_U)^2 = I \rightarrow \text{even: effectively no edge}$ $\rightarrow \text{ odd : effectively one edge}$

Proving stabilizer of graph states

$$|\Psi(\mathcal{A})\rangle = \bigotimes_{v \in V(\mathcal{L})} F_{v,a_v} |\Phi_{\text{AKLT}}\rangle = \bigotimes_{v \in V(\mathcal{L})} F_{v,a_v} \bigotimes_{e \in E(\mathcal{L})} |\phi\rangle_e$$

[example]

1. Stabilizer of underlying singlets:

$$-X_1 X_{1'}, \quad -X_2 X_{2'}, \quad -X_3 X_{3'}$$

2. Commute with
$$F_{u,x}$$
, $F_{v,x}$, $F_{w,x}$

3. Product $\mathcal{O} \equiv -X_1 X_{1'} X_2 X_{2'} X_3 X_{3'}$

commutes* with $F_{c,z}$ > stabilizer of $|\Psi(\mathcal{A})\rangle$

 $\rightarrow \mathcal{O} \equiv -X_1 X_2 X_3 X_{1'} X_{2'} X_{3'} = \pm \overline{X}_c \overline{Z}_u \overline{Z}_v \overline{Z}_w$ $F_{c,z}$ $* X \otimes X \otimes X(|000\rangle\langle 000| + |111\rangle\langle 111|) = (|000\rangle\langle 000| + |111\rangle\langle 111|) X \otimes X \otimes X$

Rule 2: modulo-2 on inter-domain edges

$$\overline{K}_C |\psi(\mathcal{A})\rangle = |\psi(\mathcal{A})\rangle \quad \forall C \in \text{ domains } \overline{K}_C = \overline{X}_C \bigotimes_{U \in \text{Nb}(V)} (\overline{Z}_U)^{m_{CU}}$$

→ The graph of the graph state

So we have shown the AKLT state is converted to some graph state by POVM

Outline

- I. Introduction: quantum spins & quantum computation
- II. Valence-bond states (AKLT construction)

> Ground states of isotropic antiferromagnet

- III. Valence-bond ground states for quantum computation
 - > Preprocessing: generalized measurement
 - Give rise to graph states and cluster states (graph properties and percolation argument)
- IV. Summary and outlook

Quantum computation can be implemented on such a (random) graph state

- > Wires define logical qubits, links give CNOT gates
- Sufficient number of wires if graph is supercritical (percolation)

Average graph properties: use of Monte Carlo method

- □ Each site has 3 possible POVM outcomes (x,y,z)
 → N sites have 3^N possible combinations
- Probability of each combination A={a_v} is an N-point correlation fcn

$$p_{\mathcal{A}} \sim \left\langle \Phi_{\mathrm{AKLT}} \right| \bigotimes_{\mathrm{sites } v} \left(S_{v, a_v}^2 - \frac{1}{4} \right) \left| \Phi_{\mathrm{AKLT}} \right\rangle$$

➔ This correlation is related to the structure of the graph

In Monte Carlo simulations to investigate graph properties

Graph properties of typical graphs

Degree, vertices, edges and independent loops

Domain size is not macroscopic

* B is # of independent loops, e.g. hexagons or squares

Robustness: finite percolation threshold

□ Typical graphs are in percolated (or supercritical) phase

Site percolation by deletion

→ Sufficient (macroscopic) number of traversing paths exist

Convert graph states to cluster states

Can identity graph structure and trim it down to square

Thus we have shown the 2D AKLT state is a universal computational resource

Other 2D AKLT states expected to be universal resources

□ Trivalent Achimedean lattices (in addition to honeycomb):

Expect to be quantum disordered w/o Néel order

3D trivalent AKLT state

Expect to be quantum disordered w/o Néel order

□ Why? small number (3) of neighbors [c.f. Parameswaran, Sondhi & Arovas '09]

- > AKLT state on cubic lattice (6 neighbors) has Néel order
- > AKLT state on diamond lattice (4 neighbors) is disordered

Conclusion

Spin-3/2 valence-bond ground states on some 2D lattices are universal resource for quantum computation

→ Design a generalized measurement

→ Convert to graph states and then cluster states (←universal)

Can extend to 3D as well

Collaborators

Ian Affleck Robert Raussendorf (UBC)

AKLT & Quantum Computation
→ Wei, Affleck & Raussendorf
PRL106, 070501 (2011)
& arXiv:1009.2840
Wei & Raussendorf, in preparation

R

Further extension (thermal state and always-on Hamiltonian) → arXiv:1102.5153

Kwek (CQT)

Ying Li (CQT)

) Dan Browne (UCL)

Outlook

- Implementation of spin-3/2 2D AKLT models & phase diagram?
 - ✓ Spin-1 AKLT: use "spin-1" bosons on optical lattice

[Imambekov et al. PRA '03; Garcia-Ripoll et al. PRL '04; Rizzi et al., PRL '05]

→ 2D: spin-3/2: use of "spin-3/2" bosons?

- 2. Spectral gap of 2D AKLT models?
 - Only exponential decay correlations
 - → Need techniques beyond AKLT & Knabe
 - → PEPS or Tensor Product States? Analytic or numeric
- 3. Spin-2 AKLT on square lattice universal? Other lattices?