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Quantum spin systems

0 Bethe solution (1931) on Heisenberg chain

HZJZS;"S;‘+1

P 0 Lieb, Schultz & Mattis (1961): XY &
=28 Ising-Heisenberg chains & spectral gap

o Haldane (1983). Spectral gap in AF Heisenberg chain
IS finite for integer spin-S




Quantum spin systems

0 Active research in condensed matter, statistical physics
& high-energy physics
0 Rich features:

» Fluctuations and frustration may prevent Néel order
» AFM closely related to high-Tc superconductivity

» Spin liquid

» Can be simulated by untracold atoms



Our focus on antiferromagnets

o Valence-bond ground states

» Simplest valence-bond of two spin-1/2 = singlet state

V) =|Tals) — | LaTr) = |01) — |10) Cmuunsunns O

o E.g.:1D and 2D structure

[AKLT '87,88]




Quantum computation

Feynman ('81): “Simulating Physics with (Quantum) Computers”

=» Idea of quantum computer further developed by
Deutsch ('85), Lloyd (‘96), ...

! ]
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1st conference on Physics and Computation, 1981



Quantum computation

Shor ('94): quantum mechanics enables fast factoring
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=» Ever since: rapid growing field of quantum information
& computation

o Quantum computational models

1. Circuit model: 2. Adiabatic QC: 3. Measurement-based:
[Farhi, Goldstone, Gutmann [Raussendorf &Briegel ‘01]
& Sipster ‘00] [c.f. Gottesman & Chuang, '99

Childs, Leung & Nielsen ‘04]



Quantum computation by measurement
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[Raussendorf & Briegel ‘01]
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®, & [c.f. Gottesman & Chuang, '99
Childs, Leung & Nielsen ‘04]
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o Use cluster state |C) as computational resource

a Information is written on to |C), processed and read out
all by single spin measurements

o Key points: measurement patterns for 1- and 2-qubit gates
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CNOT-gate



Two-qubit universal gates

o Four by four unitary matrices (acting on the two qubits)

00->00 1 0 0 0

v Control-NOT gate: 01=>01 o100 |_(1]0
10>11 NOT=1 4 4 ¢ 1 |=(0Tx
11->10 00 1 0
00> 00 1 00 O

v Control-Phase gate: 01-> 01 cp_| 01O O |_(1]O
10> 10 oo 1 0o [“\o0o]|Z
11>-11 00 0 -1

a Generate entanglement

(10 +11) (10) + 1)) CF 1

+)[+) = NG NG 5(100) +01) +[10) — [11))

_ 7(|O>|+> + [1)|=)) # |¢1)|02)



Entanglement: state preparation

0 Entangled state has strong correlation
CP 1 2

H)1]H)2 — |[P)i2 = |[+H)1|0)2 +|—)11)2 O—O

+» Measurement on 15t qubit in basis
£) = (10) £ 1))/v2
v If outcome = +: the second qubit becomes
1(+] - [¥)12 ~ [0)2

v If outcome = -: the second qubit becomes

(= [)12 ~ [1)2 = X[0)2



Unitary operation by measurement?

o Intuition: entanglement

CP 1 2
(a0) + b)) [+) — [) = al0)[+) + 1)) O——O
Win>1:> U\¢in>2

.. . measurement
+» Measurement on 15t qubit in basis

[ £&) = (|0) £ e[1))/v2

v If outcome=+¢: an effective rotation applied:

. —1§
1{(+E[Y)12 ~ al+)e + be ™ |=)s = % ( 1 _ee—z'& ) (al0)2 +b[1)2)



CNOT by measurement

o Consider initial state 2 3 4
(al0) +b|1))1 (¢|0) +d|1))2 |+)3|+)a | )
C Pz CP13CPsy
> ¢>1234

%in) 12 == U |¢in) 14

» Measurement on 2" and 3" qubits in basis
£) = (|0) £11))/v2

If outcome=++: an effective CNOT applied:

23<‘|‘ + ‘¢>1234 ~ CNOT14(G‘O>1 + b‘1>1)(6‘0>4 + d‘1>4)

o Note the action of CP gates can be pushed up front



Cluster state Is a resource for
guantum computation

a All the “linking” (by CP) can be done in the beginning;
this gives rise to a 2D cluster state:

1 cr;(++) - 1+)

edge (7,7)

o The whole entangled state is created first and
subsequent operations are single-qubit measurements

il INAVARNE

=» pattern of measurement
gives computation

(i.e. simulates a circuit) -~ S AN EE




Cluster state: special case of graph states

1] cp;(H1+) - 14)

edge (%,7)

0 Use the equality
CPquu :Xu®ZvCPuv

EN ( I1 CPij)Xu:(Xu I Zv) [T cp,

edge (i,7) vEND(u) edge (i,7)

o Apply to cluster state*

(x. TI z)e=l O\N
veND(u)

a This definition on graph =» graph state Note: X |+) = [+)



Cluster and graph states as ground states

a Graph state: defined on a graph  [Hein, Eisert & Briegel 047

HG:_ZK’U with [K'UEXU ®Zu]

uwEND(v)

site v

neighbors

=» Graph state is the unique ground state of Hg

| K.|G) =G), Vsite)

o Cluster state |C > = graph state on square lattice

@ [Raussendorf &Briegel, 01’]
2

> Cluster state is the unique ground state of five-body
Interacting Hamiltonian (cannot be that of two-body)®

> Where to look for other resource states?  ygte: x v & 7 are Pauli matrices

[Nielsen ‘04]



Search for universal resource states?

a The first known resource state is the 2D cluster state

[Raussendorf & Briegel 01’]

o Other known examples:

+ Any other 2D graph states* on regular lattice:
triangular, honeycomb, kagome, etc. [Van den Nest et al. ‘06]

«» MPS & PEPS framework

[Verstraete & Cirac ‘04] [Gross & Eisert ‘07, ‘10]

o Can universal resource states be ground states?

=» Create resources by cooling!

=» Desire simple and short-ranged (nearest nbr) 2-body
Hamiltonians

el 2
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A new direction: valence-bond ground
states of isotropic antiferromagnet

0 = AKLT (Affleck-Kennedy-Lieb-Tasaki) states  [akLt 87,8g]

o States of spin 1,3/2, or higher (defined on any lattice)

=>» Unique* ground states of two-body isotropic Hamiltonians
H=> f(S-5;) f(x)isa polynomial
(4,4)
0o Important progress on 1D AKLT states:
[Gross & Eisert, PRL ‘07] [Brennen & Miyake, PRL ‘09]
[Miyake, PRL ‘10] [Bartlett et al. PRL ‘10]

=>» Can be used to implement rotations on single-qubits

*with appropriate boundary conditions



1D: Single-qubit rotations not sufficient

0 Key guestion: can any of AKLT states provide a
resource for universal quantum computation?

» Need 2D structure

> We show that the spin-3/2 2D AKLT state on
honeycomb lattice is such a resource state

[Wel, Affleck & Raussendorf,
arXiv1009.2840 and PRL106, 070501 (2011)]

[Alternative proof: Miayke, arXiv 1009.3491]

» Results beyond honeycomb & 3D
(including thermal noise & fault tolerance)

[Wei & Raussendorf, in preparation]

[Li, Browne, Kwek, Raussendorf,
Wei, arXiv:1102.5153]



1D AKLT state

0 Spin-1 chain: two virtual qubits per site

[AKLT '87,'88]

Lol 100) = [1,1)

2 ® 2 =0 @ smglet

Project into 11y =1, -1) O — _
symmetric subspace ) ‘ > 01) =10y =Th =111
of two spin-1/2 (qubits) L(j01) + |10>)/\/§ = ‘17 ()>

o Ground state of two-body interacting Hamiltonian (with a gap)

1 ~ 9 oo projector
H = Z [S Sz+1 + 3(S Sz-l-l + 5} — ZZPz(zH) < ontoS=2

= Can reallze rotation on one logical qubit by measurement

(not sufficient for universal QC) _ _
[Gross & Eisert, PRL ‘07] [Brennen & Miyake, PRL ‘09]



2D universal resource:
Spin-3/2 AKLT state on honeycomb

a Each site contains three virtual qubits @
singlet [01) — [10)

o Two virtual qubits on an edge form a singlet M




Spin 3/2 and three virtual qubits

o Addition of angular momenta of 3 spin-1/2’s

1 1 1
@ 2® 2

DO o

D

\

Symmetric subspace

@1
2

N | =
[\V)
N | =

o The four basis states in the symmetric subspace

———

3 1
Y §> Effective 2 levels
3 1> of a qubit

0 Projector onto symmetric subspace

Ps,y = [000)(000] + [1LL)(LL1| + [W)(W| + [W)HW]| <> I3



Spin-3/2 AKLT state on honeycomb

a Each site contains three virtual qubits e
singlet [01) — [10)

7

o Two virtual qubits on an edge form a singlet M




Spin-3/2 AKLT state on honeycomb

a Each site contains three virtual qubits e
singlet [01) — [10)

7

o Two virtual qubits on an edge form a singlet M

o Projection (Pg,) onto symmetric subspace of 3 qubits at each site
& relabeling with spin-3/2 (four-level) states

Ps.,, = [000)(000| + [111){(111| 4+ |[W )W | + [W)(W|

3 3 3 3
w0 [53) o[-

W) = %(\001) +1010) + [100)) « ‘g %>

W) = ig(|110> + [101) + [011)) < ‘%—%>




Spin-3/2 AKLT state on honeycomb

o (With appropriate BC) unique ground state of [AKLT '87,'88]

S oo 1165
Z p,] = Y S-S+ S8+

edge (i edge (i,7)

0 Quantum disordered state (w/o Néel order):
via mapping to a 2D classical model at finite T

[Arovas, Auerbach & Haldane ‘88,
Parameswaran, Sondhi & Arovas '09]

Hcl —— E In (1 _ T;Z ' nj) ﬁi : classical unit vector
edge (%,7)

o Exponential decay of correlation (gap not proved yet)  [AKLT '87,'88]
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Our strategy for universality

Show the 2D AKLT state can be locally converted
to a 2D cluster state (known resource state)

0 Spin 3/2 (4 levels) - Spin %2 (2 levels)?

=>» Need “projection” into smaller subspace

o We use generalized measurement (or POVM)
= Random outcome gives 2D graph state
(graph modified from honeycomb)

o Use percolation argument :
=» typical random graph state converted to cluster state



Measurement

[See e.g.Nielsen & Chuang]

F, =
U i = ><¢|ma; D
"".; ) [blank),, — Fy|$) @ [0) + FL[t0) & |1
—a| 1) ®0) + B 1) @ 1)

> Reading “measuring device” value =» infer outcome

a Conservation of probability Y FiF, =1 pa= (Y|[F]Falv)

o F’s need not be orthogonal
=» generalized measurement (POVM)

o Outcome a = state becomes |¢) — F,|y)



The POVM (spin-3/2 version)

P 2(§><§ N _§><_§ )—i(52_1) [Wei Affleck &
’ 3\12/\21: 2 21z Ve T4 Rau,ssendorf’lo;
2 (13\/3 3 3 1 1 iyake ‘10]
e (L) D)
’ 3 ( 2/ \2 x+ 2 21z V6 & 4
. B 2 (13\/3 3 3 1l e 1
v: site index F,, = 5 ( 2><2 y—l— 2>< 5 y) = \/E(Sy 4)

= Three elements satisfy: FJ  Foo+ F) Foy+F) F, . =1,

o POVM outcome (X,y, or z) is random (a, ={x,y,z} € A for all sites v)

o

=> effective 2-level system

3 3
\§>av o \0°°>’ ’ - §>av o \1“>

=> a, : hew quantization axis

2= )3, - -3, TR -
Z=\§><§Lf\—5><—§% X=15)073l., T2\ T3l.,

- state becomes |®) — F 4, |®)

—



Post-POVM state

K
o Outcome a, ={X,y,z} € A for all sites v /‘
Y
N4
.“,3I'Z pO\’
V() = @F i, [Basar) =T

~ ® v.a [ ®akrT) |
v [Wei, Affleck & Raussendorf,

arxiv'10 & PRL'11]

= \What Is this state?



The random state Is
an encoded graph state

) [Wel, Affleck & Raussendorf,
o Outcome a, ={x,y,z} € A for all sites v arxiv'10 & PRL11]

1

V(A = @F v, [arcr) ~ @ (520, ~ ;) [Basar)

v

0 Encoding: effective two-level (qubit) is delocalized to
a few sites

=>» Property of AKLT (“antiferromagnetic” tendency)
gives us insight on encoding

o What is the graph? Isn’t it honeycomb?

=» Due to delocalization of a “logical” qubit, the graph is modified



Encoding of a qubit: AFM ordering

a AKLT: Neighboring sites cannot have the same S_=+ 3/2
[AKLT '87,'88]

=>» Neighboring sites with same POVM outcome a =X, y or z.
only two AFM orderings (call these site form a domain):

13 33 3 _ 33 33
==, —=, =, —=,... 1 E|——,—,——,—,...>
0)=15-55 73 >a or [1) 2°2° 9279 .

= Form the basis of a qubit

o Effective Pauli Z and X operators become (extended)
Z=10)(0| - [){1] X =[0)(I[ +[1)(0]

o A domain can be reduced to a single site by measurement

=» Regard a domain as a single qubit



Qubit Encoding: Stablilizer formalism*

[W(A) = X) Foa, |[Paxer) =

%

[*Gottesman '97]

Foa, Q) 19)e

vevie) vEVIE) e B singlet [01) — [10)
o Example: 1. Z1Z>" .
> Stabilizers of |[U(A))
2o li3
> as, e.g.
Z Z b} b}
2 E’,Z o ZIZZFU,Z — Fu,z
e singlet Z5Z6 g
a-zZ a~7 2. —Zs7, stabilizer of singlet (3,4)
5 0314) — [1304)
S \/;(I()OO)(OOOI ae DAL & commutes w. F's

=» Stabilizer of |¥(A))

3. Stabilizers of 1&2 give rise to one-qubit encoding:

«|(000),(111),) + £|(111),(000),,) => AFM order among groups



Rule 1: merging sites of same outcome

a Post-POVM state  1Y(A) = &) Fua, [Pakir)

with POVM outcome a, =X,y or z

o Neighboring sites w. same POVM =» merged to a domain =» qubit




Each domain represents a qubit

o Graph structure of domains is modified from honeycomb

o Two domains can have more than one shared edges

o We show that the post-POVM state satisfies

Ko [p(A)) = [¢(A)) VC € domains Ke=Xc Q@ (Zv)"e

UEeNb(V)



Recall graph states

a Graph state: defined on a graph  [Hein, Eisert & Briegel 047

HG:_ZK’U with Ko = X, ®Zu

site v uENbD(v)

neighbors

=» Graph state is the unique ground state of Hg
K,|G) = |G), Vsitev

0 Post-POVM state is a graph state

Kc|y(A) = |¢(A)) VC € domains ;
y
Koe=Xo Q (Zv)"ev
UEND(V)

Notice the even & odd: (Zv)* =1 = even: effectively no edge
=>» odd : effectively one edge



Proving stabilizer of graph states

‘\IJ(A ® Fv Qo ‘(I)AKLT ® Fv , Ay ® ¢>e

veV (L)
[example]

q- X
— X1 Xy |¢) 11 = |@)11r

veV (L) eeE(L)
1. Stabilizer of underlying singlets:
— X1 X1, —XoXo, —X3Xg

F.. F

ux:® " vx b wx

2. Commute with F

3. Product O = —X1X1/X2X2/X3X3/

commutes* with F_,=» stabilizer of |¥(A))

> 0=-X1Xo X35 X1 XXy =+X.2,7,Z,,

F

c,z

~—

* X ® X ® X(]000)(000] + [111)(111]) = (|000){(000| + [111){111)X ® X @ X



Rule 2: modulo-2 on inter-domain edges

VC € domains

(A))

(2

Kc |h(A)) =

=» The graph of the graph state



= So we have shown the AKLT state
IS converted to some graph state by POVM
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= Quantum computation can be implemented
on such a (random) graph state

Z
Y & ' 7
Z Z x‘ ""‘f
00 Qe

» Wires define logical qubits, links give CNOT gates

> Sufficient number of wires if graph is supercritical (percolation)



Average graph properties:
use of Monte Carlo method

o Each site has 3 possible POVM outcomes (X,Y,z)
= N sites have 3N possible combinations

o Probability of each combination A={a,} Is an

N-point correlation fcn

1
pa ~ (Pakwr| ® (Sﬁ,av — Z) P akrT)

sites v

=» This correlation is related to the structure of the graph

o Monte Carlo simulations to investigate graph properties

> Metropolis flip of local POVM outcome
Paccept = Min {1, 2IV’I—I5’I—|V|+|8|}

V: set of domains,

&: set of inter-domain edges
(before mod-2)




Graph properties of typical graphs

o Degree, vertices, edges and independent loops

ave domain size —+—
> Honeycomb: deg=3 36 | ave distr width
WL x ok o rt d . !
IE|=1.5|V|, B*=0.5|V| woy ST
3.2 | 8 %
w T T
> Typical graphs: deg=3.52 £ 30t [T
28 | £ Lo
|E|=1.76|V|, B=0.76|V| S 200 |
® [
241 o 10 ' '
> Square lattice: deg=4 = 0 20030 40000
E[=2IV], B=IV] 2l mmrrof ] ;
0 0.01 002 003 004 005

1/L

o Domain size is not macroscopic

* B is # of independent loops, e.g. hexagons or squares



Robustness: finite percolation threshold

o Typical graphs are in percolated (or supercritical) phase

Site percolation by deletion

1 T L=|20 T
........ T L= 40
B, = 60
T e =80 =
0.8 | R L=100
4 ok
- +
2 06+t #i*
a supercritical % ® disconnected
04 | B
;
02t [
wh
0 1 1 1 %“[U'ww.f e -
0 01 02 03 04 05 06 07 08
. Pdel
a C.f. Site perc threshold: mee
Square: 0.593, honeycomb:0.697 > threshold =1-0.33=0.67

=>» Sufficient (macroscopic) number of traversing paths exist



Convert graph states to cluster states




=>» Thus we have shown the 2D AKLT state
IS a universal computational resource



Other 2D AKLT states expected to
be universal resources

o Trivalent Achimedean lattices (in addition to honeycomb):

Bond percolation ~ . _
threshold > 2/3: 0.7404 0.694 0.677

0 Expect to be quantum disordered w/o Néel order



3D trivalent AKLT state

[AKLT '87]

o Expect to be quantum disordered w/o Néel order

o Why? small number (3) of neighbors [c.f. Parameswaran, Sondhi & Arovas '09]

» AKLT state on cubic lattice (6 neighbors) has Néel order

» AKLT state on diamond lattice (4 neighbors) is disordered



Conclusion

0 Spin-3/2 valence-bond ground states on some 2D lattices
are universal resource for gquantum computation

(6%) ey T wey  Twey T

=>» Design a generalized measurement

=>» Convert to graph states and then cluster states (€universal)

0 Can extend to 3D as well
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Ying Li (CQT) Dan Browne (UCL)

AKLT & Quantum Computation
=» Wei, Affleck & Raussendorf
PRL106, 070501 (2011)
& arXiv:1009.2840
Wei & Raussendorf, in preparation

Further extension (thermal state
and always-on Hamiltonian)
=>» arXiv:1102.5153



Outlook

1. Implementation of spin-3/2 2D AKLT models
& phase diagram?

v' Spin-1 AKLT: use “spin-1”" bosons on optical lattice

[Imambekov et al. PRA ‘03; Garcia-Ripoll et al. PRL ‘04; Rizzi et al., PRL ‘05]

=>» 2D: spin-3/2: use of “spin-3/2” bosons?

2. Spectral gap of 2D AKLT models?

v Only exponential decay correlations
=>» Need techniques beyond AKLT & Knabe

= PEPS or Tensor Product States? Analytic or numeric

3. Spin-2 AKLT on square lattice universal? Other lattices?



