

A Quantum Degenerate Bose Mixture of ⁸⁷Rb and ¹³³Cs -Toward Ultracold Heteronuclear Molecules

D. J. McCarron, D. L. Jenkin, M. P. Köppinger, K. L. Butler, H. W. Cho, and S. L. Cornish

• Bialkali molecules in the ground state have a large permanent electric dipole moment ex. RbCs d=1.25 Debye

$$V_{int} = d^2 \frac{1 - 3\cos^2\theta}{|\vec{r} - \vec{r'}|^3} + \frac{4\pi\hbar^2 a}{M} \delta(\vec{r} - \vec{r'})$$

Dipole-dipole interaction

⁵²Cr BEC_PRL, 101, 080401 (2008)

• Quantum computation with trapped polar molecules

RbCs is one of the stability of quantum gases of alkali-metal dimers

XY+XY \rightarrow X₂+Y₂ XY+XY \rightarrow X+XY₂ or X₂Y+Y

	Na	К	Rb	Cs
Li	-328(2)	-533.9(3)	-618(200)	-415.38(2)
Na		74.3(3)	45.5(5)	236.75(20)
Κ			-8.7(9)	37.81(13)
Rb				29.1(1.5)

PRA, 81, 060703(R) (2010)

Cool Molecules

Directly: Buffer gas cooling Stark deceleration_Electric & Magnetic Sympathetic cooling Laser-cooling Nature, 467, 820 (2010)

Indirectly:

Atoms are pre-cooled by laser-cooling and then, 1) associated into ground state via photoassociation

or 2) f

2) follow a two step scheme which is magnetoassociation using a Feshbach resonance and STIRAP

Nature Physics, 6, 265-270 (2010)

MMQA_MicroKelvin Molecules in a Quantum Array

Professor EA Hinds (Physics ICL) Dr D Carty (Physics & Chemistry Durham) Dr SL Cornish (Physics Durham) Professor JM Hutson (Chemistry Durham) Dr MR Tarbutt (Physics ICL) Dr E Wrede (Chemistry Durham)

Rapol U.D. et al, 2004, *Eur. Phys. J. D.*, **29**, 409 Baumer F., 2010, Thesis, Dusseldorf

arXiv:1002.3698v1

R(NO-0)

- Magnetic deceleration
- CsYb molecules via magneto-association and STIRAP
- Theory of ultracold molecule formation, cooling molecules to microkelvin using the theory of ultracold collisions to make sympathetic cooling work
- Buffer gas cooling, electric deceleration, and sympathetic cooling.
- Photostop

Introduction

Atoms in which laser cooling has been demonstrated¹:

Alkali metals	Alkaline earth metals	Noble Gases	Lanthanide	Others
Li	Mg	Не	Dy	Cr
Na	Са	Ne	Er	Ag
К	Sr	Ar	Tm	Cd
Rb	Ra	Kr	Yb	Hg
Cs	Ва	Xe		AI
Fr				

Species	Dipole Moment		
⁶ Li ²³ Na	0.53 D ⁴		
⁴⁰ K ⁸⁷ Rb	0.57 D ²		
⁸⁷ Rb ¹³³ Cs	1.25 D ³		
⁶ Li ⁴⁰ K	3.5 D ⁴		
⁶ Li ⁸⁷ Rb	4.1 D ⁴		
⁶ Li ¹³³ Cs	5.48 D ⁴		

Mixed species Feshbach molecules:

(Stan <i>et al.</i> , Phys. Rev. Lett. 93, 143001 (2004))
(Inouye <i>et al.</i> , Phys. Rev. Lett. 93, 183201 (2004))
(Wille et al., Phys. Rev. Lett. 100, 053201 (2008))
(Deh <i>et al.</i> , Phys. Rev. A 77, 010701(R) (2008))
(Marzok et al. Phys. Rev. A 79, 012717 (2009))
(Cho et al. EPJD accepted 2011; Pilch <i>et al</i> . Phys. Rev. A 79, 042718 (2009))

¹(Steele, J. Vac. Sci. Technol. B 28, C6F1 (2010))
²(Ni *et al.*, Science 322, 231 (2008))
³(Kotochigova *et al.*, J. Chem. Phys. 123, 174304 (2005) theor.)
⁴(Igel-Mann *et al.*, J. Chem. Phys. 84, 5007 (1986) theor.)

Outline

- Bose-Einstein condensation of ⁸⁷Rb BEC
 - in a combined magnetic and optical trap
 - in a levitated crossed dipole trap
- Bose-Einstein condensation of ¹³³Cs
 - a new method for the production of ¹³³Cs BEC
 - demonstrate the creation of Cs_2 molecules via magneto-association on the 4g(4)
- A quantum degenerate Bose Mixture of ⁸⁷Rb and ¹³³Cs
 - observe a striking phase separation of the two species
 - observation of an interspecies Feshbach resonance at 181.7(5) G
- Stimulate Raman adiabatic passage (STIRAP)
 - a two-photon transition can used to transfer the Feshbach molecules into the rovibrational ground state or a more deeply bound state
- Conclusion

Durham

University

- Cold-atomic beams source is created by Pyramid MOT.
- ->9x10⁸ ⁸⁷Rb & 4x10⁸ ¹³³Cs can be obtained by science MOT.
- The optical potential is produced by two laser beams with wiasts of ~60 µm and wavelength 1550nm from a 30 Watt **IPG ELR-30-LP-SF**

54

Durham University

100

200

Durham University

100

200

Durham University

Durham University

⁸⁷Rb BEC in a combined trap

- Atoms in the weak-field seeking |1,-1> state are loaded into the hybrid trap, a cross-dipole trap and quadrupole trap, after a pre-cooling using RF evaporation in quadrupole trap.
- The levitated crossed dipole trap is formed by two laser beams and a levitation field. The contour plots results the trapping potential including gravity for ⁸⁷Rb in the |1,+1> state. Both 150 mW beams are focussed to ~60 µm and the magnetic filed contents a magnetic field gradient 29 G/cm and a bias field of 22.4 G along z axial.

• The loading trap is performed at a power of 6 W in each beam with a gradient of 29 G/cm.

 $\Delta U_{\text{gravity}} = \text{mg}(\Delta z)$

- Atoms in the weak-field seeking |1,-1> state are loaded into the hybrid trap, a cross-dipole trap and quadrupole trap, after a pre-cooling using RF evaporation in quadrupole trap.
- The levitated crossed dipole trap is formed by two laser beams and a levitation field. The contour plots results the trapping potential including gravity for ⁸⁷Rb in the |1,+1> state. Both 150 mW beams are focussed to ~60 µm and the magnetic filed contents a magnetic field gradient 29 G/cm and a bias field of 22.4 G along z axial.

• The loading trap is performed at a power of 6 W in each beam with a gradient of 29 G/cm.

- Atoms are transferred into |1,+1> from |1,-1> by adiabatic rapid passage.
- A 26 x 26 mm square coil of 3 turns are driven to create an RF Filed at 1.5 MHz. A bias field of 22.4 G is then switched on to cross the RF Zeeman resonance at 2.1 G.

- $P_{\rm ad} = 1 \exp(-\pi\omega_1^2/2|\alpha|)$
- $\omega_1^2 \gg |\alpha| = (\mathrm{d}/\mathrm{d}t)|\omega_0 \omega_\mathrm{f}|$

J. Phys. B: At. Mol. Phys. 17 (1984) 4169-4178

- Atoms are transferred into |1,+1> from |1,-1> by adiabatic rapid passage.
- A 26 x 26 mm square coil of 3 turns are driven to create an RF Filed at 1.5 MHz. A bias field of 22.4 G is then switched on to cross the RF Zeeman resonance at 2.1 G.

$$P_{\rm ad} = 1 - \exp(-\pi\omega_1^2/2|\alpha|)$$
$$\omega_1^2 \gg |\alpha| = (d/dt)|\omega_0 - \omega_{\rm f}|$$

J. Phys. B: At. Mol. Phys. 17 (1984) 4169-4178

28March, 2011 NTHUPHYS

- Control the depth of the levitated crossed dipole trap by 1 manipulating the magnetic field gradient. C. Chin, Phys. Rev. A, 78, 011604(R), 2008
- Sympathetic cooling of different spin states in the levitated cross of dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm.
- Application of the experiment to sympathetic cooling of ¹³³Cs. The dipole trap potential corresponds to 100 mW in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G.

- The phase-space density trajectory to BEC of ⁸⁷Rb (|1,+1>) in the cross dipole trap. N_{BEC} = 1 x 10⁶
- Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient.
 C. Chin, Phys. Rev. A, 78, 011604(R), 2008
- Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm.
- Application of the experiment to sympathetic cooling of ¹³³Cs. The dipole trap potential corresponds to 100 mW in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G.

- The phase-space density trajectory to BEC of ⁸⁷Rb (|1,+1>) in the cross dipole trap. N_{BEC} = 1 x 10⁶
- Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient.
 C. Chin, Phys. Rev. A, 78, 011604(R), 2008
- Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm.
- Application of the experiment to sympathetic cooling of ¹³³Cs. The dipole trap potential corresponds to 100 mW in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G.

- The phase-space density trajectory to BEC of ⁸⁷Rb (|1,+1>) in the cross dipole trap. N_{BEC} = 1 x 10⁶
- Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient.
 C. Chin, Phys. Rev. A, 78, 011604(R), 2008
- Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm.
- Application of the experiment to sympathetic cooling of ¹³³Cs. The dipole trap potential corresponds to 100 mW in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G.

- The phase-space density trajectory to BEC of ⁸⁷Rb (|1,+1>) in the cross dipole trap. N_{BEC} = 1 x 10⁶
- Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient.
 C. Chin, Phys. Rev. A, 78, 011604(R), 2008
- Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm.
- Application of the experiment to sympathetic cooling of ¹³³Cs. The dipole trap potential corresponds to 100 mW in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G.

- The phase-space density trajectory to BEC of ⁸⁷Rb (|1,+1>) in the cross dipole trap. N_{BEC} = 1 x 10⁶
- Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient.
 C. Chin, Phys. Rev. A, 78, 011604(R), 2008
- Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm.
- Application of the experiment to sympathetic cooling of ¹³³Cs. The dipole trap potential corresponds to 100 mW in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G.

- The phase-space density trajectory to BEC of ⁸⁷Rb (|1,+1>) in the cross dipole trap. N_{BEC} = 1 x 10⁶
- Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient.
 C. Chin, Phys. Rev. A, 78, 011604(R), 2008
- Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm.
- Application of the experiment to sympathetic cooling of ¹³³Cs. The dipole trap potential corresponds to 100 mW in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G.

 $\left|\right\rangle$

Durham

University

Outline

- Bose-Einstein condensation of ⁸⁷Rb BEC
 - in a combined magnetic and optical trap
 - in a levitated crossed dipole trap
- Bose-Einstein condensation of ¹³³Cs
 - a new method for the production of $^{\rm 133}\rm Cs$ BEC
 - demonstrate the creation of Cs_2 molecules via magneto-association on the 4g(4)
- A quantum degenerate Bose Mixture of ⁸⁷Rb and ¹³³Cs
 - observe a striking phase separation of the two species
 - observation of an interspecies Feshbach resonance at 181.7(5) G
- Stimulate Raman adiabatic passage (STIRAP)
 - a two-photon transition can used to transfer the Feshbach molecules into the rovibrational ground state or a more deeply bound state
- Conclusion

Why ⁸⁷Rb?

Why ¹³³Cs?

AtMolecular Physics

Why ⁸⁷Rb?

Why ¹³³Cs?

28March, 2011 NTHUPHYS

The trap depth set by the RF frequency is three times greater for a ¹³³Cs than for ⁸⁷Rb and therefore allows the selective removal of hot ⁸⁷Rb atoms.

- The trap depth set by the RF frequency is three times greater for ^a ¹³³Cs than for ⁸⁷Rb and therefore allows the selective removal of hot ⁸⁷Rb atoms. We observe ⁸⁷Rb efficient sympathetic cooling of ¹³³Cs via interspecies elastic collision.
- The cooling efficiency γ ($\Delta \log p / \Delta \log N$) = 5.6(3)~10(1) depends on the initial number of ¹³³Cs.

10⁸

107

50

Atom Number

Rb alone

28March, 2011 NTHUPHYS

- The trap depth set by the RF frequency is three times greater for ¹³³Cs than for ⁸⁷Rb and therefore allows the selective removal of hot ⁸⁷Rb atoms. We observe ⁸⁷Rb efficient sympathetic cooling of ¹³³Cs via interspecies elastic collision.
- The cooling efficiency γ ($\Delta \log p / \Delta \log N$) = 5.6(3)~10(1) depends on the initial number of ¹³³Cs.
- After loading the crossed dipole trap, n_{peak} of ⁸⁷Rb is ~ 5 x 10¹³ and n_{peak} of ¹³³Cs is ~ 5 x 10¹². A strong interspecies inelastic losses are observed. The interspecies three-body loss rate coefficients of ~10⁻²⁵-10⁻²⁶ are calculated by using the minority species lifetimes.
 ⁸⁷Rb and ¹³³Cs are transferred into |1,+1> and |3,+3> before the 10⁶ measurement.

 $-T_{Cs}= 0.8(1) \text{ s}, T_{Rb}= 4(1) \& 70(10) \text{ s}.$ $-T_{Rb}= 0.9(2) \text{ s}, T_{Cs}= 2(1) \& 10(3) \text{ s}.$

28March, 2011 NTHUPHYS

arXiv:1102.1576

28March, 2011 NTHUPHYS

arXiv:1102.1576

To avoid the interspecies loss 10[°] 0 and optimise the transfer of Rb ¹³³Cs, RF frequency is 0 reduced to remove all ⁸⁷ Rb. 0 The resulting loading is highly 0 efficient with ~50% of ¹³³Cs > 10⁻² · transferred into dipole trap. 5 (C) 200 Ó This is double the atoms -200 Position (µm) number loaded compared to ⁸⁷Rb absence case. Phase Space 10⁻⁴ (b) $\gamma = 2.5(2)$ (a) 0 O 10⁻⁶ п ᇩᅆ $\gamma = 5.6(3)$ 10⁶ 10⁵ 10⁸ 10⁷

Atom Number

To avoid the interspecies loss and optimise the transfer of 133 Cs, RF frequency is reduced to remove all 87 Rb. The resulting loading is highly efficient with ~50% of 133 Cs transferred into dipole trap. This is double the atoms number loaded compared to 87 Rb absence case.

 N_{BEC} of ¹³³Cs = 6 x 10⁴

Vertical width of the ¹³³Cs condensate as a function of a magnetic field applied during a 50 ms time of flight expansion.

$$\mu = \frac{\hbar\omega_{h0}}{2} (\frac{15Na}{a_{h0}})^{2/5} = m\omega_{h0}^2 R^2/2$$
(for a spherical trap)
Reviews of Modern Phys. 71, 463, 1999

arXiv:1102.1576

Cs₂ Molecules

28March, 2011 NTHUPHYS

Cs₂ Molecules

28March, 2011 NTHUPHYS

Cs₂ Molecules

Outline

- Bose-Einstein condensation of ⁸⁷Rb BEC
 - in a combined magnetic and optical trap
 - in a levitated crossed dipole trap
- Bose-Einstein condensation of ¹³³Cs
 - a new method for the production of ¹³³Cs BEC
 - demonstrate the creation of Cs₂ molecules via magneto-association on the 4g(4)
- A quantum degenerate Bose Mixture of ⁸⁷Rb and ¹³³Cs
 - observe a striking phase separation of the two species
 - observation of an interspecies Feshbach resonance at 181.7(5) G
- Stimulate Raman adiabatic passage (STIRAP)
 - a two-photon transition can used to transfer the Feshbach molecules into the rovibrational ground state or a more deeply bound state
- Conclusion

Toward Dual BEC

- 1) The calculated polarisabilities in atomic unit are ~ 572 a_0^3 for ¹³³Cs and ~ 425 a₀³ for ⁸⁷Rb at 1550 nm. Phys. Rev. A, 73, 022505, 2006.
- 2) A strong interspecies loss after loading into the levitated dipole trap. $-T_{Cs}= 0.8(1) \text{ s}, T_{Rb}= 4(1) \& 70(10) \text{ s}.$ -T_{Rb}= 0.9(2) s, T_{Cs}= 2(1) & 10(3) s. $\frac{\dot{N}}{N} = -L\langle n^2 \rangle$, $L_3 = n_l C \frac{\hbar}{m} a^4$

lower 3 body loss by reduce the peak density

- change to a larger beam waist
- decompress trap

Toward Dual BEC

- 1) The calculated polarisabilities in atomic unit are ~ 572 a_0^3 for ¹³³Cs and ~ 425 a₀³ for ⁸⁷Rb at 1550 nm. Phys. Rev. A, 73, 022505, 2006.
- 2) A strong interspecies loss after loading into the levitated dipole trap. $-T_{Cs}= 0.8(1) \text{ s}, T_{Rb}= 4(1) \& 70(10) \text{ s}.$ -T_{Rb}= 0.9(2) s, T_{Cs}= 2(1) & 10(3) s. $\frac{\dot{N}}{N} = -L\langle n^2 \rangle$, $L_3 = n_l C \frac{\hbar}{m} a^4$

lower 3 body loss by reduce the peak density

- change to a larger beam waist
- decompress trap

- 1) The calculated polarisabilities in atomic unit are ~ 572 a_0^3 for ¹³³Cs and ~ 425 a₀³ for ⁸⁷Rb at 1550 nm. Phys. Rev. A, 73, 022505, 2006.
- 2) A strong interspecies loss after loading into the levitated dipole trap. $-T_{Cs}= 0.8(1) \text{ s}, T_{Rb}= 4(1) \& 70(10) \text{ s}.$ $-T_{Rb}= 0.9(2) \text{ s}, T_{Cs}= 2(1) \& 10(3) \text{ s}.$

lower 3 body loss by reduce the peak density

- change to a larger beam waist
- decompress trap

Immiscible quantum degenerate mixture: the relative strength of the atomic interactions

 $\Delta = \frac{g_{RbCs}}{g_{Rb}g_{Cs}} > 1, g_{ij} = 2\pi\hbar^2 a_{ij}(\frac{m_i + m_j}{m_i m_i})$ Phys.Rev. A, 65, 063614, 2002

In our case, B = 22.4 G, a_{Rb} = 100 a_0 and a_{Cs} = 280 a₀, the observation of immiscibility require $a_{RbCs} > 165 a_0$.

28March, 2011 NTHUPHYS

 $\frac{\dot{N}}{N} = -L\langle n^2 \rangle$, $L_3 = n_l C \frac{\hbar}{m} a^4$

Toward Dual BEC

Table 1. Initial trap parameters. The waist radius given here is the $1/e^2$ intensity radius.

Beam	I,II	III	IVa	IVb	V
Wavelength (nm)	1070	1064.5	820	1064.5	1064.5
Waist radius (µm)	500	45	66	57	102
Rb depth / $k_B (\mu K)$	13	8.5	24	10	6.0
Rb rad. freq. (Hz)	23	204	234	176	77
Cs depth / $k_B (\mu K)$	24	15	-25	18	11
Cs rad. freq. (Hz)	25	220	192i	189	83

28March, 2011 NTHUPHYS

28March, 2011 NTHUPHYS

Peak densities of 87 Rb and 133 Cs are 1.6(1) x 10 12 cm ${}^{-3}$ and 3.1(4) x 10 11 cm ${}^{-3}$.

The mixture contains $3.0(3) \times 10^{587}$ Rb and $2.6(4) \times 10^{4133}$ Cs at $0.32(1) \mu$ K

- the temperature is well below the p-wave threshold (k_{B x} 56 µK based upon C₆, Phys. Revs A 59, 390, 1999)
- The presented Feshbach spectrum near 180 G is measured by evolving the mixture at a specific homogeneous magnetic field for 5 sec and each data point corresponds to an average of 3-5 measurments.

Outline

- Bose-Einstein condensation of ⁸⁷Rb BEC
 - in a combined magnetic and optical trap
 - in a levitated crossed dipole trap
- Bose-Einstein condensation of ¹³³Cs
 - a new method for the production of ¹³³Cs BEC
 - demonstrate the creation of Cs₂ molecules via magneto-association on the 4g(4)
- A quantum degenerate Bose Mixture of ⁸⁷Rb and ¹³³Cs
 - observe a striking phase separation of the two species
 - observation of an interspecies Feshbach resonance at 181.7(5) G
- Stimulate Raman adiabatic passage (STIRAP)
 - a two-photon transition can used to transfer the Feshbach molecules into the rovibrational ground state or a more deeply bound state
- Conclusion

STIRAP

STIRAP

Pound-Drever Hall signal

Pound-Drever Hall signal

STIRAP

Pound-Drever Hall signal

High Finesse of $3000 \rightarrow R \sim 99.91\%$ $u_{FSR} = 750$ MHz, cavity length= 20 cm $\delta u=250$ kHz (One planar mirror and one concave mirror r=50 cm)

STIRAP

Conclusion

- Bose-Einstein condensation of ⁸⁷Rb BEC
 - in a combined magnetic and optical trap
 - in a levitated crossed dipole trap
- Bose-Einstein condensation of ¹³³Cs
 - a new method for the production of ¹³³Cs BEC
 - demonstrate the creation of Cs_2 molecules via magneto-association on the 4g(4)
- A quantum degenerate Bose Mixture of ⁸⁷Rb and ¹³³Cs
 - observe a striking phase separation of the two species
 - observation of an interspecies Feshbach resonance at 181.7(5) G
- Stimulate Raman adiabatic passage (STIRAP)
 - a two-photon transition can used to transfer the Feshbach molecules into the rovibrational ground state or a more deeply bound state
 - two ECDLs (1569nm and 980nm) will be locked to a reference cavity which is stable by a reference ECDL (852nm).

Acknowledge

