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Improved measurement of the shape of the electron

J. 1. Hudson', D. M. Kara', I. J. Smallman’, B. E. Sauer', M. R. Tarbutt' & E. A. Hinds’

26 MAY 2011 | VOL 473 | NATURE | 493

with 90 per cent confidence. This result, consistent with zero,
indicates that the electron is spherical at this improved level of
precision. Our measurement of atto-electronvolt energy shifts in
a molecule probes new physics at the tera-electronvolt energy
scale’.
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Linewidth : 6.7 Hz


http://en.wikipedia.org/wiki/File:JILA%27s_strontium_optical_atomic_clock.jpg
http://en.wikipedia.org/wiki/File:JILA%27s_strontium_optical_atomic_clock.jpg

i

V|
A}
[' A}
N
)< é

(s
(“H}



Cs 6S-8S BB £ .3 $PIE 5 & B

<> Nature linewidth
~900 kHz

EIEEFIRAU.)

T
00000

0
EER(kHz)

L} Flll= 4

RETZ I o pe— F=3

_F -
6D;)) e == -

3/2
A TP o
Y
822lnm 4 ol
A B
883|nm <" fluorescence
e
y




Cs6S-8S BB xRz £ 2 (-)
AT

1

q 51 a—13 HE) — Vgg_ EE(CS) P HeNe / CH. + 0.61THz.

1
~v ;SU_?_:DW{_%+] = rgs_gs(Cs) + 0.5 THz.

" clock transition

SRS s o A S I TENEREERRS TR R AR T

)
EJEQ:FWTEB?*]F i=die
* HRL8S fhﬁmﬂﬁfﬁr(ﬂl nm) > ZYb+ clock (411-nm)$# 37
i P T 5> WKL BlrockL oy By FefAe = -

ﬁ_r



Cs6S-8S BB xRz &2 M (2)
FEF R
+  150-Hz Sk HiskRRE A =1 -

Opt. Lett., 32, 536 (2007) -- Wang-Yau Group

* ﬁEl’j‘Iﬁ“J\J [%JEI’T [§4$I
Opt. lett. 36, 76 (2011) -- Wang-Yau Group -~

¥ «flj v ;%—\:‘

Ti:sapphire &5 =4 &5
Applied Physics B 92, 13 (2008) -- Wang-Yau Group



Hand-size laser system is realized

Opt. Lett 36, 76 (2011)
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Moveable comb clock 1s now under
construction

e Criteria:

« 1. stable and small reference laser
170 mm

pulse duration =30 fs
° " 1 after appropriate extracavity pulse compres-
2 - Sma” TI Sapphlre |aser sion optics (not included, see item 4 of this
quotation), typical uncompressed at output
is 50 fs.

average output power =550 mW
@ 5.5W pump power with TEMg, beam

o 3 Sma” pump Iaser @ 532 nm (aquivalent to Coherent Verdi™)

central wavelength B10nm
preset value will be fixed within a range of

+15/-10nm around specified value

o fiber laser + MgO:PPLN .

Dimensions 250x160x107 mm®
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Fig. 4. (Color online) Green output power stability at
9.64 W over 13 h and (inset) far-field TEMo, energy distri-
bution and intensity profiles of the generated green beam.

The required polarization direction of the input light
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Three approaches on determining the absolute
frequency of cesium atom 8S hyperfine levels

133Cs level diagram
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1. By frequency comparison with standards
(1999)

Accurate measurement of the frequency of the 6S—8S two-photon
transitions 1n cesium

G. Hagel, C. Nest, L. Jozefowski, C. Schwob, F. Nez *. F. Biraben

Laboratoire Kastler Brossel ENS. Université Pierre et Marie Curie, Case 74, Laboratoire Associé au CNRS URA 18,
4, Place Jussiey, T12 EI, 75232 Paris Cedex 03, France

Optics Communications 160 (1999) 14
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Value was double checked by

H 750- nm transition

Finally, we have adopted a conservative 100 kHz uncer-
tamnty for the absolute frequencies on cesium transitions.
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2. By direct frequency comb spectroscopy (2007)

March 15, 2007 / Vol. 32, No. 6 / OPTICS LETTERS 701

Two-photon frequency comb spectroscopy of the
6s—8s transition in cesium

P. Fendel, S. D. Bergeson, Th. Udem, and T. W. Hiinsch
Max-Planck-Institut filr Quantenoptik, Hans-Kopfermann-Sirasse 1, 85748 Garching, Germany
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N Fig. 2. (a) Fluorescence measurement showing both hy-
perfine components of the Cs 65—8s transition. Because of
the comb structure, the signal repeats itself every f,..,/2. (b)
F'=3 to F=3 hyperfine component of the 6s—8s transition
fitted to a Lorentzian line profile. These data are an aver-
age of nine separate scans, each measured at 450 mW laser
power, a Gaussian waist of 0.72 mm, and a 1 s integration
time per data point. The bottom panel shows the plot re-
siduals as a percentage of the background-subtracted
Lorentzian peak height.



Table 1: Absolute frequencies of 33Cs 6S-8S hyperfine transitions

“+364507238000 kHz; ** +364503080000 kHz;

e “F=4 hyperfine constant
Approach 1 417 (15) 351 (15) 219124 (7)
| 97 kHz | 91kHz
Approach2 320 (100) 260 (100) 219120 (10)
N /

~

Finally, we have adopted a conservative 100 kHz uncer-
tamnty for the absolute frequencies on cesium transitions.




3. By quantum interfered spectroscopy (2012)

submitted to Optics Letters



Table 1: Absolute frequencies of 133Cs 6S-8S hyperfine transitions

*E=3 TF=4 hyperfine constant

(kH2) (kHz) (kHz)
Approach 1 417 (15) 351 (15) 219124 (7)
Approach 2 320 (100) 260 (100) 219120 (10)

“+364507238000 kHz; ** +364503080000 kHz;
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Principle of guantum interfered two-photon spectroscopy
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Principle of guantum interfered two-photon spectroscopy
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e Experimental data

—— Theoretical curve to first sideband

—— Theoretical curve to second sideband

Modulation depth 1.12 — Theoretical curve to third sideband
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Laser Stabilization and High-resolution Spectroscopy
AMO summer school 2012
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Department of Physics, National Central University
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