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Motivation

 To find the formulas of the EM energy
densities In a dispersive medium with finite
loss

 To find the formulas of the Lagrangian and
Hamiltonian density for studying the
Quantum EM Phenomena of metamaterials



Part |

EM energy density In a dispersive
medium



Methods for deriving the energy
density formula (1)

* For a non-dispersive, linear medium, the
EM energy density can be easily identified
in the equation of Poynting’s theorem
(electrodynamics method, ED method).

* For a dispersive, linear, lossless medium,
the time averaged energy density for time
harmonic EM wave can be derived
(Landau & Lifshitz )



Methods for deriving the energy
density formula (I1)

* For a dispersive, linear medium with loss,
the time averaged energy density for time
harmonic EM waves can be derived using
the equivalent circuit (EC) method.

* For a dispersive, linear medium with loss,
the instantaneous energy density can be
derived using the electrodynamics (ED)
method.



Energy density formulas (1)

Brillouin, Landau & Lifshitz (books): Energy density
formula for dispersive-lossless medium. (harmonic
wave, time averaged)

R. Loudon (1970): Permittivity is of the Lorentz type,
finite loss. ED approach.

P. C. W. Fung and K. Young (1978): EC approach.

Ruppin (2002), T. J. Cul & J. Au. Kong (2004):
Dispersive-lossy metamaterials consisting of E&M
dipoles having Lorentz resonance behaviors. (The
magnetic dipoles in Ruppin’s model are not realistic,
because they behave exactly like the electric dipoles.)
ED approach.
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Energy density formulas (11)

» Tretyakov (2005,EC), Boardman & Marinov (2006,ED):
Dispersive metamaterials. The magnetic dipoles are current
loops (SRRS). The time average of the B&M’s result is
different from that of Tretyakov’s. Tretyako’s result does
not approach the result of the Lifshitz &Landau’s (LL)
formula in the lossless limit.

* The results of T and B&M have been “unified” by
Luan(2009). The resultant formula approaches LL formula
In the lossless limit. Luan’s Strategy: The power loss
determines the energy density.

« The same strategy had been utilized to find the energy
density formula for a single-resonance chiral metamaterial
(Luan et al, 2011).
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Energy density in a nondispersive EM medium(l)

Maxwell's equations (Ampere's and Faraday's Laws)

give us: —V-S=E-82+H-a—8+ E-J
ot ot

Poynting vector S = E xH
Constitutive relations: D = g,¢E, B = y,uH
oW

—-V.S= Y +E-J (Energy conservation law !)

: : 1 1
(Naive) Energy density: W = E(E. D+H-B)= E(gOgEz + o uH 2)

=E-J=J%/o (Joule Heat, if J=cE)
If there is no way to dissipate the energy (eg. lossless plasma),

(Naive) Power loss: P

0SS

thenE-J = %—T K Is the kinetic energy density of the charged particles.

Effective energy density: W, =W +K




Energy density in a nondispersive EM medium (I1)

Single frequency, complex field representation:
= 1 1

S=_Re(ExH"), W= (el EF +uou[HF)

S and W: time-averaged S and W, —V-S=P,

Here< > jo—dt— (W(T)-W(0))=0

The expression of W CANNOT be extracted from
the time averaged equation —V-S=P

loss*




EM energy density In dispersive media
with negligible absorption

For monochromatic EM wave
D = gye(0)E, B = ppu(w)H
1

§:ER6(EX H*)

W :%(gof—w(a)g(a)))l EF o (o)) | H |2j

—Brillouin, Landau, and Jackson
Only for the monochromatic and adiabatic cases.
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Energy density formula-- lossless case (1)

Ref: Landau’s ED book, Ch 9, pp. 274-2/76
E () == (E(t)+E (t)), Dpeu(t) = (D(t>+D )

E(t) =E,(t)e"™ =¢™™ j E,.e “da

D(t) = 50j5(w0 +a)E, e "da, w=0,+a

E,(t): slowly varying quantity (w.rt. T =27/ w,)
E,, : Foruier distribution (a narrow peak around « =0)

Time avearging over T = 2—77:

@y
_V.§:l .@D . 8D 8B Ly @
4 ot ot ot ot
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Energy density formula-- lossless case (I1)

ane—i (v +a)td o

J I E, e “da

=e g, | —iw,e(w,)E, () + @(wgzo% ) aE@t(t)}

Similarly we have

oB(t) _
ot

H. (1) + @sl@n) OH, (t)}

—la)ot _Ia) W
ﬂo{ o (@, da, ot
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Energy density formula-- lossless case (111)

_v.§:£ E.6£+E*.8_D+H.8£+H*.6_B
4 ot ot ot ot e,
0 ( &, O(we o(w oW
— 0 ( )|E0|2+:u0 ( :u)lHO|2 —
ot\ 4 Ow 4 Ow

ot
(1 have renamed @, as ) | Slowly vz:ry}g_‘

Using the fact E=E e and H =H_e™'”, we obtain

V\_/ _ gO a(a)g) | EO |2 + lLlO a(a)lLl) | H0 |2

4 bw 4 Ow
_ ‘90 6(0)8) | E |2 + luo 6(0)/,1) | H |2
4 Ow 4 Ow

WhenAa — 0] W represents the energy density of harmonic wave
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EM energy density in dispersive media with
finite absorption (ED approach)

(R. Loudon, J. Phys. A 3, 233 1970)
D=¢,E+P, B=y4H, P=Np, p=qr,
m(i‘+Fr+a)r2r)=qE:>l5+FP+a)fP:goa)ﬁE‘

oD .88_8[1 OP

-V.S=E-—+H =—| =(g,E*+ u,H?) |+|H —
ot ot ot 2(0 e )} ot

:aW°+8|: . (F"2+a)r2P2)}+ L po W, T p

ot ot 2a)§50 w’E, ot wle,

P P

1
20)§50

(P? + 0P

Energy densityjW =W, +

<} Dipole energy |

where W, :%(EOEZ +p,H?)
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EM energy density in metamaterials with
finite absorption (Ruppin 2002)

The electric part is the same as that of Loudon's.
For the magnetic part, Ruppin considered the simplified permeability
Fa)g

- )
o —af +il, @

o) =1+ y,(0) =1~

which corresponds to the equaion of motion
M+ M+ M = FalH.

This leads to: —V.SZ%JF P

loss?
t

where

. (F’2+a)r2P2)+ ﬂOZ(M2+a)§I\/I2),

w=20p? oy
2 2 20,&, 2F w;

PI — 1_‘el:.)2 4+ zuol_‘hl\./|2
a)sgo Fat
(the Joule Heat caused by the currents in the wires and SRRs)
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EM energy density in metamaterials with
finite absorption (Ruppin 2002) (11)

Remarks: the simplified permeability implies that in this model
the magnetic dipoles consist of + monopoles, so this is not

a realistic model.
The realistic magnetic dipoles are the currents loops, I.e., the SRRs

(m = 1S, m: magnetic dipole, | : current, S: area encircled)
The realistic permeability is
Fo’

- ]
o' — ) +il o

p(w)=1-

corresponding to the equaion of motion
M+T,M+ao’M=—FH, 16



EM energy density in metamaterials
with finite absorption (1)

One can derive from Maxwell's equations

oD oB 0|1 oP oM
V- S=E-—+H —=—| Z(g,E°+ y,H*) |+ E-—+ yH - —
o at at[z(o o )} a o ot
The equations of motion for P and M:
L o
P+vP=gwE < ¢(w)=1- P
o(w+1v)
2
I\'/I+7/M+a)§_[Mdt:—FH & p(w)=l-— FC; :
o — @y +loy

Using the method similar to that of Loudon's, one can derive the result

2 ~2
V.S =§(We W, )+ P [W, = fE” | P2
ot 2 2w¢,
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EM energy density in metamaterials with
finite absorption (I1)

I\'/I+7/M+a)§jl\/ldt=—FHk

oM & oH
H. 22 - H-M)— 1M |=—
S at(”o )= # ot
0 H ' 2
=~ (tH-M)+ FOM.(M+yM+a)OjMdt)
_5_ Ho np2 /an)o ) YHo w p2
—at_,uoH Mo+ M+ (IMdt)_ M

Pi-Gang Luan, Phys. Rev. E 80, 046601 (2009) 1



EM energy density in metamaterials with
finite absorption (111)

Magnetic energy density

W /LlOH
2

+ i H-M+ 2"; |v|2+“20§’5 (jl\/mlt)2

magnetic part of power loss: P’

loss

- % M? (pure Joule heat !)

Using a)ozj Mdt = —(I\7I +FH + 7/|\/|), W, can also be expressed as

1-F)H? : .
Wb=”°( M = [(M+FH+7M)2+a)§(M+FH)1
2 Za)QF
52 2
Poss = VZP e M is the total power loss (of 1°R form)
@&, F

P.G. Luan PRE (2009) -- Different from the result obtained
by Boardman et. al. [Phys. Rev. B 73, 165110 (2006)] 19



Energy density formula for lossless,
Isotropic-dispersive chiral media

Constitutive relations:

K (w) B—_j K (w)

D=¢,e(w)E+I E+ yu(w)H
C C

Adiabatic analysis leads to

V\_/ — 2 8((()8) | E|2 _I_luo a(a)/u) | H |2 4 1 a(C()K‘) Im(EH*)

4 Ow 4 Ow 2C Ow
o(we) i@(a)K)
. . e E
=3( &E i H'): O 0 = |=Ivimy
4 N O(wx) O(ww) uH,| 4
ow ow
o(we)  O(ou) o(we) wp) (o)) |
W >0 = + A8H) - 0 and H >( j
ow ow ow Ow ow

or tr(M) >0 and det(M) > 0.
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EM energy density In single-resonance
chiral metamaterial with finite loss (1)

Isotropic chiral medium, single resonance case (eg. helix)

Fo’

o -, +iTw

2

w
g(w)=1- : , p(w)=1-
(@) o’ —w) +iTw H(o)

k@=—22 Ly ()5 =)
o —w, +11I'w

I5+FP+a)§P:goa)§E+éH
c

M +TM +w§jMdt=—FH—iE

HoC
Both correspond to the following circuit equation
di v dd :

. (0]
L—+Rl+—=V.-——] P=—2M, A=+JFw
dt cC ° dt Ac v P
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EM energy density In isotropic chiral
metamaterials with finite absorption (11)

The total energy densit\_/ IS given by
g EY pH? =% wP?
2 2 26,0, 28,0
3 gOE2 N L, (1— F)H? N a)ng N Ly (M + FH)?
2 2 Zgoa)s 2F
52 2
Power loss P . = FP2 _ A4M
E9®, F

P.G. Luan et.al.Optics Letters 36, 675 (2011)
&E"  pp(l-F)H’

Term by term:

2
(pure EM energy, the H part is stored outside the helix tube);
2p2 2
a)OPZ . (electric in C); #(M+ FH) . (magnetic inside the helix tube)
28,0 2F
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Some remarks on effective medium energy

« 1. In an effective medium, the effective electric field
energy also contains magnetic energy and vice versa.

2. In the thin-wire medium, the magnetic energy
gathered around the wires Is treated as the kinetic
energy carried by the “massive electrons” In the
effective medium (Pendry 96 PRL). (In the original
Drude model such magnetic energy does not exist)

« 3. An SRR Is an LC circuit, it stores both the magnetic
(L) and electric (C) energies. (The “magnetic dipole
energy” includes also the electric potential energy)



Summary: Part |

» Formulas for energy density and power loss of
Wire-SRR metamaterial media are derived

 The derivation Is based on the knowledge of
the correct form of the power loss and the
equations of motion of the resonators

» The effective electric energy also includes the
magnetic energy. The effective magnetic
energy includes the electric energy too.
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Part |1

The Lagrangian and Hamiltonian
density for the dispersive-lossy

EM system
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agrangian density and dissipation function

Lagrangian Equations:

dt\ oq; | oq; aq,

Example: coupled circuits
q2
ZLqJ+— 2, M= 250
jk j=k ' j
—ZR,-Q?

dag. .
ZMJk 2 j dt +C :Ej(t)

k; j=k j

d [ oL j_i — _E, F 1s the dissipation function.
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_egendre transformation and Hamiltonian

Example: coupled circuits
q.2
ZL a; +_ > M,d,q, - ZTJ“LZEJ(DQJ
Jk j=k ' j J

Canonlcal momenta

oL

] @qj ] %:k Jk k

Hamiltonian:
H=2 pd,-L

j

27



Lagrangian equations for the fields

Lagrangian Equations:

(8( 0, ) ]+Z ( .coa)]_%:_@(%;a)’

L Is the Lagrangian density
F Is the dissipation function density
@, - the dynamical field variables

1 o
F :_ZRaﬂ%%
Za,ﬂ
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Hamiltonian and Quantization
Canonical momentum:
- oL |
a(atgpoz)
Hamiltonian density
H=) T1,¢, -L=H (p,11)7
Canonical quantization:
[, (r,0), T1,(r", )]=irs®™ (r—r’)
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Lagrangian density for a plasma medium (1)

Dynamical variables: ¢, A, P

2
L =[fop2_ Ho 2|y P2 HP - E (interaction term)
2 2 20,

—P(V¢+A)

Here E=-Vgp—-A, B=VxA

. : L vP? 1
Dissipation function density:F = ——==B,_
20y, 2
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Lagrangian density for a plasma medium (11)

Lagrangian Equations for the fields

(
0 8L. +V. oL —£=O, = V-D=0
ot\ 0¢ 0(Ve)) O0p
oL |, 0 oL _L 0 = VxH=D
ot\ oA ) ox,\ 0(0A 10x))) oA

0 ( oL 0 oL oL oF . )
— |+ —-—=-——= = P+vP=¢guoE
ot\oP ) ox |\ o(oPlox)) oP oP
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Hamiltonian density for a plasma medium

Canonical momentum densities:

I1 :i_O IT, _d =-D, szal'.z l; :
oL, oA P wg,

Hamiltonian density:
H =TT, ¢+M, A+, -P-L
~fop2 i

JE +‘;0 H?+Vg-D=W, +W, +V-(¢D)
p~o0

The term Vp-D =V -(¢D) because V-D =0
V(D) is a surface term, which can be dropped.
F')Z

2
20, ¢,

= H =W, +W, =221 oy,
2 2
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agrangian Density for WSM (1)

Dynamical variables:‘ o, A, P,Q =y, [M dt ‘

~ 2
L =fope_toppl) P p el v “OwO(jMdt)

2 2 2602';80 2F
—8—20(V¢+A) —Z—lio(VxA—Q)
p? 1
+ a)igo_P (V(p+A)+ " (Qz—a)jQZ)

HereE=-Vp-A, B=VxA
Dissipation function density:

S/ VI
2wie, 2F 2
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Lagrangian Density for WSM (11)

Lagrangian Equations

0, —

0 [ oL oL oL

— | = |+V- — =

ot\ 0¢ o(Vep)) op

ofeL | @ oL oL

—| — |+ — =0 =
éﬁ(@Aéj a&[a(@%/a&)j oA,
g(a_tj+ of_ o | o __oF
ot\ oP ) ox\o(oPlox)) oP
o), o[ &

ot\ 6Q) ox (o6(oQlox)) oQ

V-D=0
VxH=D

— P+yP =goa)§E

= M +yM + o} [Mdt =—FH
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Hamiltonian Density for WSM

Canonical momentum densities:

m==L-0 m=2-0p

Y 0¢ O0A

S S I B Vo
oP  wy &, 0Q F

Hamiltonian density:
H =I ¢+, -A+II,-P+1,-Q-L

52 2
o E2, P2 +ﬂ°H2+,uOH-M+ﬂI\/I2+ﬂ°w0
2~ 2w | 2 2F 2F

(jl\/ldt)2

+Vo-D=W,+W, +V-(¢D)
The term Vo-D =V -(¢D) because V-D=0
\% -(goD) IS a surface term, which can be dropped.

= ‘H =W, +W, = total energy density ‘
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Lagrangian Density for the SRCM (1)

Dynamical variables: ¢, A, Q = yojM dt

Here P=¢Q, &=——n 7, = |

Fz,’ £,
L :‘9—2052 TH 4P E+2F M? “0”0 (jlvldt)
=5 (VorA) =5 (V<A —fQ-(WA)*z;F(Q“”f )

HereE=-Vp—-A, B=VxA
Dissipation function density:
1

P> Tu r .
*M* = QZZ_PIOSS

F = > = =
20 ¢, 2F 214, F 2
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Lagrangian Density for the SRCM(I1)

The equation of motion (with disipassion effect) is written as

O oL N 19 oL _8L __8F
ot\og, ) x| 0(ogio%)) o4, 04,

Explicitly, we have

R R R I R
ot\ o (Vo)) op

8(8Lj a( oL ]_8_L:O L UsH-D

— |+
ot\ oA, ) ox | o(oA1ox) ) oA
8(8L j+ 0 oL oL oF
ot\aQ ) ox|a(6Qlox)) aQ  aQ

:>I\'/I+;/M+a)§jl\/ldt=—FH—AE

Zo 37



Hamiltonian Density for SRCM

Canonical momentum densities:

n-t o m-t_op m-t_nwM_y
? o¢ " 0A 0Q F

Hamiltonian density:

H=I¢+M0, A+, Q-L

_ &2 2 2 /”oa)o
2E+2H+yOH M + 22 M (jMdt) +Vg-D

2F
=W +V~(¢D)

The term Vop-D =V -(¢D) because V-D =0

V(D) is an irrelevant surface term, which can be dropped.
= H =W=total energy density

P’ w;P?

2 2
Notethatﬂl\/lz+ﬂ0—%(jl\/ldt) = ~+ 2
2F 2F 2¢,0, ) .




Summary: Part I

» The Lagrangian and Hamiltonian density of
the EM fields in a wire-SRR medium are
derived

 The Hamiltonian obtained Is the same as the
energy density derived In Part |

* It is possible to study the quantum phenomena
In a metamaterial If we quantize the
electrodynamics system
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Thank you for your attention!

|

Veywiiiviy i
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