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History and motivation 

• Brillouin discussed the energy density of EM waves in a dispersive 
medium with neglecting absorption. (adiabatic process was assumed ). The 
same formulas can also be found in Landau and Lifshitz. 

• Loudon discussed the case of dispersive medium (permittivity only) with 
finite loss. The behavior of the microscopic electric dipoles determines the 
form of permittivity and energy density macroscopically. 

• Ruppin, Tretyakov, and Boardman & Marinov derived the energy density 
formula for EM waves in a dispersive metamaterials. Ruppin used a 
simplified model for the magnetic dipoles (a pair of positive and negative 
monopoles). In the more realistic situation, the magnetic dipoles are current 
loops (like SRRs). Tretyakov studied this case and derived the formula 
using an equivalent circuit model (EC approach). Boardman & Marinov 
derived the energy density formula using the electrodynamical approach 
(ED approach). B&M’s results are different from Tretyakov’s. Which one 
is correct? Or both are incorrect? 

• In fact,  we find that the form of the power loss determines the form of the 
energy density.   



Electromagnetic energy density  

in nondispersive media 
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EM energy density in dispersive media  

with neglecting absorption (Brillouin) 
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EM energy density in dispersive media with 

finite absorption (I)  
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EM energy density in dispersive media with 

finite absorption (II) 
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Effective permittivity and permeability 
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Metamaterials consisting of wires and SRRs  

D. R. Smith et. al.,  Physics Today, 17, May (2000).  
 
Phys. Rev. Lett. 84, 4184 (2000) ; Science, 292, 77 (2001)  



The Building Blocks of LHM 
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EM energy density in metamaterials with 

finite absorption (Ruppin 2002) (I) 

The electric part is the same as that of Loudon's. The 'mass' appears in the equation 

is the "effective mass" of the charge carrier. The in calculating the effective mass, 

the magnetic effect has been
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 included (Pendry 1996).
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EM energy density in metamaterials with 

finite absorption (Ruppin 2002) (II) 
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EM energy density in metamaterials with 

finite absorption (Ruppin 2002) (III) 

Remarks: the simplified permeability implies that the magnetic dipoles 
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Equivalent circuit (EC) method  

(Tretyakov 2005) (I) 
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Equivalent circuit (EC) method  

(Tretyakov 2005) (II) 
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Electrodynamic (ED) approach  

(Boardman & Marinov 2006) (I) 
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Electrodynamic (ED) approach  

(Boardman & Marinov 2006) (II) 
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and the time-averaged magnetic energy density  is
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General remarks on Tretyakov’s EC approach 

and Boardman & Marinov’s ED approach 

1. Tretyakov's result does not reduce to Landau's formula when turn off the loss effect, 

thus the formula must be incorrect. However, this has nothing to do with the EC approach. 

The incorrectness happens because Tretyakov forgot to consider the energy contribution of the

mutual inductance term  in his calculation.

2. When turn off the loss, Boardman & Marinov's magnetic energy density formula d
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Deriving the magnetic energy density formula 

using ED approach (Luan 2007) (I) 

 2 2

0 0 0

2 2
2 0

0 2

0

2

Maxwell's equations lead to:

1

2

Using ,  one can find that: , 
2 2

and the electric part of the power loss is: 

p e

p

e

loss

E H
t t t t t

W

P

  


  

 





     
                

   



D B P M
S E H E H

E P
P P E

P

     

 

2

0

2

0

0

20
0 0 0 0 0

2 2
2 20 0 0 0

0

Integrating the equation  

and subtituting it into the  term, we have
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Deriving the magnetic energy density formula 

using ED approach (Luan 2007) (II) 
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Thus we have the magnetic energy density 

,
2 2 2

and the magnetic part of the power loss:  pure Joule heat !

Substituting the relation:  into 
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we can also obtain :
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=  is the total power loss.
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Deriving the magnetic energy density formula 

using ED approach (Luan 2007) (III) 
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Remarks:

1. My result of  is different from Boardman's in the  term, which is

 in Boardmn's paper.

2. The difference modifies the form of ,  changing it from the misterious form 
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Joule heat should be the only 

possible origin of the power l

to 

the pure Joule heat form . 

3. However, this modification to
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  will not change the time
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0 for harmonic field.
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Deriving the magnetic energy density formula 

using ED approach (Luan 2007) (IV) 
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4. A carefully analysis shows that the =  
2 2

term corresponds to the electric potential energy stored in the 

capicitor part of the SRRs (A SRR is a  circuit).  

5. For harmon
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ic fields, the time averaged magnetic energy density is 

3
1 | | ,

4

which is the correct result (the mutual inductance energy is included) 

obtained using the EC method.
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. When we turn off the loss effect, the energy density indeed reduce to 
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Conclusion 

• For a metamaterial medium consisting of wires 

and SRRs, the only origin of the power loss is 

the Joule heat (I^2 R terms) in these 

conducting elements. 

• The correct from of the power loss determines 

the correct form of the energy density. 

• The method can also be applied to the 

metamaterial medium consisting of other kinds 

of conducting elements (eq. ER+MR). 
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Thanks for your attention ! 


