A Compact Source of Narrowband Biphotons

褚志崧

清大物理系

NTHU AMO Seminar 2012

Outline

□ Single photons, biphotons

□ Motivation: quantum communication

Generation of narrowband biphotons

Our proposed method

□ Summary

Single Photons

Single Photons: Wavepackets

 $\Delta \omega \Delta t \ge 1$

Single Photons: Wavepackets

Single Photons: Wavepackets

Two Uncorrelated Single Photons

 $\Delta(\omega_1 + \omega_2) \Delta(t_1 - t_2) \ge 1$

Mancini et. al. PRL 88, 120401 (2002).

Biphotons: Time-Energy Entangled Photon Pair

 $\Delta \omega_1 \Delta t_1 \ge 1$ $\Delta \omega_2 \Delta t_2 \ge 1$

 $\Delta(\omega_1 + \omega_2) \Delta(t_1 - t_2) \ge 0$

Mancini et. al. PRL 88, 120401 (2002).

$$|\leftrightarrow\rangle_{1}|\leftrightarrow\rangle_{2}-|\updownarrow\rangle_{1}|\updownarrow\rangle_{2}$$

polarization entanglement

Outline

□ Single photons, biphotons

□ Motivation: quantum communication

Generation of narrowband biphotons

Our proposed method

□ Summary

Distribution of Quantum States Over Distances

Quantum Key Distribution

Quantum Teleportation

$$|\varphi\rangle_{12} = |\updownarrow\rangle_1 |\leftrightarrow\rangle_2 - |\leftrightarrow\rangle_1 |\updownarrow\rangle_2 \qquad 2$$

$$\begin{aligned} |123\rangle &= |\varphi\rangle_{12} |\varphi\rangle_{3} = (\alpha|\downarrow\rangle_{2} + \beta|\leftrightarrow\rangle_{2}) (|\downarrow\rangle_{1}|\leftrightarrow\rangle_{3} + |\downarrow\rangle_{1}|\leftrightarrow\rangle_{3}) + \\ & (-\alpha|\downarrow\rangle_{2} - \beta|\leftrightarrow\rangle_{2}) (|\downarrow\rangle_{1}|\leftrightarrow\rangle_{3} - |\downarrow\rangle_{1}|\leftrightarrow\rangle_{3}) + \\ & (\alpha|\downarrow\rangle_{2} - \beta|\leftrightarrow\rangle_{2}) (|\downarrow\rangle_{1}|\downarrow\rangle_{3} + |\leftrightarrow\rangle_{1}|\leftrightarrow\rangle_{3}) + \\ & (-\alpha|\downarrow\rangle_{2} + \beta|\leftrightarrow\rangle_{2}) (|\downarrow\rangle_{1}|\downarrow\rangle_{3} - |\leftrightarrow\rangle_{1}|\leftrightarrow\rangle_{3}) + \end{aligned}$$

Quantum Teleportation

$$|\varphi\rangle_{12} = |\updownarrow\rangle_1 |\leftrightarrow\rangle_2 - |\leftrightarrow\rangle_1 |\updownarrow\rangle_2 \qquad \bigcirc$$

$$\begin{aligned} |\mathbf{0}\otimes\rangle &= |\varphi\rangle_{12} |\varphi\rangle_{3} = (\alpha|\updownarrow\rangle_{2} + \beta|\leftrightarrow\rangle_{2}) (|\updownarrow\rangle_{1}|\leftrightarrow\rangle_{3} + |\updownarrow\rangle_{1}|\leftrightarrow\rangle_{3}) + \\ & (-\alpha|\updownarrow\rangle_{2} - \beta|\leftrightarrow\rangle_{2}) (|\updownarrow\rangle_{1}|\leftrightarrow\rangle_{3} - |\updownarrow\rangle_{1}|\leftrightarrow\rangle_{3}) + \\ & (\alpha|\updownarrow\rangle_{2} - \beta|\leftrightarrow\rangle_{2}) (|\updownarrow\rangle_{1}|\updownarrow\rangle_{3} + |\leftrightarrow\rangle_{1}|\leftrightarrow\rangle_{3}) + \\ & (-\alpha|\updownarrow\rangle_{2} + \beta|\leftrightarrow\rangle_{2}) (|\updownarrow\rangle_{1}|\updownarrow\rangle_{3} - |\leftrightarrow\rangle_{1}|\leftrightarrow\rangle_{3}) + \end{aligned}$$

Bell states

Quantum Teleportation of a "Person" (impossible in practice)

Space shuttle

Station on the moon

Zeilinger, Scientific American, 50 (April 2000)

Quantum Networks

Photon Loss in Quantum Channels

fiber, 0.2 dB/km

Transmission probability for a qubit: $p(l) = e^{-l/l_0}$, $l_0 = 21.7 \text{ km}$

Average number of required repetition: $n(l) = \frac{1}{p(l)} = e^{l/l_0}$ $n(500 \text{km}) = 10^{10}$

No-Cloning Theorem

A perfect amplifier:

$$\begin{aligned} |\updownarrow\rangle|0\rangle \rightarrow |\updownarrow\rangle|1\rangle \\ |\leftrightarrow\rangle|0\rangle \rightarrow |\leftrightarrow\rangle|\leftrightarrow\rangle \end{aligned}$$

For
$$|\phi\rangle = \alpha |\uparrow\rangle + \beta |\leftrightarrow\rangle$$
,
 $|\phi\rangle |0\rangle \rightarrow |\phi\rangle |\phi\rangle = (\alpha |\uparrow\rangle + \beta |\leftrightarrow\rangle) (\alpha |\uparrow\rangle + \beta |\leftrightarrow\rangle)$
 $= \alpha^2 |\uparrow\rangle |\downarrow\rangle + 2\alpha\beta |\downarrow\rangle |\leftrightarrow\rangle + \beta^2 |\leftrightarrow\rangle |\leftrightarrow\rangle$

But

$$|\phi\rangle|0\rangle = (\alpha|\uparrow\rangle + \beta|\leftrightarrow\rangle)|0\rangle \rightarrow \alpha^{2}|\uparrow\rangle|\uparrow\rangle + \beta^{2}|\leftrightarrow\rangle|\leftrightarrow\rangle$$

Therefore there cannot exist such a amplifier for unknown quantum state.

For
$$N = l/l_0$$
, $n_{\min} = l(e/l_0)$

Quantum Memory

Narrowband photons interact with atoms more efficiently.

Outline

□ Single photons, biphotons

□ Motivation: quantum communication

Generation of narrowband biphotons

Our proposed method

□ Summary

Spontaneous Parametric Down-Conversion (SPDC)

Spontaneous Parametric Down-Conversion (SPDC)

Time Delay t1-t2

4-Wave Mixing and Slow Light in Cold Atoms

$$T = L\left(v_i^{-1} - v_s^{-1}\right)$$

4-Wave Mixing and Slow Light in Cold Atoms

Typical Apparatus for Cold Atom Experiments

SPDC with Spectral Filtering

SPDC in a Resonant Cavity

SPDC in a Resonant Cavity

SPDC with Spectral Filtering

Outline

□ Single photons, biphotons

□ Motivation: quantum communication

Generation of narrowband biphotons

Our proposed method

□ Summary

Backward-wave SPDC

Backward-wave SPDC v.s. Forward-wave SPDC

	Coherence Time	Gain Linewidth	
Forward-wave	$L\left(v_i^{-1}-v_s^{-1}\right)$	$\frac{1.77\pi}{L(v_i^{-1} - v_s^{-1})}$	
Backward-wave	$L\left(v_i^{-1} + v_s^{-1}\right)$	$\frac{1.77\pi}{L(v_i^{-1} + v_s^{-1})}$	

Backward-wave SPDC v.s. Forward-wave SPDC

Spectrum

30-mm long PPKTP crystals Pump λ = 532nm Signal, idler λ = 1064 nm Gain linewidth = 0.08 cm⁻¹ Cavity finesse = 1000 Mode spacing = 1.75 cm⁻¹ Coherence time = 68 ns Bandwidth = 3 MHz

Phase Matching in Backward-wave SPDC

$$\omega_p = \omega_s + \omega_i$$
$$k_p \neq k_s - k_i$$

Quasi-Phase Matching

$$\omega_{p} = \omega_{s} + \omega_{i}$$

$$k_{p} = k_{s} - k_{i} + K$$

$$K = \frac{2\pi m}{\Lambda}, \quad \Lambda \le 1 \,\mu m$$

Sub-micron Periodic Poling

Canalias and Pasiskevicius, Sweden

Key Features of Resonant Backward-wave SPDC

Compact design

no need of additional filter for single-mode biphotons

- Higher brightness (photons/MHz/mW)
 80000 times higher than nonresonant forward-wave SPDC source
- □ Wavelength tunability

$$k_p = k_s - k_i + 2\pi m / \Lambda$$

Acknowledgements

Steve Harris (Stanford) G.Y. Yin (Stanford) Chinmay Belthangady (Harvard) Shane Du (HK) Ite Yu (NTHU)

